Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

CRISPR/Cas9’s Major Role in Revolutionizing the Field of Cancer

Author(s): Agrata Singh, Khushi Sharma, Uzma Abdulbaseer, Estevan Limon Lopez and Ankit Sharma*

Volume 20, Issue 2, 2024

Published on: 19 June, 2023

Page: [135 - 141] Pages: 7

DOI: 10.2174/1573394719666230426152155

Price: $65

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) technology is currently one of the most promising gene editing techniques. Gene-editing techniques allow various alterations to the DNA sequence by either addition, deletion, or inversion. The two primary components of this technique are the Cas9 endonuclease, which cuts the DNA strands at the specific target position of the genome, and the guide RNA molecule (gRNA), which guides the Cas9 endonuclease to that target portion. This technology is based on the adaptive immune system in prokaryotes, which prevents the entry of viruses by integrating short virus sequences in the cell’s CRISPR locus and allowing it to remember, recognize, and clear infections. The use of CRISPR technology in cancer biology is evolving quickly and holds great promise for the development of cancer models, blocking drug resistance, screening functional genes, gene editing, and CAR T cell therapy.

Keywords: CRISPR/CAS9, double knockout system, Cas9-sgRNA, oncogenic alterations, CAR T cell therapy, adenoassociated virus, genome editing.

Graphical Abstract
[1]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[2]
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9): 636-46.
[http://dx.doi.org/10.1038/nrg2842] [PMID: 20717154]
[3]
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60(2): 174-82.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[4]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-2.
[5]
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005; 151(8): 2551-61.
[http://dx.doi.org/10.1099/mic.0.28048-0] [PMID: 16079334]
[6]
Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010; 11(3): 181-90.
[http://dx.doi.org/10.1038/nrg2749] [PMID: 20125085]
[7]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (1979) 2013; 339(6121): 819-23.
[8]
Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159(3): 647-61.
[http://dx.doi.org/10.1016/j.cell.2014.09.029] [PMID: 25307932]
[9]
Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol 2018; 13(2): 406-16.
[http://dx.doi.org/10.1021/acschembio.7b00657] [PMID: 29035510]
[10]
Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 2015; 58(4): 575-85.
[http://dx.doi.org/10.1016/j.molcel.2015.04.028] [PMID: 26000843]
[11]
Kwon T, Ra JS, Lee S, et al. Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9. Proc Natl Acad Sci USA 2022; 119(9): e2103532119.
[http://dx.doi.org/10.1073/pnas.2103532119] [PMID: 35217600]
[12]
Ma Y, Kang B, Li S, et al. CRISPR-mediated MECOM depletion retards tumor growth by reducing cancer stem cell properties in lung squamous cell carcinoma. Mol Ther 2022; 30(11): 3341-57.
[http://dx.doi.org/10.1016/j.ymthe.2022.06.011] [PMID: 35733338]
[13]
Chang YJ, Bae J, Zhao Y, et al. In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal. J Vet Sci 2020; 21(2): e26.
[http://dx.doi.org/10.4142/jvs.2020.21.e26] [PMID: 32233134]
[14]
Zhao G, Wang Q, Gu Q, et al. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget 2017; 8(55): 94666-80.
[http://dx.doi.org/10.18632/oncotarget.21863] [PMID: 29212257]
[15]
Tang H, Shrager JB. CRISPR/Cas‐mediated genome editing to treat EGFR ‐mutant lung cancer: A personalized molecular surgical therapy. EMBO Mol Med 2016; 8(2): 83-5.
[http://dx.doi.org/10.15252/emmm.201506006] [PMID: 26747090]
[16]
Cromer MK, Barsan VV, Jaeger E, et al. Ultra-deep sequencing validates safety of CRISPR/Cas9 genome editing in human hematopoietic stem and progenitor cells. Nat Commun 2022; 13(1): 4724.
[http://dx.doi.org/10.1038/s41467-022-32233-z] [PMID: 35953477]
[17]
Ren J, Zhang X, Liu X, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 2017; 8(10): 17002-11.
[http://dx.doi.org/10.18632/oncotarget.15218] [PMID: 28199983]
[18]
Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 2017; 23(9): 2255-66.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1300] [PMID: 27815355]
[19]
Gao Q, Ouyang W, Kang B, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics 2020; 10(11): 5137-53.
[http://dx.doi.org/10.7150/thno.42325] [PMID: 32308773]
[20]
Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 2019; 55: 106-19.
[http://dx.doi.org/10.1016/j.semcancer.2018.04.001] [PMID: 29673923]
[21]
Saunderson EA, Stepper P, Gomm JJ, et al. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat Commun 2017; 8(1): 1450.
[http://dx.doi.org/10.1038/s41467-017-01078-2] [PMID: 29133799]
[22]
Wang H, Sun W. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett 2017; 385: 137-43.
[http://dx.doi.org/10.1016/j.canlet.2016.10.033] [PMID: 27815036]
[23]
Nguyen D, Xu T. The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 2008; 1(1): 56-66.
[http://dx.doi.org/10.1242/dmm.000232] [PMID: 19048054]
[24]
Sayin VI, Papagiannakopoulos T. Application of CRISPR-mediated genome engineering in cancer research. Cancer Lett 2017; 387: 10-7.
[http://dx.doi.org/10.1016/j.canlet.2016.03.029] [PMID: 27000990]
[25]
Huang J, Chen M, Whitley MJ, et al. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma. Nat Commun 2017; 8(1): 15999.
[http://dx.doi.org/10.1038/ncomms15999] [PMID: 28691711]
[26]
Blasco RB, Karaca E, Ambrogio C, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 2014; 9(4): 1219-27.
[http://dx.doi.org/10.1016/j.celrep.2014.10.051] [PMID: 25456124]
[27]
Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514(7522): 380-4.
[http://dx.doi.org/10.1038/nature13589] [PMID: 25119044]
[28]
Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014; 32(9): 941-6.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[29]
Sánchez-Rivera FJ, Jacks T. Applications of the CRISPR–Cas9 system in cancer biology. Nat Rev Cancer 2015; 15(7): 387-93.
[http://dx.doi.org/10.1038/nrc3950] [PMID: 26040603]
[30]
He D, Zhang J, Wu W, et al. A novel immunodeficient rat model supports human lung cancer xenografts. FASEB J 2019; 33(1): 140-50.
[http://dx.doi.org/10.1096/fj.201800102RR] [PMID: 29944447]
[31]
Hartmann O, Reissland M, Maier CR, et al. Implementation of CRISPR/Cas9 genome editing to generate murine lung cancer models that depict the mutational landscape of human disease. Front Cell Dev Biol 2021; 9: 641618.
[http://dx.doi.org/10.3389/fcell.2021.641618] [PMID: 33738287]
[32]
Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 2017; 35(5): 463-74.
[http://dx.doi.org/10.1038/nbt.3834] [PMID: 28319085]
[33]
Wong ASL, Choi GCG, Cui CH, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci USA 2016; 113(9): 2544-9.
[http://dx.doi.org/10.1073/pnas.1517883113] [PMID: 26864203]
[34]
Franco-Tormo MJ, Salas-Crisostomo M, Rocha NB, Budde H, Machado S, Murillo-Rodríguez E. CRISPR/Cas9, the powerful new genome-editing tool for putative therapeutics in obesity. J Mol Neurosci 2018; 65(1): 10-6.
[http://dx.doi.org/10.1007/s12031-018-1076-4] [PMID: 29732484]
[35]
Bester AC, Lee JD, Chavez A, et al. An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance. Cell 2018; 173(3): 649-664.e20.
[http://dx.doi.org/10.1016/j.cell.2018.03.052] [PMID: 29677511]
[36]
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 2015; 16(5): 299-311.
[http://dx.doi.org/10.1038/nrg3899] [PMID: 25854182]
[37]
Neggers JE, Kwanten B, Dierckx T, et al. Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Nat Commun 2018; 9(1): 502.
[http://dx.doi.org/10.1038/s41467-017-02349-8] [PMID: 29402884]
[38]
Kasap C, Elemento O, Kapoor TM. DrugTargetSeqR: A genomics- and CRISPR-Cas9–based method to analyze drug targets. Nat Chem Biol 2014; 10(8): 626-8.
[http://dx.doi.org/10.1038/nchembio.1551] [PMID: 24929528]
[39]
Li W, Liu JB, Hou LK, et al. Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring. Mol Cancer 2022; 21(1): 25.
[http://dx.doi.org/10.1186/s12943-022-01505-z] [PMID: 35057806]
[40]
Chen J, Huang Y, Tang Z, et al. Genome-scale CRISPR-Cas9 transcriptional activation screening in metformin resistance related gene of prostate cancer. Front Cell Dev Biol 2021; 8: 616332.
[http://dx.doi.org/10.3389/fcell.2020.616332] [PMID: 33575255]
[41]
Dai M, Yan G, Wang N, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun 2021; 12(1): 3055.
[http://dx.doi.org/10.1038/s41467-021-23316-4] [PMID: 34031411]
[42]
Chen L, Han X. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Invest 2015; 125(9): 3384-91.
[http://dx.doi.org/10.1172/JCI80011] [PMID: 26325035]
[43]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 2002; 8(8): 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[44]
Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature 2016; 535(7613): 476-7.
[http://dx.doi.org/10.1038/nature.2016.20302] [PMID: 27466105]
[45]
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016; 539(7630): 479-9.
[http://dx.doi.org/10.1038/nature.2016.20988] [PMID: 27882996]
[46]
Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med 2020; 26(5): 732-40.
[http://dx.doi.org/10.1038/s41591-020-0840-5] [PMID: 32341578]
[47]
Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim Biophys Acta 2016; 1866(2): 197-207.
[PMID: 27641687]
[48]
Guernet A, Mungamuri SK, Cartier D, et al. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell 2016; 63(3): 526-38.
[http://dx.doi.org/10.1016/j.molcel.2016.06.017] [PMID: 27453044]
[49]
Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33(6): 540-9.
[http://dx.doi.org/10.1200/JCO.2014.56.2025] [PMID: 25154820]
[50]
Zhang M, Eshraghian EA, Jammal OA, Zhang Z, Zhu X. CRISPR technology: The engine that drives cancer therapy. Biomed Pharmacother 2021; 133: 111007.
[http://dx.doi.org/10.1016/j.biopha.2020.111007] [PMID: 33227699]
[51]
Chen X, Gonçalves MAFV. Engineered viruses as genome editing devices. Mol Ther 2016; 24(3): 447-57.
[http://dx.doi.org/10.1038/mt.2015.164] [PMID: 26336974]
[52]
Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351(6271): 407-11.
[53]
Kay MA. State-of-the-art gene-based therapies: The road ahead. Nat Rev Genet 2011; 12(5): 316-28.
[http://dx.doi.org/10.1038/nrg2971] [PMID: 21468099]
[54]
Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 2014; 15(7): 445-51.
[http://dx.doi.org/10.1038/nrg3742] [PMID: 24840552]
[55]
Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939-46.
[http://dx.doi.org/10.1038/s41591-018-0050-6] [PMID: 29892062]
[56]
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 2018; 24(7): 927-30.
[http://dx.doi.org/10.1038/s41591-018-0049-z] [PMID: 29892067]
[57]
Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34(3): 328-33.
[http://dx.doi.org/10.1038/nbt.3471] [PMID: 26829318]
[58]
Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat Rev Genet 2016; 17(5): 300-12.
[http://dx.doi.org/10.1038/nrg.2016.28] [PMID: 27087594]
[59]
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351(6268): 84.
[60]
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561): 481-5.
[http://dx.doi.org/10.1038/nature14592] [PMID: 26098369]
[61]
Daley GQ, Lovell-Badge R, Steffann J. After the storm-a responsible path for genome editing. N Engl J Med 2019; 380(10): 897-9.
[http://dx.doi.org/10.1056/NEJMp1900504] [PMID: 30649993]
[62]
Xu M. CCR5-Δ32 biology, gene editing, and warnings for the future of CRISPR-Cas9 as a human and humane gene editing tool. Cell Biosci 2020; 10(1): 48.
[http://dx.doi.org/10.1186/s13578-020-00410-6] [PMID: 32266056]
[63]
Editorial. The better edge of the CRISPR blade. Lancet 2020; 395(10218): 90.
[http://dx.doi.org/10.1016/S0140-6736(20)30004-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy