Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Perspective

Application of Photo-inactive Ru(edta) Complexes in Photocatalytic Small Molecules Transformation over Semiconductor Surface - A Perspective

Author(s): Sagar Varangane, Ujjwal Pal* and Debabrata Chatterjee*

Volume 11, Issue 2, 2022

Published on: 24 January, 2023

Page: [87 - 93] Pages: 7

DOI: 10.2174/2211544712666230110152506

Abstract

Photocatalytic transformation of small substrate molecules to useful products through an environmentally benign and economically viable pathway is a challenging area of research of continual importance. This review focuses on our perception of the application of ruthenium(III) complexes comprising ‘edta’ ligand (edta4- = ethylenediaminetetraacetate) as a ‘redox mediator’ or ‘relay’ in photocatalytic electron transfer reaction pertaining to the conversion of small substrate molecules viz. hydrazine to ammonia, bicarbonate to formate, dioxygen to hydrogen peroxide. In this article, the prospect of [RuIII(edta)(H2O)]- and [RuIII(edta)(pz)]- to act as ‘redox mediator’ or ‘molecular catalysts’ in photocatalytic transformations of aforesaid small molecules are assessed systematically.

Keywords: Ru(edta) complexes, small molecules, photocatalysis, TiO2 semiconductor, redox reactions, molecular catalysts.

« Previous
Graphical Abstract
[1]
Limburg, B.; Bouwman, E.; Bonnet, S. Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coord. Chem. Rev., 2012, 256(15-16), 1451-1467.
[http://dx.doi.org/10.1016/j.ccr.2012.02.021]
[2]
Milani, B.; Licini, G.; Clot, E.; Albrecht, M. Themed issue on small molecules activation. Dalton Trans., 2016, 45, 14419-14420.
[3]
Crutchley, R.J. Special issue on molecule activation. Coord. Chem. Rev., 2017, 334, 1-232.
[4]
Zhang, W.; Lai, W.; Cao, R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev., 2017, 117(4), 3717-3797.
[http://dx.doi.org/10.1021/acs.chemrev.6b00299] [PMID: 28222601]
[5]
Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chem. Rev., 2018, 118(3), 1253-1337.
[http://dx.doi.org/10.1021/acs.chemrev.7b00205] [PMID: 29112440]
[6]
Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A.N. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review. Chemosphere, 2019, 225, 588-607.
[http://dx.doi.org/10.1016/j.chemosphere.2019.03.042] [PMID: 30903840]
[7]
Wang, J.W.; Liu, W.J.; Zhong, D.C.; Lu, T.B. Nickel complexes as molecular catalysts for water splitting and CO2 reduction. Coord. Chem. Rev., 2019, 378, 237-261.
[http://dx.doi.org/10.1016/j.ccr.2017.12.009]
[8]
Qing, G.; Ghazfar, R.; Jackowski, S.T.; Habibzadeh, F.; Ashtiani, M.M.; Chen, C.P.; Smith, M.R., III; Hamann, T.W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev., 2020, 120(12), 5437-5516.
[http://dx.doi.org/10.1021/acs.chemrev.9b00659] [PMID: 32459470]
[9]
Roesky, P.W.; Fout, A.R. Diversity in small-molecule activation: The adventure continues. Inorg. Chem., 2021, 60(18), 13757-13758.
[http://dx.doi.org/10.1021/acs.inorgchem.1c02529] [PMID: 34538056]
[10]
Pal, R.; Ghara, M.; Chattaraj, P.K. Activation of small molecules and hydrogenation of CO2 catalyzed by frustrated lewis Pairs. Catalysts, 2022, 12(2), 201.
[http://dx.doi.org/10.3390/catal12020201]
[11]
Chatterjee, D. Chemistry of Ru(edta) complexes relevant to oxidoreductase mimicking: A personal perspective. New J. Chem., 2020, 44(44), 18972-18979.
[http://dx.doi.org/10.1039/D0NJ04349D]
[12]
Chatterjee, D.; Oszajca, M.; Katafias, A.; van Eldik, R. Electrochemistry of Ru(edta) complexes relevant to small molecule transformations: Catalytic implications and challenges. Coord. Chem. Rev., 2021, 436, 213773.
[http://dx.doi.org/10.1016/j.ccr.2021.213773]
[13]
Chatterjee, D.; Chrzanowska, M.; Katafias, A.; van Eldik, R. Reaction mechanisms relevant to the formation and utilization of [Ru(edta)(NO)] complexes in aqueous media. J. Inorg. Biochem., 2021, 225, 111595.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111595] [PMID: 34555599]
[14]
Chatterjee, D.; Chrzanowska, M.; Katafias, A.; Oszajca, M.; van Eldik, R. Ru III (edta) complexes as molecular redox catalysts in chemical and electrochemical reduction of dioxygen and hydrogen peroxide: Inner-sphere versus outer-sphere mechanism. RSC Advances, 2021, 11(35), 21359-21366.
[http://dx.doi.org/10.1039/D1RA03293C] [PMID: 35478799]
[15]
Taqui Khan, M.M.; Bajaj, H.C.; Shirin, Z.; Venkatasubraminan, K. Crystal and molecular structure of aquoethylenediaminetetra-acetatoruthenium (III) and its extraordinary lability towards substitution. Ind. J. Chem. (A), 1992, 31, 303-308.
[16]
Chatterjee, D. Properties and reactivities of polyaminopolycarboxylate (pac) complexes of ruthenium. Coord. Chem. Rev., 1998, 168, 273-293.
[http://dx.doi.org/10.1016/S0010-8545(97)00072-6]
[17]
Matsubara, T.; Creutz, C. Properties and reactivities of pentadentate ethylenediaminetetraacetate complexes of ruthenium(III) and -(II). Inorg. Chem., 1979, 18(7), 1956-1966.
[http://dx.doi.org/10.1021/ic50197a047]
[18]
Chatterjee, D.; Pal, U.; Ghosh, S.; van Eldik, R. Redox reactions of a RuIII-edta complex with thioamino acids. Kinetic and mechanistic studies. Dalton Trans., 2015, 44, 7613-7616.
[http://dx.doi.org/10.1039/C5DT00472A] [PMID: 25811914]
[19]
Chatterjee, D.; Jaiswal, N.; Sarkar, P. Ru(EDTA) mediated partial reduction of O2 by H2S. Dalton Trans., 2011, 40, 1302-1306.
[http://dx.doi.org/10.1039/c0dt01444c] [PMID: 21203642]
[20]
Chatterjee, D.; van Eldik, R. Electron transfer reactions of RuIII(edta) Containing the N-heterocyclic ligand pyrazine: Kinetic and mechanistic studies. Macroheterocycles, 2020, 13(3), 193-200.
[http://dx.doi.org/10.6060/mhc190497c]
[21]
Guo, Q.; Zhou, C.; Ma, Z.; Ren, Z.; Fan, H.; Yang, X. Elementary photocatalytic chemistry on TiO 2 surfaces. Chem. Soc. Rev., 2016, 45(13), 3701-3730.
[http://dx.doi.org/10.1039/C5CS00448A] [PMID: 26335268]
[22]
Vinodgopal, K.; Hua, X.; Dahlgren, R.L.; Lappin, A.G.; Patterson, L.K.; Kamat, P.V. Photochemistry of [RuII(bpy)2(dcbpy)2]+ on Al2O3 and TiO2 surfaces. an insight into the mechanism of photosensitization. J. Phys. Chem., 1995, 99(27), 10883-10889.
[http://dx.doi.org/10.1021/j100027a032]
[23]
Peng, T.; Ke, D.; Cai, P.; Dai, K.; Ma, L.; Zan, L. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures. J. Power Sources, 2008, 180(1), 498-505.
[http://dx.doi.org/10.1016/j.jpowsour.2008.02.002]
[24]
Bae, E.; Choi, W.; Park, J.; Shin, H.S.; Kim, S.B.; Lee, J.S. Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions. J. Phys. Chem. B, 2004, 108(37), 14093-14101.
[http://dx.doi.org/10.1021/jp047777p]
[25]
Kalyanasundaram, K.; Gratzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev., 1998, 177(1), 347-414.
[http://dx.doi.org/10.1016/S0010-8545(98)00189-1]
[26]
Burgess, B.K. The iron-molybdenum cofactor of nitrogenase. Chem. Rev., 1990, 90(8), 1377-1406.
[http://dx.doi.org/10.1021/cr00106a002]
[27]
Ramachandraiah, G. Spectrophotometric, kinetic and electrochemical investigations of new monomeric hydrazinium adducts with ethylenediaminetetraaceta- toruthenium(III) complexes: Catalytic reduction of hydrazine to ammonia in aqueous acidic solution. J. Am. Chem. Soc., 1994, 116(15), 6733-6738.
[http://dx.doi.org/10.1021/ja00094a031]
[28]
Prakash, R.; Tyagi, B.; Chatterjee, D.; Ramachandraiah, G. Interaction of phenylhydrazine with RuIII-EDTA complexes: Reduction of phenylhydrazine to ammonia and aniline in aqueous acidic conditions. Polyhedron, 1997, 16(7), 1235-1240.
[http://dx.doi.org/10.1016/S0277-5387(96)00329-4]
[29]
Chatterjee, D. Photocatalytic reduction of hydrazine to ammonia catalysed by [RuIII(edta)(H2O)]− complex in a Pt/TiO2 semiconductor particulate system. J. Mol. Catal. Chem., 2000, 154(1-2), 1-3.
[http://dx.doi.org/10.1016/S1381-1169(99)00291-5]
[30]
Elek, J.; Nádasdi, L.; Papp, G.; Laurenczy, G.; Joó, F. Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes. Appl. Catal. A Gen., 2003, 255(1), 59-67.
[http://dx.doi.org/10.1016/S0926-860X(03)00644-6]
[31]
Laurenczy, G.; Joó, F.; Nádasdi, L. Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution. Inorg. Chem., 2000, 39(22), 5083-5088.
[http://dx.doi.org/10.1021/ic000200b] [PMID: 11233205]
[32]
Federsel, C.; Jackstell, R.; Boddien, A.; Laurenczy, G.; Beller, M. Ruthenium-catalyzed hydrogenation of bicarbonate in water. ChemSusChem, 2010, 3(9), 1048-1050.
[http://dx.doi.org/10.1002/cssc.201000151] [PMID: 20635380]
[33]
Chatterjee, D.; Sarkar, P. Ru III (edta) catalyzed hydrogenation of bicarbonate to formate. J. Coord. Chem., 2016, 69(4), 650-655.
[http://dx.doi.org/10.1080/00958972.2015.1125476]
[34]
Chatterjee, D.; Jaiswal, N.; Banerjee, P. Electrochemical conversion of bicarbonate to formate mediated by the complex RuIII(edta) (edta4- = ethylenediaminetetraacetate). Eur. J. Inorg. Chem., 2014, 2014(34), 5856-5859.
[http://dx.doi.org/10.1002/ejic.201402831]
[35]
Mondal, T.; Chatterjee, D. Ru III -edta (edta 4− = ethylenediaminetetraacetate) mediated photocatalytic conversion of bicarbonate to formate over visible light irradiated non-metal doped TiO 2 semiconductor photocatalysts. RSC Advances, 2016, 6(68), 63488-63492.
[http://dx.doi.org/10.1039/C6RA11464D]
[36]
Chatterjee, D.; Edik, R. Prospect of Ru III (edta) in catalysis of bicarbonate reduction. Curr. Catal., 2020, 9(1), 23-31.
[http://dx.doi.org/10.2174/2211544708666190902124817]
[37]
Chen, X.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc., 2008, 130(15), 5018-5019.
[http://dx.doi.org/10.1021/ja711023z] [PMID: 18361492]
[38]
Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J.L.G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed., 2006, 45(42), 6962-6984.
[http://dx.doi.org/10.1002/anie.200503779] [PMID: 17039551]
[39]
Russo, V.; Tesser, R.; Santacesaria, E.; Di Serio, M. Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process). Ind. Eng. Chem. Res., 2013, 52(3), 1168-1178.
[http://dx.doi.org/10.1021/ie3023862]
[40]
Wang, Z.L.; Xu, D.; Xu, J.J.; Zhang, X.B. Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev., 2014, 43(22), 7746-7786.
[http://dx.doi.org/10.1039/C3CS60248F] [PMID: 24056780]
[41]
Landa-Medrano, I.; Lozano, I.; Ortiz-Vitoriano, N.; Ruiz de Larramendi, I.; Rojo, T. Redox mediators: A shuttle to efficacy in metal–O 2 batteries. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(15), 8746-8764.
[http://dx.doi.org/10.1039/C8TA12487F]
[42]
Li, M.; Bi, X.; Wang, R.; Li, Y.; Jiang, G.; Li, L.; Zhong, C.; Chen, Z.; Lu, J. Relating catalysis between fuel cell and metal-air batteries. Matter, 2020, 2(1), 32-49.
[http://dx.doi.org/10.1016/j.matt.2019.10.007]
[43]
Chatterjee, D.; Ember, E.; Pal, U.; Ghosh, S.; van Eldik, R. Remarkably high catalytic activity of the RuIII(edta)/H2O2 system towards degradation of the azo-dye Orange II. Dalton Trans., 2011, 40(40), 10473-10480.
[http://dx.doi.org/10.1039/c1dt10483g] [PMID: 21792450]

© 2024 Bentham Science Publishers | Privacy Policy