Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Simultaneous Adsorptive/photocatalytic Removal of Organic Dyes and Hexavalent Chromium in Single and Binary Component Systems by Manganese Ferrite Nanoparticles

Author(s): Priyamabada Mahapatra and Nigamananda Das*

Volume 11, Issue 2, 2022

Published on: 29 December, 2022

Page: [134 - 143] Pages: 10

DOI: 10.2174/2211544712666221125141621

Price: $65

Abstract

Background: As a major source of pollutant, the effluents of dye based industries are mostly associated with several toxic heavy metals. Limited efforts have been made on simultaneous removal of both dyes and heavy metals from these effluents through adsorption/ photocatalysis processes. Spinel ferrites with narrow band gap and high stability are suitable for further exploitation in this regard.

Objective: Synthesis and characterisation of manganese ferrite nanoparticle and to assess its efficiency towards removal of organic dyes and hexavalent chromium in single and binary component systems are the objectives of this study.

Methods: Manganese ferrite nanoparticle (MF NPs), prepared by coprecipitation, was characterised systematically by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Visible diffuse reflectance and magnetic measurement. Adsorptive and photocatalytic performances of the material under visible light were evaluated using aqueous solutions of different dyes and Cr(VI).

Results: Characterisation by various techniques revealed the formation of cubic MF nanoparticles with narrow band gap (1.78 eV) and moderate saturation magnetization (38.5 emu/g). In comparison, the anionic dyes and Cr(VI) were better adsorbed on MF, while photoactivity was more pronounced in the case of cationic dye.

Conclusion: MF NPs displayed potential for photo-degradation/reduction of different dyes and Cr(VI) individually or simultaneously under visible light. The catalyst can be recovered magnetically from the reaction mixture for recycling and further use.

Keywords: Manganese ferrite, magnetic nanoparticles, nano-photocatalyst, dye effluents, dye degradation, Cr(VI) photoreduction.

Graphical Abstract
[1]
Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci., 2014, 209, 172-184.
[http://dx.doi.org/10.1016/j.cis.2014.04.002] [PMID: 24780401]
[2]
Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. ScientificWorldJournal, 2014, 2014, 692307.
[http://dx.doi.org/10.1155/2014/692307] [PMID: 25054183]
[3]
Kandelbauer, A.; Guebitz, G.M. Bioremediation for the decolorization of textile dyes - A review. Environ. Chem., 2005, 269-288.
[4]
Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 2021, 12(1), 70-87.
[http://dx.doi.org/10.1080/21655979.2020.1863034] [PMID: 33356799]
[5]
Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. Int., 2017, 24(19), 15882-15904.
[http://dx.doi.org/10.1007/s11356-017-9003-8] [PMID: 28477250]
[6]
Ruan, W.; Hu, J.; Qi, J.; Hou, Y.; Zhou, C.; Wei, X. Removal of dyes from wastewater by nanomaterials: A review. Adv. Mater. Lett., 2019, 10(1), 9-20.
[http://dx.doi.org/10.5185/amlett.2019.2148]
[7]
Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2011, 389(1-3), 43-49.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.052]
[8]
Reddy, D.H.K.; Yun, Y-S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev., 2016, 315, 90-111.
[http://dx.doi.org/10.1016/j.ccr.2016.01.012]
[9]
Valenzuela, R. Novel applications of ferrites. Phys. Res. Int., 2012, 2012, 591839.
[http://dx.doi.org/10.1155/2012/591839]
[10]
Kefeni, K.K.; Mamba, B.B.; Msagati, T.A.M. Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Separ. Purif. Tech., 2017, 188, 399-422.
[http://dx.doi.org/10.1016/j.seppur.2017.07.015]
[11]
Casbeer, E.; Sharma, V.K.; Li, X.Z. Synthesis and photocatalytic activity of ferrites under visible light: A review. Separ. Purif. Tech., 2012, 87, 1-14.
[http://dx.doi.org/10.1016/j.seppur.2011.11.034]
[12]
Bayantong, A.R.B.; Shih, Y.J.; Ong, D.C.; Abarca, R.R.M.; Dong, C.D.; de Luna, M.D.G. Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere, 2021, 274, 129518.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129518] [PMID: 33540313]
[13]
Akhlaghi, N.; Najafpour-Darzi, G. Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application -A review. J. Ind. Eng. Chem., 2021, 103, 292-304.
[http://dx.doi.org/10.1016/j.jiec.2021.07.043]
[14]
Mapossa, A.B.; Mhike, W.; Adalima, J.L.; Tichapondwa, S. Removal of organic dyes from water and wastewater using magnetic ferrite-based titanium oxide and zinc oxide nanocomposites: A review. Catalysts, 2021, 11(12), 1543.
[http://dx.doi.org/10.3390/catal11121543]
[15]
Cui, H.J.; Shi, J.W.; Yuan, B.; Fu, M.L. Synthesis of porous magnetic ferrite nanowires containing Mn and their application in water treatment. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(19), 5902-5907.
[http://dx.doi.org/10.1039/c3ta01692g]
[16]
Mahmoodi, N.M. Manganese ferrite nanoparticle: Synthesis, characterization, and photocatalytic dye degradation ability. Desalinat. Water Treat., 2015, 53(1), 84-90.
[http://dx.doi.org/10.1080/19443994.2013.834519]
[17]
Silambarasu, A.; Manikandan, A.; Balakrishnan, K.; Jaganathan, S.K.; Manikandan, E.; Aanand, J.S. Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2O4 nano-catalysts. J. Nanosci. Nanotechnol., 2018, 18(5), 3523-3531.
[http://dx.doi.org/10.1166/jnn.2018.14669] [PMID: 29442861]
[18]
Ramadoss, G.; Suriyaraj, S.P.; Sivaramakrishnan, R.; Pugazhendhi, A.; Rajendran, S. Mesoporous ferromagnetic manganese ferrite nanoparticles for enhanced visible light mineralization of azoic dye into nontoxic by-products. Sci. Total Environ., 2021, 765, 142707.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142707] [PMID: 33069475]
[19]
Meena, S.; Anantharaju, K.S.; Malini, S.; Dey, A.; Renuka, L.; Prashantha, S.C.; Vidya, Y.S. Impact of temperature-induced oxygen vacancies in polyhedron MnFe2O4 nanoparticles: As excellent electrochemical sensor, supercapacitor and active photocatalyst. Ceram. Int., 2021, 47(10), 14723-14740.
[http://dx.doi.org/10.1016/j.ceramint.2020.12.217]
[20]
Boutra, B.; Güy, N.; Özacar, M.; Trari, M. Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light. J. Magn. Magn. Mater., 2020, 497, 165994.
[http://dx.doi.org/10.1016/j.jmmm.2019.165994]
[21]
Luciano, A.J.R.; de Sousa Soletti, L.; Ferreira, M.E.C.; Cusioli, L.F.; de Andrade, M.B.; Bergamasco, R.; Yamaguchi, N.U. Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation. J. Environ. Chem. Eng., 2020, 8(5), 104191.
[http://dx.doi.org/10.1016/j.jece.2020.104191]
[22]
Gupta, N.K.; Ghaffari, Y.; Kim, S.; Bae, J.; Kim, K.S.; Saifuddin, M. Photocatalytic degradation of organic pollutants over MFe2O4 (M=Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci. Rep., 2020, 10(1), 4942.
[http://dx.doi.org/10.1038/s41598-020-61930-2] [PMID: 32188893]
[23]
Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec., 2021, 21(7), 1570-1610.
[http://dx.doi.org/10.1002/tcr.202000153] [PMID: 33539046]
[24]
Boruah, P.K.; Borthakur, P.; Darabdhara, G.; Kamaja, C.K.; Karbhal, I.; Shelke, M.V.; Phukan, P.; Saikia, D.; Das, M.R. Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite. RSC Advances, 2016, 6(13), 11049-11063.
[http://dx.doi.org/10.1039/C5RA25035H]
[25]
Thomas, B.; Alexander, L.K. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso–macroporous nanospheres. Appl. Nanosci., 2018, 8(1-2), 125-135.
[http://dx.doi.org/10.1007/s13204-018-0655-6]
[26]
Mishra, S.; Soren, S.; Debnath, A.K.; Aswal, D.K.; Das, N.; Parhi, P. Rapid microwave – Hydrothermal synthesis of CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light. Optik (Stuttg.), 2018, 169, 125-136.
[http://dx.doi.org/10.1016/j.ijleo.2018.05.045]
[27]
Waldron, R.D. Infrared spectra of ferrites. Phys. Rev., 1955, 99(6), 1727-1735.
[http://dx.doi.org/10.1103/PhysRev.99.1727]
[28]
Jadhav, S.A.; Somvanshi, S.B.; Khedkar, M.V.; Patade, S.R.; Jadhav, K.M. Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11352-11365.
[http://dx.doi.org/10.1007/s10854-020-03684-1]
[29]
Fernandes, R.J.C.; Magalhães, C.A.B.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Castanheira, E.M.S.; Coutinho, P.J.G. Magnetic nanoparticles of zinc/calcium ferrite decorated with silver for photodegradation of dyes. Materials, 2019, 12(21), 3582.
[http://dx.doi.org/10.3390/ma12213582] [PMID: 31683585]
[30]
Soltani, T.; Entezari, M.H. Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem. Eng. J., 2013, 223, 145-154.
[http://dx.doi.org/10.1016/j.cej.2013.02.124]
[31]
Sundararajan, M.; Sailaja, V.; John Kennedy, L.; Judith Vijaya, J. Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: Kinetics and mechanism. Ceram. Int., 2017, 43(1), 540-548.
[http://dx.doi.org/10.1016/j.ceramint.2016.09.191]
[32]
Sundararajan, M.; John Kennedy, L.; Nithya, P.; Judith Vijaya, J.; Bououdina, M. Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chem. Solids, 2017, 108, 61-75.
[http://dx.doi.org/10.1016/j.jpcs.2017.04.002]
[33]
Ali, N.; Said, A.; Ali, F.; Raziq, F.; Ali, Z.; Bilal, M.; Reinert, L.; Begum, T.; Iqbal, H.M.N. Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: Development, characterization, and photocatalytic performance. Water Air Soil Pollut., 2020, 231(2), 50.
[http://dx.doi.org/10.1007/s11270-020-4410-8]
[34]
Behura, R.; Sakthivel, R.; Das, N. Synthesis of cobalt ferrite nanoparticles from waste iron ore tailings and spent lithium ion batteries for photo/sono-catalytic degradation of Congo red. Powder Technol., 2021, 386, 519-527.
[http://dx.doi.org/10.1016/j.powtec.2021.03.066]
[35]
Shi, W.; Liu, X.; Zhang, T.; Wang, Q.; Zhang, L. Magnetic nano-sized cadmium ferrite as an efficient catalyst for the degradation of Congo red in the presence of microwave irradiation. RSC Advances, 2015, 5(63), 51027-51034.
[http://dx.doi.org/10.1039/C5RA07591B]
[36]
Narde, S.B.; Lanjewar, R.B.; Gadegone, S.M.; Lanjewar, M.R. Photocatalytic degradation of azo dye Congo red using Ni0.6Co0.4Fe2O4 as photocatalyst. Pharma Chem., 2017, 9, 115-120.
[37]
Fatima, S.; Ali, S.I.; Iqbal, M.Z.; Rizwan, S. Congo red dye degradation by graphene nanoplatelets/doped bismuth ferrite nanoparticle hybrid catalysts under dark and light conditions. Catalysts, 2020, 10(4), 367.
[http://dx.doi.org/10.3390/catal10040367]
[38]
Rahmayeni, R.A.; Stiadi, Y.; Jamarun, N.; Emriadi, A.S. Photocatalytic performance of ZnO-ZnFe2O4 magnetic nanocomposites on degradation of congo red dye under solar light irradiation. J. Mater. Environ. Sci., 2017, 8, 1634-1643.
[39]
Fatima, S.; Ali, S.I.; Iqbal, M.Z.; Rizwan, S. The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO3/graphene nanoplatelet (GNP) nanohybrids. RSC Advances, 2017, 7(57), 35928-35937.
[http://dx.doi.org/10.1039/C7RA04281G]
[40]
Ali, N.; Ali, F.; Said, A.; Begum, T.; Bilal, M.; Rab, A.; Sheikh, Z.A.; Iqbal, H.M.N.; Ahmad, I. Characterization and deployment of surface engineered cobalt ferrite nanospheres as photocatalyst for highly efficient remediation of alizarin reds dye from aqueous solution. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 5063-5073.
[http://dx.doi.org/10.1007/s10904-020-01654-y]
[41]
Naik, M.M.; Vinuth, M.; Kumar, V.U.; Hemakumar, K.H.; Preethi, G.; Kumar, M.P.; Nagaraju, G. A facile green synthesis of nickel ferrite nanoparticles using tamarindus indica seeds for magnetic and photocatalytic studies. In: Res. Square; , 2022. [Epub ahead of print].
[http://dx.doi.org/10.21203/rs.3.rs-568580/v1]
[42]
Mahapatra, P.; Giri, S.K.; Das, N. Adsorptive and photocatalytic remediation of aqueous organic dyes and chromium(VI) by manganese(II) substituted magnetite nanoparticles. Desalination Water Treat., 2019, 141, 208-219.
[http://dx.doi.org/10.5004/dwt.2019.23524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy