Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Reactive Oxygen Species Induced Hepatic Cellular Carcinoma: A Protective Role of Nano-antioxidant

Author(s): Roohi Kesharwani*, Dilip Kumar Patel, Pankaj Verma and Vikas Kumar

Volume 20, Issue 2, 2024

Published on: 08 September, 2023

Page: [126 - 134] Pages: 9

DOI: 10.2174/1573394719666230626153347

Price: $65

conference banner
Abstract

Hepatocellular carcinoma (HCC) is the fifth most common form of cancer worldwide and the third most common cause of cancer-related death. In the beginning period, healing medicines, for example, careful resection, liver transplant and neighborhood removal, can improve the patient’s endurance. Be that as it may, the infection is identified in the cutting-edge stage; also, some accessible treatments are confined to palliative consideration and nearby treatment. Assessed the dietary benefit of some normal cell reinforcement specialists that help the capacity of the body coming about an improvement of the well-being and insurance from various ailments; our audit will give an updated status of the various parts of HCC the board through covering the viability and the advantageous impacts of various regular operators and their system of activity against HCC for the future treatment modalities. In this review, we talk about the ongoing advances identified with the reason (featuring the principle hazard factors), treatment, and result in hepatocellular carcinoma.

Keywords: Hepatocellular carcinoma, antioxidant, hepatic cancer, nano-antioxidant, HBV, HCV.

Graphical Abstract
[1]
Reddy LH, Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J Hepatol 2011; 55(6): 1461-6.
[http://dx.doi.org/10.1016/j.jhep.2011.05.039] [PMID: 21801699]
[2]
Thomas MB, Jaffe D, Choti MM, et al. Hepatocellular carcinoma: Consensus recommendations of the national cancer institute clinical trials planning meeting. J Clin Oncol 2010; 28(25): 3994-4005.
[3]
Marra M, Sordelli IM, Lombardi A, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: An overview. J Transl Med 2011; 9(1): 171.
[http://dx.doi.org/10.1186/1479-5876-9-171] [PMID: 21985599]
[4]
Tripathy S, Patel DK, Kesharwani R, Das MK. Nanoparticle-based radio immune therapy in cancer care. In: Multifunctional Theranostic Nanomedicines in Cancer. 2021; pp. 275-91.
[http://dx.doi.org/10.1016/B978-0-12-821712-2.00013-X]
[5]
Patel DK, Kesharwani R, Tripathy S, et al. Surgical nanomaterials for spinal deformities. In: Functional Nanomaterials for Regenerative Tissue Medicines. 2021; pp. 355-76.
[http://dx.doi.org/10.1201/9781003140108-14]
[6]
Kesharwani R, Tripathy S, Patel DK, et al. Multifunctional micellar nanomedicine for cancer therapy. In: Multifunctional Theranostic Nanomedicines in Cancer. 2021; pp. 57-65.
[http://dx.doi.org/10.1016/B978-0-12-821712-2.00018-9]
[7]
Patel DK, Kesharwani R, Tripathy S, et al. Multifunctional silica nanoparticle as a promising cancer theranostics. In: Multifunctional Theranostic Nanomedicines in Cancer. 2021; pp. 91-7.
[http://dx.doi.org/10.1016/B978-0-12-821712-2.00016-5]
[8]
Henley SJ, Ward EM, Scott S, et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 2020; 126(10): 2225-49.
[http://dx.doi.org/10.1002/cncr.32802] [PMID: 32162336]
[9]
Tunissiolli NM, Castanhole-Nunes MMU, Biselli-Chicote PM, et al. Hepatocellular carcinoma: A comprehensive review of biomarkers, clinical aspects, and therapy. Asian Pac J Cancer Prev 2017; 18(4): 863-72.
[PMID: 28545181]
[10]
Gomes MA, Priolli DG, Tralhão JG, Botelho MF. Hepatocellular carcinoma: Epidemiology, biology, diagnosis, and therapies. Rev Assoc Med Bras 2013; 59(5): 514-24.
[http://dx.doi.org/10.1016/j.ramb.2013.03.005] [PMID: 24041910]
[11]
Aravalli RN, Steer CJ, Cressman ENK. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008; 48(6): 2047-63.
[http://dx.doi.org/10.1002/hep.22580] [PMID: 19003900]
[12]
Farazi PA, Glickman J, Horner J, DePinho RA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res 2006; 66(9): 4766-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4608] [PMID: 16651430]
[13]
Jiang J, Nilsson-Ehle P, Xu N. Influence of liver cancer on lipid and lipoprotein metabolism. Lipids Health Dis 2006; 5(1): 4.
[http://dx.doi.org/10.1186/1476-511X-5-4] [PMID: 16515689]
[14]
Branda M, Wands JR. Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology 2006; 43(5): 891-902.
[http://dx.doi.org/10.1002/hep.21196] [PMID: 16628664]
[15]
Theise ND, Park YN, Kojiro M. Dysplastic nodules and hepatocarcinogenesis. Clin Liver Dis 2002; 6(2): 497-512.
[http://dx.doi.org/10.1016/S1089-3261(02)00006-5] [PMID: 12122867]
[16]
Ramalingam R, Vaiyapuri M. Effects of umbelliferone on lipid peroxidation and antioxidant status in diethylnitrosamine-induced hepato-cellular carcinoma. J Acute Med 2013; 3(3): 73-82.
[http://dx.doi.org/10.1016/j.jacme.2013.05.001]
[17]
ESMO Guidelines Working Group Members. Ann Oncol 2013; 24: vi.
[http://dx.doi.org/10.1093/annonc/mdt355]
[18]
Hassan HA, El-Gharib NE, Azhari AF. Role of natural antioxidants in the therapeutic management of hepatocellular carcinoma. Hepatoma Res 2016; 2(8): 216.
[http://dx.doi.org/10.20517/2394-5079.2016.12]
[19]
Yoon SK. Molecular mechanism of hepatocellular carcinoma. Hepatoma Res 2018; 4(8): 42.
[http://dx.doi.org/10.20517/2394-5079.2018.23]
[20]
Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9(1): 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[21]
Assi M. The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol 2017; 313(6): R646-53.
[http://dx.doi.org/10.1152/ajpregu.00247.2017] [PMID: 28835450]
[22]
Chance B, Erecinska M, Wagner M. Mitochondrial responses to carbon monoxide toxicity. Ann N Y Acad Sci 1970; 174(1): 193-204.
[http://dx.doi.org/10.1111/j.1749-6632.1970.tb49786.x] [PMID: 4332407]
[23]
Li CW, Li LL, Chen S, Zhang JX, Lu WL. Antioxidant nanotherapies for the treatment of inflammatory diseases. Front Bioeng Biotechnol 2020; 8: 200.
[http://dx.doi.org/10.3389/fbioe.2020.00200] [PMID: 32258013]
[24]
Davies MJ. Protein oxidation and peroxidation. Biochem J 2016; 473(7): 805-25.
[http://dx.doi.org/10.1042/BJ20151227] [PMID: 27026395]
[25]
Halliwell B. Oxidative stress and cancer: Have we moved forward? Biochem J 2007; 401(1): 1-11.
[http://dx.doi.org/10.1042/BJ20061131] [PMID: 17150040]
[26]
Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002; 30(6): 620-50.
[http://dx.doi.org/10.1080/01926230290166724] [PMID: 12512863]
[27]
Li S, Li H, Xu X, Saw PE, Zhang L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics 2020; 10(3): 1262-80.
[http://dx.doi.org/10.7150/thno.38834] [PMID: 31938064]
[28]
Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH. DE Blanco EJ. Effects of (5Z)-7-oxozeaenol on the oxidative pathway of cancer cells. Anticancer Res 2012; 32(7): 2665-71.
[PMID: 22753724]
[29]
Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 2004; 10(S7): S18-25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[30]
Fraisl P, Aragonés J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 2009; 8(2): 139-52.
[http://dx.doi.org/10.1038/nrd2761] [PMID: 19165233]
[31]
Altman BJ, Rathmell JC. Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol 2012; 4(9): a008763.
[http://dx.doi.org/10.1101/cshperspect.a008763] [PMID: 22952396]
[32]
Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002; 33(3): 337-49.
[http://dx.doi.org/10.1016/S0891-5849(02)00905-X] [PMID: 12126755]
[33]
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. Selenium compounds in redox regulation of inflammation and apoptosis. Biomed Khim 2019; 65(3): 165-79.
[http://dx.doi.org/10.18097/PBMC20196503165] [PMID: 31258141]
[34]
Eftekhari A, Dizaj SM, Chodari L, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 2018; 103: 1018-27.
[http://dx.doi.org/10.1016/j.biopha.2018.04.126] [PMID: 29710659]
[35]
Lauterburg BH, Adams JD, Mitchell JR. Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover. Hepatology 1984; 4(4): 586-90.
[http://dx.doi.org/10.1002/hep.1840040402] [PMID: 6745847]
[36]
Deneke SM, Fanburg BL. Regulation of cellular glutathione. Am J Physiol 1989; 257(4 Pt 1): L163-73.
[PMID: 2572174]
[37]
Fard J, Hamzeiy H, Sattari M, Eftekhari A, Ahmadian E, Eghbal M. Triazole rizatriptan induces liver toxicity through lysoso-mal/mitochondrial dysfunction. Drug Res 2016; 66(9): 470-8.
[http://dx.doi.org/10.1055/s-0042-110178] [PMID: 27399851]
[38]
Ahmadian E, Eftekhari A, Fard JK, et al. In vitro and in vivo evaluation of the mechanisms of citalopram-induced hepatotoxicity. Arch Pharm Res 2017; 40(11): 1296-313.
[http://dx.doi.org/10.1007/s12272-016-0766-0] [PMID: 27271269]
[39]
Ahmadian E, Eftekhari A, Babaei H, Nayebi AM, Eghbal MA. Anti-cancer effects of citalopram on hepatocellular carcinoma cells occur via cytochrome c release and the activation of NF-kB. Anticancer Agents Med Chem 2017; 17(11): 1570-7.
[http://dx.doi.org/10.2174/1871520617666170327155930] [PMID: 28356024]
[40]
Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell 2001; 107(7): 827-30.
[http://dx.doi.org/10.1016/S0092-8674(01)00623-7] [PMID: 11779459]
[41]
Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 2003; 22(33): 5093-107.
[http://dx.doi.org/10.1038/sj.onc.1206557] [PMID: 12910247]
[42]
Finkel T, Holbrook NJ. Oxidants, oxidative stress and biology of ageing. Nature 2000; 408(6809): 239-47.
[43]
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408(6809): 239-47.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[44]
Pourahmad J, Salimi A, Seydi E. Role of oxygen free radicals in cancer development and treatment. In: Free Radicals and Diseases. 2016.
[http://dx.doi.org/10.5772/64787]
[45]
Gupta T. Hepatocellular Carcinoma: A Review. J Ren Hepc Dis 2020; 4(2): 51-60.
[46]
Waris G, Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J Carcinog 2006; 5(1): 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[47]
Akhtar S, Najafzadeh M, Isreb M, Newton L, Gopalan RC, Anderson D. ROS-induced oxidative damage in lymphocytes ex vivo/in vitro from healthy individuals and MGUS patients: Protection by myricetin bulk and nanoforms. Arch Toxicol 2020; 94(4): 1229-39.
[http://dx.doi.org/10.1007/s00204-020-02688-4] [PMID: 32107588]
[48]
Franz P, Bürkle A, Wick P, Hirsch C. Exploring flow cytometry-based micronucleus scoring for reliable nanomaterial genotoxicity as-sessment. Chem Res Toxicol 2020; 33(10): 2538-49.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00071] [PMID: 32945164]
[49]
Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med 2020; 52(2): 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[50]
Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002; 181-182: 219-22.
[http://dx.doi.org/10.1016/S0300-483X(02)00448-1] [PMID: 12505314]
[51]
Unsal V, Belge-Kurutaş E. Experimental hepatic carcinogenesis: Oxidative stress and natural antioxidants. Open Access Maced J Med Sci 2017; 5(5): 686-91.
[http://dx.doi.org/10.3889/oamjms.2017.101] [PMID: 28932315]
[52]
Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003; 17(10): 1195-214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[53]
Fukushima S, Gi M, Kakehashi A, Wanibuchi H. Qualitative and quantitative assessments on low-dose carcinogenicity of genotoxic hepa-tocarcinogens. In: Thresholds of Genotoxic Carcinogens From Mechanisms to Regulation. 2016; pp. 1-17.
[http://dx.doi.org/10.1016/B978-0-12-801663-3.00001-7]
[54]
Chuma M, Hige S, Nakanishi M, et al. 8-Hydroxy-2′-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 2008; 23(9): 1431-6.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05502.x] [PMID: 18854000]
[55]
Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJA, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B 2014; 4(3): 173-81.
[http://dx.doi.org/10.1016/j.apsb.2014.04.002] [PMID: 26579381]
[56]
Yamashita H, Goto M, Matsui-Yuasa I, Kojima-Yuasa A. Ecklonia cava polyphenol has a protective effect against ethanol-induced liver injury in a cyclic AMP-dependent manner. Mar Drugs 2015; 13(6): 3877-91.
[http://dx.doi.org/10.3390/md13063877] [PMID: 26096275]
[57]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[58]
Xiao ZP, Peng ZY, Peng MJ, Yan WB, Ouyang YZ, Zhu HL. Flavonoids health benefits and their molecular mechanism. Mini Rev Med Chem 2011; 11(2): 169-77.
[http://dx.doi.org/10.2174/138955711794519546] [PMID: 21222576]
[59]
Orazizadeh M, Fakhredini F, Mansouri E, Khorsandi L. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxi-city in rats. Chem Biol Interact 2014; 220: 214-21.
[http://dx.doi.org/10.1016/j.cbi.2014.07.001] [PMID: 25016076]
[60]
Orazizadeh M, Khorsandi L, Mansouri E, Fakhredini F. The effect of glycyrrhizin acid on Bax and Bcl2 expression in hepatotoxicity in-duced by Titanium dioxide nanoparticles in rats. Gastroenterol Hepatol Bed Bench 2020; 13(2): 168-76.
[http://dx.doi.org/10.22037/ghfbb.v13i2.1882] [PMID: 32308939]
[61]
Asl MN, Hosseinzadeh H. Review of pharmacological effects ofglycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22(6): 709-24.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[62]
Abdel-Wahhab MA, Gamil K, El-Kady AA, El-Nekeety AA, Naguib KM. Therapeutic effects of Korean red ginseng extract in Egyptian patients with chronic liver diseases. J Ginseng Res 2011; 35(1): 69-79.
[http://dx.doi.org/10.5142/jgr.2011.35.1.069]
[63]
Choi H, Jong HS, Park JH, et al. A novel ginseng saponin metabolite induces apoptosis and down-regulates fibroblast growth factor recep-tor 3 in myeloma cells. Int J Oncol 2003; 23(4): 1087-93.
[http://dx.doi.org/10.3892/ijo.23.4.1087] [PMID: 12963989]
[64]
Choi UK, Lee OH, Yim JH, et al. Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits. Int J Mol Sci 2010; 11(1): 67-78.
[http://dx.doi.org/10.3390/ijms11010067] [PMID: 20162002]
[65]
Cao GJ, Jiang X, Zhang H, Zheng J, Croley TR, Yin JJ. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2017; 35(4): 223-38.
[http://dx.doi.org/10.1080/10590501.2017.1391516] [PMID: 29115913]
[66]
Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine 2013; 8(9): 1483-508.
[http://dx.doi.org/10.2217/nnm.13.133] [PMID: 23987111]
[67]
Nelson B, Johnson M, Walker M, Riley K, Sims C. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016; 5(2): 15.
[http://dx.doi.org/10.3390/antiox5020015] [PMID: 27196936]
[68]
Lee DY, Kim JY, Lee Y, et al. Black Pigment Gallstone Inspired Platinum-Chelated Bilirubin Nanoparticles for Combined Photoacoustic Imaging and Photothermal Therapy of Cancers. (International Edition 56.), Angewandte Chemie 2017.
[http://dx.doi.org/10.1002/anie.201707137]
[69]
Lee Y, Lee S, Jon S. Biotinylated bilirubin nanoparticles as a tumor microenvironment-responsive drug delivery system for targeted cancer therapy. Adv Sci 2018; 5(6): 1800017.
[http://dx.doi.org/10.1002/advs.201800017] [PMID: 29938184]
[70]
Lee Y, Sugihara K, Gillilland MG III, Jon S, Kamada N, Moon JJ. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 2020; 19(1): 118-26.
[http://dx.doi.org/10.1038/s41563-019-0462-9] [PMID: 31427744]
[71]
Kim JY, Lee DY, Kang S, et al. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials 2017; 133: 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.011] [PMID: 28414974]
[72]
Ko E, Jeong D, Kim J, Park S, Khang G, Lee D. Antioxidant polymeric prodrug microparticles as a therapeutic system for acute liver failure. Biomaterials 2014; 35(12): 3895-902.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.048] [PMID: 24508370]
[73]
Kang C, Cho W, Park M, et al. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 2016; 85: 195-203.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.070] [PMID: 26874282]
[74]
Patel DK, Kesharwani R, Kumar V. Nanoparticles: An emerging platform for medical imaging. In: Nanoparticles in Analytical and Medical Devices. 2021; pp. 113-26.
[http://dx.doi.org/10.1016/B978-0-12-821163-2.00007-8]
[75]
Patel DK, Kesharwani R, Alhayyani S, et al. Topical nanostructured lipid carrier (Nlc) gel of etodolac: Central composite design, optimiza-tion, in vitro skin penetration and dermatokinetic study. Lat Am J Pharm 2021; 40.
[76]
Patel DK, Kesharwani R, Kumar V. Etodolac loaded solid lipid nanoparticle based topical gel for enhanced skin delivery. Biocatal Agric Biotechnol 2020; 29: 101810.
[http://dx.doi.org/10.1016/j.bcab.2020.101810]
[77]
Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, et al. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int J Nanomedicine 2017; 12: 2689-702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[78]
Panahi Y, Badeli R, Karami GR, Sahebkar A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res 2015; 29(1): 17-21.
[http://dx.doi.org/10.1002/ptr.5211] [PMID: 25091591]
[79]
Ochi MM, Amoabediny G, Rezayat SM, Akbarzadeh A, Ebrahimi B. In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (Nano-phytosome) to hepatocellular carcinoma cells. Cell J 2016; 18(2): 135-48.
[PMID: 27540518]
[80]
Anandhi R, Annadurai T, Anitha TS, et al. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J Physiol Biochem 2013; 69(2): 313-23.
[http://dx.doi.org/10.1007/s13105-012-0215-6] [PMID: 23104078]
[81]
Li X, Huang JM, Wang JN, Xiong XK, Yang XF, Zou F. Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53. Chem Biol Interact 2015; 232: 12-20.
[http://dx.doi.org/10.1016/j.cbi.2015.03.003] [PMID: 25770930]
[82]
Zhang W, Hu S, Yin JJ, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 2016; 138(18): 5860-5.
[http://dx.doi.org/10.1021/jacs.5b12070] [PMID: 26918394]
[83]
Williams CA, Grayer RJ. Anthocyanins and other flavonoids. Nat Prod Rep 2004; 21(4): 539-73.
[http://dx.doi.org/10.1039/b311404j] [PMID: 15282635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy