Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

Medicinal Importance and Pharmacological Activities of Sciadopitysin in the Medicine: Drug Target for Neuroprotection, Myocardial Infarction, Alzheimer’s Disease, Diabetes, and Related Complications

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 1, Issue 1, 2023

Published on: 24 October, 2022

Article ID: e010922208414 Pages: 9

DOI: 10.2174/2666862901666220901122326

Abstract

Backgrounds: Herbal medicines have been used in medicine over the last three decades, and the demand for herbal drugs has been increasing in modern medicine due to their health benefits and pharmacological activities. Herbal medicines are mainly derived from plants and their derived products, which have a significant role in the traditional and modern systems of medicine. Plant-based products have been used in the preparation of numerous health products, including some of the modern pharmaceutical preparation. Ginkgo biloba is one of the important medicinal plants of herbal medicine, which contains a significant amount of sciadopitysin.

Methods: Biological importance and therapeutic benefit of sciadopitysin have been investigated in the present investigation through scientific data analysis of different scientific research work in order to know the therapeutic potential of sciadopitysin in medicine. Pharmacological activities of sciadopitysin have been searched and analyzed in the present work through different literature databases. Modern analytical tools for the isolation and quantification of sciadopitysin have also been discussed in the present work to know the therapeutic value of sciadopitysin in medicine.

Results: Scientific data analysis of different research work revealed the biological importance and therapeutic benefit of sciadopitysin, which is a biflavonoids class phytochemical present in the Ginkgo biloba. Scientific data analysis of present work revealed the biological importance of sciadopitysin in medicine for the treatments of human health complications against diabetes and its complications, osteoclastogenesis, myocardial infarction, Alzheimer’s disease, hepatic and renal toxicity, inflammatory disorders, osteoporosis, human skin disorders, lymphocyte proliferation, and fungal diseases. Further scientific data analysis revealed the importance of standardization of plant materials and their derived products through sciadopitysin in medicine.

Conclusion: Scientific data analysis of collected research work revealed the biological importance of sciadopitysin in medicine for its effectiveness against human health complications.

Keywords: Sciadopitysin, diabetes, osteoclastogenesis, myocardial infarction, Alzheimer’s disease, hepatic, inflammation, osteoporosis, skin disorders.

Graphical Abstract
[1]
Mohotti S, Rajendran S, Muhammad T, et al. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J Ethnopharmacol 2020; 246: 112158.
[http://dx.doi.org/10.1016/j.jep.2019.112158] [PMID: 31421182]
[2]
Patel K, Kumar V, Verma A, Rahman M, Patel DK. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A Concise Report of its Phytopharmaceutical Importance”. Curr Tradit Med 2017; 3(3): 168-77.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[3]
Zengin G, Mahomoodally MF, Sinan KI, et al. Evaluation of chemical constituents and biological properties of two endemic Verbascum species. Process Biochem 2021; 108: 110-20.
[http://dx.doi.org/10.1016/j.procbio.2021.06.007]
[4]
Rehman MN, Ahmad M, Sultana S, Zafar M, Edwards S. Relative popularity level of medicinal plants in Talagang, Punjab Province, Pakistan. Rev Bras Farmacogn 2017; 27(6): 751-75.
[http://dx.doi.org/10.1016/j.bjp.2017.09.004]
[5]
Nazar S, Hussain MA, Khan A, Muhammad G, Bukhari SNA. Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications. Arab J Chem 2020; 13(8): 6348-65.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.037]
[6]
Alshambaty K, Yagi S, Elbashir AA, et al. Chemical constituents and biological activities of African medicinal tree Sterculia setigera Delile stem bark. S Afr J Bot 2021; 143: 274-81.
[http://dx.doi.org/10.1016/j.sajb.2020.10.008]
[7]
Krupa J, Sureshkumar J, Silambarasan R, Priyadarshini K, Ayyanar M. Integration of traditional herbal medicines among the indigenous communities in Thiruvarur district of Tamil Nadu, India. J Ayurveda Integr Med 2019; 10(1): 32-7.
[http://dx.doi.org/10.1016/j.jaim.2017.07.013] [PMID: 30120054]
[8]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr Tradit Med 2018; 4(2): 120-7.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[9]
Siriangkhawut W, Sittichan P, Ponhong K, Chantiratikul P. Quality assessment of trace Cd and Pb contaminants in Thai herbal medicines using ultrasound-assisted digestion prior to flame atomic absorption spectrometry. Yao Wu Shi Pin Fen Xi 2017; 25(4): 960-7.
[PMID: 28987373]
[10]
Chaachouay N, Benkhnigue O, Fadli M, El Ibaoui H, Zidane L. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Heliyon 2019; 5(10): e02191.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02191] [PMID: 31720440]
[11]
Patel K, Gadewar M, Tripathi R, Prasad SK, Patel DK. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac J Trop Biomed 2012; 2(8): 660-4.
[http://dx.doi.org/10.1016/S2221-1691(12)60116-6] [PMID: 23569990]
[12]
Alabi MA, Muthusamy A, Kabekkodu SP, Adebawo OO, Satyamoorthy K. Anticancer properties of recipes derived from nigeria and african medicinal plants on breast cancer cells in vitro. Sci Am 2020; 8: e00446.
[http://dx.doi.org/10.1016/j.sciaf.2020.e00446]
[13]
Patel K, Kumar V, Verma A, Rahman M, Patel DK. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Patents Anti-Infect Drug Disc 2019; 14(1): 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[14]
Gu Q, Li Y, Chen Y, Yao P, Ou T. Sciadopitysin: Active component from Taxus chinensis for anti-Alzheimer’s disease. Nat Prod Res 2013; 27(22): 2157-60.
[http://dx.doi.org/10.1080/14786419.2013.790031] [PMID: 23627438]
[15]
Patel K, Kumar V, Verma A, Rahman M, Kumar Patel D. Health benefits of Furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario. Curr Bioact Compd 2019; 15(4): 369-76.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[16]
Xu Y, Wei Z, Xue C, Huang Q. Assembly of zein–polyphenol conjugates via carbodiimide method: Evaluation of physicochemical and functional properties. Lebensm Wiss Technol 2022; 154: 112708.
[http://dx.doi.org/10.1016/j.lwt.2021.112708]
[17]
Jiménez-Rosado M, Gomez-Zavaglia A, Guerrero A, Romero A. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). J Clean Prod 2022; 350: 131541.
[http://dx.doi.org/10.1016/j.jclepro.2022.131541]
[18]
Mollica A, Scioli G, Della Valle A, et al. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021; 10(11): 1704.
[http://dx.doi.org/10.3390/antiox10111704] [PMID: 34829574]
[19]
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, et al. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. J Environ Manage 2022; 307: 114555.
[http://dx.doi.org/10.1016/j.jenvman.2022.114555] [PMID: 35085965]
[20]
Bahun M, Jukić M, Oblak D, et al. Inhibition of the SARS-CoV-2 3CL pro main protease by plant polyphenols. Food Chem 2022; 373(Pt B): 131594.
[http://dx.doi.org/10.1016/j.foodchem.2021.131594] [PMID: 34838409]
[21]
Behl T, Rana T, Alotaibi GH, et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2022; 146: 112545.
[http://dx.doi.org/10.1016/j.biopha.2021.112545] [PMID: 34922112]
[22]
Székelyhidi R, Lakatos E, Sik B, et al. The beneficial effect of peppermint (Mentha X Piperita L.) and lemongrass (Melissa officinalis L.) dosage on total antioxidant and polyphenol content during alcoholic fermentation. Food Chem X 2022; 13: 100226.
[http://dx.doi.org/10.1016/j.fochx.2022.100226] [PMID: 35499003]
[23]
Chuffa LGA, de Souza MC, Cruz EMS, Ferreira FB, de Morais JMB, Seiva FRF. Hepatocellular carcinoma and miRNAs: An in silico approach revealing potential therapeutic targets for polyphenols. Phytomedicine Plus 2022; 2(2): 100259.
[http://dx.doi.org/10.1016/j.phyplu.2022.100259]
[24]
Tamargo A, Cueva C, Silva M, et al. Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Res Int 2022; 155: 111010.
[http://dx.doi.org/10.1016/j.foodres.2022.111010] [PMID: 35400421]
[25]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni Suef Univ J Basic Appl Sci 2018; 7(1): 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[26]
Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin J Integr Med 2013; 19(10): 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[27]
Fotie J. The antiprotozoan potential of flavonoids. Pharmacogn Rev 2008; 2: 6-19.
[28]
Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J Tradit Complement Med 2017; 7(3): 360-6.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[29]
Patel K, Singh GK, Patel DK. A review on pharmacological and analytical aspects of naringenin. Chin J Integr Med 2018; 24(7): 551-60.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[30]
Patel DK. Potential benefits of Tricetin in medicine for the treatment of cancers and other health-related disorders: Medicinal importance and therapeutic benefit. Nat Prod J 2021; 12(6): 12-9.
[31]
Patel DK. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr Metab Immune Disord Drug Targets 2021; 21(11): 1974-81.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[32]
Li YY, Lu XY, Sun JL, et al. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med 2019; 17(9): 672-81.
[http://dx.doi.org/10.1016/S1875-5364(19)30081-0] [PMID: 31526502]
[33]
Wollenweber E, Kraut L, Mues R. External accumulation of biflavonoids on gymnosperm leaves. Z Naturforsch C J Biosci 1998; 53(11-12): 946-50.
[http://dx.doi.org/10.1515/znc-1998-11-1202]
[34]
Ashok PK, Saini B. HPLC analysis and isolation of rutin from stem bark of Ginkgo biloba L. J Pharmacogn Phytochem 2013; 2: 68-71.
[35]
Patel DK. Biological importance and therapeutic benefit of sciadopitysin on Myocardial infarction: Biological application of creatine kinase and lactate dehydrogenase in the medicine. Metabolism 2022; 128: 155071.
[http://dx.doi.org/10.1016/j.metabol.2021.155071]
[36]
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important contributions to the health benefits of ginkgo (Ginkgo biloba L.). Plants 2022; 11(10): 1381.
[http://dx.doi.org/10.3390/plants11101381] [PMID: 35631806]
[37]
Suh KS, Chon S, Choi EM. The protective effects of sciadopitysin against methylglyoxal-induced cytotoxicity in cultured pancreatic β-cells. J Appl Toxicol 2018; 38(8): 1104-11.
[http://dx.doi.org/10.1002/jat.3620] [PMID: 29603293]
[38]
Choi EM, Suh KS, Rhee SY, Kim YS. Sciadopitysin alleviates methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells by enhancing glyoxalase system and mitochondrial biogenesis. Free Radic Res 2014; 48(7): 729-39.
[http://dx.doi.org/10.3109/10715762.2014.903562] [PMID: 24628445]
[39]
Zhang C, Yu H, Yang H, Liu B. Activation of PI3K/PKB/GSK‐3β signaling by sciadopitysin protects cardiomyocytes against high glucose‐induced oxidative stress and apoptosis. J Biochem Mol Toxicol 2021; 35(10): e22887.
[http://dx.doi.org/10.1002/jbt.22887] [PMID: 34392578]
[40]
Cai Y, Li Y. Protective effect of sciadopitysin against isoproternol-induced myocardial infarction in rats. Pharmacology 2020; 105(5-6): 272-80.
[http://dx.doi.org/10.1159/000504395] [PMID: 31775147]
[41]
Lin JL, Ho YS. Flavonoid-induced acute nephropathy. Am J Kidney Dis 1994; 23(3): 433-40.
[http://dx.doi.org/10.1016/S0272-6386(12)81008-0] [PMID: 8128947]
[42]
Sasaki H, Kitoh Y, Tsukada M, et al. Inhibitory activities of biflavonoids against amyloid-β peptide 42 cytotoxicity in PC-12 cells. Bioorg Med Chem Lett 2015; 25(14): 2831-3.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.106] [PMID: 26004578]
[43]
Suh KS, Chon S, Jung WW, Choi EM. Protective effects of sciadopitysin against methylglyoxal‐induced degeneration in neuronal SK‐N‐MC cells. J Appl Toxicol 2022; 42(2): 274-84.
[http://dx.doi.org/10.1002/jat.4211] [PMID: 34102705]
[44]
Li M, Li B, Hou Y, et al. Anti‐inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide‐stimulated RAW264.7 macrophages. Phytother Res 2019; 33(4): 989-97.
[http://dx.doi.org/10.1002/ptr.6292] [PMID: 30693991]
[45]
Cao J, Lu Q, Liu N, et al. Sciadopitysin suppresses RANKL-mediated osteoclastogenesis and prevents bone loss in LPS-treated mice. Int Immunopharmacol 2017; 49: 109-17.
[http://dx.doi.org/10.1016/j.intimp.2017.05.029] [PMID: 28575726]
[46]
Suh KS, Lee YS, Kim YS, Choi EM. Sciadopitysin protects osteoblast function via its antioxidant activity in MC3T3-E1 cells. Food Chem Toxicol 2013; 58: 220-7.
[http://dx.doi.org/10.1016/j.fct.2013.04.028] [PMID: 23624148]
[47]
Lee MK, Lim SW, Yang H, et al. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorg Med Chem Lett 2006; 16(11): 2850-4.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.018] [PMID: 16574412]
[48]
Kim SJ, Lim MH, Chun IK, Won YH. Effects of flavonoids of Ginkgo biloba on proliferation of human skin fibroblast. Skin Pharmacol Physiol 1997; 10(4): 200-5.
[http://dx.doi.org/10.1159/000211505] [PMID: 9413894]
[49]
Lee SJ, Choi JH, Son KH, Chang HW. kang SS, Kim HP. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci 1995; 57(6): 551-8.
[http://dx.doi.org/10.1016/0024-3205(95)00305-P] [PMID: 7623623]
[50]
Dell’Agli M, Bosisio E. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta Med 2002; 68(1): 76-9.
[http://dx.doi.org/10.1055/s-2002-19876] [PMID: 11842336]
[51]
Xiong Y, Zhu GH, Wang HN, et al. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia 2021; 152: 104909.
[http://dx.doi.org/10.1016/j.fitote.2021.104909] [PMID: 33894315]
[52]
Sisakht M, Mahmoodzadeh A, Darabian M. Plant‐derived chemicals as potential inhibitors of SARS‐CoV ‐2 main protease (6LU7), a virtual screening study. Phytother Res 2021; 35(6): 3262-74.
[http://dx.doi.org/10.1002/ptr.7041] [PMID: 33759279]
[53]
Dey D, Hossain R, Biswas P, et al. Amentoflavone derivatives significantly act towards the main protease (3CL(PRO)/M(PRO)) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol Divers 2022; 1-15.
[54]
Wang XX, Hou J, Ning J, Pan YQ, Hong M, Guo B. Inhibition of sciadopitysin against UDP-glucuronosyltransferases. Yao Xue Xue Bao 2016; 51(5): 749-55.
[PMID: 29874021]
[55]
Friedman FK, West D, Sugimura T, Gelboin HV. Flavone modulators of rat hepatic aryl hydrocarbon hydroxylase. Pharmacology 1985; 31(4): 203-7.
[http://dx.doi.org/10.1159/000138116] [PMID: 4059325]
[56]
Liu PK, Weng ZM, Ge GB, et al. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int J Biol Macromol 2018; 118(Pt B): 2216-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.085] [PMID: 30009906]
[57]
Cheng KT, Hsu FL, Chen SH, et al. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes. Chem Pharm Bull (Tokyo) 2007; 55(5): 757-61.
[http://dx.doi.org/10.1248/cpb.55.757] [PMID: 17473463]
[58]
Dell’Agli M, Galli GV, Bosisio E. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba. Planta Med 2006; 72(5): 468-70.
[http://dx.doi.org/10.1055/s-2005-916236] [PMID: 16557462]
[59]
Saponara R, Bosisio E. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. J Nat Prod 1998; 61(11): 1386-7.
[http://dx.doi.org/10.1021/np970569m] [PMID: 9834158]
[60]
Fawzy AA, Vishwanath BS, Franson RC. Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action. Agents Actions 1988; 25(3-4): 394-400.
[http://dx.doi.org/10.1007/BF01965048] [PMID: 3218613]
[61]
Wu B, Song HP, Zhou X, et al. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods. J Chromatogr A 2016; 1436: 91-9.
[http://dx.doi.org/10.1016/j.chroma.2016.01.062] [PMID: 26852619]
[62]
Kim SJ. Effect of biflavones of Ginkgo biloba against UVB-induced cytotoxicity in vitro. J Dermatol 2001; 28(4): 193-9.
[http://dx.doi.org/10.1111/j.1346-8138.2001.tb00117.x] [PMID: 11449670]
[63]
Choi SK, Oh HM, Lee SK, et al. Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Nat Prod Res 2006; 20(4): 341-6.
[http://dx.doi.org/10.1080/14786410500463312] [PMID: 16644528]
[64]
Pang HL, Zhu GH, Zhou QH, et al. Discovery and characterization of the key constituents in Ginkgo biloba Leaf extract with potent inhibitory effects on human UDP-Glucuronosyltransferase 1A1. Front Pharmacol 2022; 13: 815235.
[http://dx.doi.org/10.3389/fphar.2022.815235] [PMID: 35264954]
[65]
Song YQ, He RJ, Pu D, et al. Discovery and characterization of the biflavones from Ginkgo biloba as highly specific and potent inhibitors against human carboxylesterase 2. Front Pharmacol 2021; 12: 655659.
[http://dx.doi.org/10.3389/fphar.2021.655659] [PMID: 34084136]
[66]
Bai J, Zhao S, Fan X, et al. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure–activity relationships. Toxicol Appl Pharmacol 2019; 369: 49-59.
[http://dx.doi.org/10.1016/j.taap.2019.02.010] [PMID: 30790579]
[67]
Krauze-Baranowska M, Wiwart M. Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z Naturforsch C J Biosci 2003; 58(1-2): 65-9.
[http://dx.doi.org/10.1515/znc-2003-1-212] [PMID: 12622229]
[68]
Yang S, Qu R, Zhu Z, Li W, Zhao C, Li L. Validated LC-MS/MS method for the quantification of sciadopitysin in rat plasma and its application to pharmacokinetic and bioavailability studies in vivo. Biomed Chromatogr 2018; 32(8): e4241.
[http://dx.doi.org/10.1002/bmc.4241] [PMID: 29575000]
[69]
Zhou G, Yao X, Tang Y, et al. Two new nonacosanetriols from Ginkgo biloba sarcotesta. Chem Phys Lipids 2012; 165(7): 731-6.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.08.003] [PMID: 22981471]
[70]
Krauze-Baranowska M, Pobłocka L, El Helab AA. Biflavones from Chamaecyparis obtusa. Z Naturforsch C J Biosci 2005; 60(9-10): 679-85.
[http://dx.doi.org/10.1515/znc-2005-9-1004] [PMID: 16320608]
[71]
Li SH, Zhang HJ, Niu XM, Yao P, Sun HD, Fong HHS. Chemical constituents from Amentotaxus yunnanensis and Torreyayunnanensis. J Nat Prod 2003; 66(7): 1002-5.
[http://dx.doi.org/10.1021/np030117b] [PMID: 12880325]
[72]
Briançon-Scheid F, Lobstein-Guth A, Anton R. HPLC separation and quantitative determination of biflavones in leaves from Ginkgo biloba. Planta Med 1983; 49(12): 204-7.
[http://dx.doi.org/10.1055/s-2007-969851] [PMID: 17405053]
[73]
Liu XQ, Zhang XD, Zhu YL, Shin BY, Wu SX. Structrue identification of biflavones and determination of Taxol from Taxus Madia. Zhong Yao Cai 2008; 31(10): 1498-501.
[PMID: 19230397]
[74]
Zhang ML, Huo CH, Dong M, Liang CH, Gu YCSQ, Shi QW. Non-taxoid chemical constituents from leaves of Taxus mairei. Zhongguo Zhongyao Zazhi 2007; 32(14): 1421-5.
[PMID: 17966356]
[75]
Chi JD, He XF, Liu AR, Xu LX. HPLC determination of six flavonoid constituents in Ginkgo biloba leaves. Yao Xue Xue Bao 1997; 32(8): 625-8.
[PMID: 11596315]
[76]
Petersen MJ, de Cássia Lemos Lima R, Kjaerulff L, Staerk D. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba. Phytochemistry 2019; 164: 94-101.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.016] [PMID: 31103779]
[77]
Hyun SK, Jung HA, Chung HY, Choi JS. In vitro peroxynitrite scavenging activity of 6-hydroxykynurenic acid and other flavonoids from Gingko biloba yellow leaves. Arch Pharm Res 2006; 29(12): 1074-9.
[http://dx.doi.org/10.1007/BF02969294] [PMID: 17225453]
[78]
Choi SR, Lee MY, Kim SA, et al. Nontargeted metabolomics as a screening tool for estimating bioactive metabolites in the extracts of 50 indigenous Korean plants. Metabolites 2021; 11(9): 585.
[http://dx.doi.org/10.3390/metabo11090585] [PMID: 34564401]
[79]
Patel K, Laloo D, Singh GK, Gadewar M, Patel DK. A review on medicinal uses, analytical techniques and pharmacological activities of Strychno nuxvomica Linn.: A concise report. Chin J Integr Med 2017; 1-13.
[http://dx.doi.org/10.1007/s11655-016-2514-1] [PMID: 28120207]
[80]
Rahman M, Beg S, Verma A, et al. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point. Curr Drug Targets 2017; 18(13): 1558-71.
[PMID: 28413980]
[81]
Kumadoh D, Ofori-kwakye K. Dosage forms of herbal medicinal products and their stability considerations-an overview. J Crit Rev 2017; 4: 1-8.
[82]
Indrayanto G. Recent development of quality control methods for herbal derived drug preparations. Nat Prod Commun 2018; (13): 1934578-801301.
[http://dx.doi.org/10.1177/1934578X1801301208]
[83]
Rastogi S, Pandey M, Prakash J, Sharma A, Singh G. Veterinary herbal medicines in India. Pharmacogn Rev 2015; 9(18): 155-63.
[http://dx.doi.org/10.4103/0973-7847.162140] [PMID: 26392714]

© 2024 Bentham Science Publishers | Privacy Policy