Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Current Status of Potential Antiviral Drugs Derived from Plant, Marine, and Microbial Sources

Author(s): Rashmi Saini, Mohammad I. Ali, Maya Pant and Ashish Warghane*

Volume 22, Issue 2, 2024

Published on: 09 January, 2024

Article ID: e090124225414 Pages: 13

DOI: 10.2174/0122113525272349231210055403

Price: $65

Abstract

Natural substances have been the principal source of medications since antiquity. Natural goods are gaining popularity as a source of novel medications. This article investigates a variety of variables like plant, marine, and microbial sources that contribute to the growing interest in natural goods as a source of novel medications. Viruses have remained resistant to treatment and prevention for a longer period than other forms of life. Viral diseases can currently only be treated with a limited number of drugs. Significant research initiatives have been committed to identifying novel antiviral natural compounds to fight viruses that harm people, plants, insects, animals, fungi, and microbes. A recent study of the prevalence and sources of antiviral medications licensed by the Food and Drug Administration (FDA) has focused on natural products. Out of the estimated 250,000 higher plant species, only 5 to 15 percent have been thoroughly evaluated for the existence of bioactive substances in them, and the ability of the other species has hardly been investigated. This review aims to offer an overview of the crucial role played by natural products in the discovery and development of novel antiviral drugs with potent antiviral activity, including phytochemicals such as carbohydrates, coumarins, flavonoids, chromones, alkaloids, lignans, phenols, tannins, proteins, peptides, antiviral plant extracts, other marine, and microbial sources.

Keywords: Virus, antiviral agents, virulence, infection, plant extract, herbal therapy.

Graphical Abstract
[1]
Muñoz, L.; Garcia, M.; Gordon-Lipkin, E.; Parra, B.; Pardo, C. Emerging viral infections and their impact on the global burden of neurological disease. Semin. Neurol., 2018, 38(2), 163-175.
[http://dx.doi.org/10.1055/s-0038-1647247] [PMID: 29791942]
[2]
Ka-Wai, H.E. Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes Infect., 2006, 8(3), 905-916.
[http://dx.doi.org/10.1016/j.micinf.2005.06.032] [PMID: 16448839]
[3]
Gasparini, R.; Amicizia, D.; Lai, P.L.; Panatto, D. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly. Hum. Vaccin. Immunother., 2012, 8(1), 21-28.
[http://dx.doi.org/10.4161/hv.8.1.17622] [PMID: 22252007]
[4]
Gisondi, P. PIaserico, S.; Bordin, C.; Alaibac, M.; Girolomoni, G.; Naldi, L. Cutaneous manifestations of SARS‐CoV‐2 infection: A clinical update. J. Eur. Acad. Dermatol. Venereol., 2020, 34(11), 2499-2504.
[http://dx.doi.org/10.1111/jdv.16774] [PMID: 32585074]
[5]
Vardanyan, R.; Hruby, V. Antiviral drugs. In: Synthesis of Best-Seller Drugs; , 2016; p. 687-736.
[http://dx.doi.org/10.1016/B978-0-12-411492-0.00034-1]
[6]
Razonable, R.R. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin. Proc., 2011, 86(10), 1009-1026.
[http://dx.doi.org/10.4065/mcp.2011.0309] [PMID: 21964179]
[7]
Zareifopoulos, N.; Lagadinou, M.; Karela, A.; Kyriakopoulou, O.; Velissaris, D. Neuropsychiatric effects of antiviral drugs. Cureus, 2020, 12(8), e9536.
[http://dx.doi.org/10.7759/cureus.9536] [PMID: 32905132]
[8]
Skhiri, H.; Achour, A.; Skhiri, S.; Frih, A.; Bouraoui, S.; Dhia, N.B.; Elmay, M. Neuropsychiatric manifestations in a patient undergoing hemodialysis caused by treatment with oral acyclovir. Saudi J. Kidney Dis. Transpl., 2004, 15(1), 50-52.
[PMID: 18202466]
[9]
Kurokawa, M.; Shimizu, T.; Watanabe, W.; Shiraki, K. Development of new antiviral agents from natural products~!2010-01-17~!2010-04-12~!2010-08-27~! Open J. Antimicrob. Agents, 2010, 2(2), 49-57.
[http://dx.doi.org/10.2174/1876518101002020049]
[10]
Wachtel-Galor, S.; Benzie, I.F.F. An Introduction to its history, usage, regulation, current trends, and research needs. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed; CRC Press/Taylor & Francis: Boca Raton, FL, 2011.
[11]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[12]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[13]
Martin, K.W.; Ernst, E. Herbal medicines for treatment of bacterial infections: A review of controlled clinical trials. J. Antimicrob. Chemother., 2003, 51(2), 241-246.
[http://dx.doi.org/10.1093/jac/dkg087] [PMID: 12562687]
[14]
Hussain, W.; Haleem, K.S.; Khan, I.; Tauseef, I.; Qayyum, S.; Ahmed, B.; Riaz, M.N. Medicinal plants: A repository of antiviral metabolites. Future Virol., 2017, 12(6), 299-308.
[http://dx.doi.org/10.2217/fvl-2016-0110]
[15]
Bachar, S.C.; Mazumder, K.; Bachar, R.; Aktar, A.; Al Mahtab, M. A review of medicinal plants with antiviral activity available in bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol., 2021, 12, 732891.
[http://dx.doi.org/10.3389/fphar.2021.732891] [PMID: 34819855]
[16]
Pešić, M. Development of natural product drugs in a sustainable manner. In: Brief for United Nations Global Sustainable Development Report; , 2015.
[17]
Bauer, A.; Brönstrup, M. Industrial natural product chemistry for drug discovery and development. Nat. Prod. Rep., 2014, 31(1), 35-60.
[http://dx.doi.org/10.1039/C3NP70058E] [PMID: 24142193]
[18]
Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res., 2014, 131(2), 111-120.
[19]
Pantev, A.; Ivancheva, S.; Staneva, L.; Serkedjieva, J. Biologically active constituents of a polyphenol extract from Geranium sanguineum L. with anti influenza activity. Z Naturforsch., 2006, 61(7/8), 508-516.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008]
[20]
Serkedjieva, J. Antiinfective activity of a plant preparation from Geranium sanguineum L. Pharmazie, 1997, 52(10), 799-802.
[PMID: 9362094]
[21]
Huang, K.L.; Lai, Y.K.; Lin, C.C.; Chang, J.M. Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World J. Gastroenterol., 2006, 12(35), 5721-5725.
[http://dx.doi.org/10.3748/wjg.v12.i35.5721] [PMID: 17007029]
[22]
Parida, M.M.; Upadhyay, C.; Pandya, G.; Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J. Ethnopharmacol., 2002, 79(2), 273-278.
[http://dx.doi.org/10.1016/S0378-8741(01)00395-6] [PMID: 11801392]
[23]
Micol, V.; Caturla, N.; Pérezfons, L.; Más, V.; Pérez, L.; Estepa, A. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Res., 2005, 66(2-3), 129-136.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.005] [PMID: 15869811]
[24]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[25]
Notka, F.; Meier, G.; Wagner, R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res., 2004, 64(2), 93-102.
[http://dx.doi.org/10.1016/S0166-3542(04)00129-9] [PMID: 15498604]
[26]
Yamai, M.; Tsumura, K.; Kimura, M.; Fukuda, S.; Murakami, T.; Kimura, Y. Antiviral activity of a hot water extract of black soybean against a human respiratory illness virus. Biosci. Biotechnol. Biochem., 2003, 67(5), 1071-1079.
[http://dx.doi.org/10.1271/bbb.67.1071] [PMID: 12834285]
[27]
Cella, M.; Riva, D.A.; Coulombié, F.C.; Mersich, S.E. Virucidal activity presence in Trichilia glabra leaves. Rev. Argent. Microbiol., 2004, 36(3), 136-138.
[PMID: 15559196]
[28]
Felipe, A.M.M.; Rincão, V.P.; Benati, F.J.; Linhares, R.E.C.; Galina, K.J.; de Toledo, C.E.M.; Lopes, G.C.; de Mello, J.C.P.; Nozawa, C. Antiviral effect of Guazuma ulmifolia and Stryphnodendron adstringens on poliovirus and bovine herpesvirus. Biol. Pharm. Bull., 2006, 29(6), 1092-1095.
[http://dx.doi.org/10.1248/bpb.29.1092] [PMID: 16754999]
[29]
Zuo, G.Y.; Li, Z.Q.; Chen, L.R.; Xu, X.J. In vitro anti-HCV activities of Saxifraga melanocentra and its related polyphenolic compounds. Antivir. Chem. Chemother., 2005, 16(6), 393-398.
[http://dx.doi.org/10.1177/095632020501600606] [PMID: 16329286]
[30]
Tolo, F.M.; Rukunga, G.M.; Muli, F.W.; Njagi, E.N.M.; Njue, W.; Kumon, K.; Mungai, G.M.; Muthaura, C.N.; Muli, J.M.; Keter, L.K.; Oishi, E.; Kofi-Tsekpo, M.W. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J. Ethnopharmacol., 2006, 104(1-2), 92-99.
[http://dx.doi.org/10.1016/j.jep.2005.08.053] [PMID: 16198524]
[31]
Hoareau, L.; DaSilva, E. Medicinal plants: A re-emerging health aid. Electron. J. Biotechnol., 1999, 2(2)
[32]
Naithani, R.; Huma, L.; Holland, L.; Shukla, D.; McCormick, D.; Mehta, R.; Moriarty, R. Antiviral activity of phytochemicals: A comprehensive review. Mini Rev. Med. Chem., 2008, 8(11), 1106-1133.
[http://dx.doi.org/10.2174/138955708785909943] [PMID: 18855727]
[33]
Huang, L.; Chen, C. Molecular targets of anti-HIV-1 triterpenes. Curr. Drug Targets Infect. Disord., 2002, 2(1), 33-36.
[http://dx.doi.org/10.2174/1568005024605936] [PMID: 12462151]
[34]
Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T.; Kakiuchi, N.; Shimotohno, K. Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease. Phytother. Res., 1999, 13(1), 31-36.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199902)13:1<31:AID-PTR381>3.0.CO;2-C] [PMID: 10189947]
[35]
Park, J.C.; Kim, S.C.; Choi, M.R.; Song, S.H.; Yoo, E.J.; Kim, S.H.; Miyashiro, H.; Hattori, M. Anti-HIV protease activity from rosa family plant extracts and rosamultin from Rosa rugosa. J. Med. Food, 2005, 8(1), 107-109.
[http://dx.doi.org/10.1089/jmf.2005.8.107] [PMID: 15857219]
[36]
Yu, D.; Sakurai, Y.; Chen, C.H.; Chang, F.R.; Huang, L.; Kashiwada, Y.; Lee, K.H. Anti-AIDS agents 69. Moronic acid and other triterpene derivatives as novel potent anti-HIV agents. J. Med. Chem., 2006, 49(18), 5462-5469.
[http://dx.doi.org/10.1021/jm0601912] [PMID: 16942019]
[37]
Ibrahim, A.K.; Youssef, A.I.; Arafa, A.S.; Ahmed, S.A. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat. Prod. Res., 2013, 27(22), 2149-2153.
[http://dx.doi.org/10.1080/14786419.2013.790027] [PMID: 23651316]
[38]
Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165(6), 496-504.
[http://dx.doi.org/10.1016/j.micres.2009.09.002] [PMID: 19840899]
[39]
Yarmolinsky, L.; Huleihel, M.; Zaccai, M.; Ben-Shabat, S. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia, 2012, 83(2), 362-367.
[http://dx.doi.org/10.1016/j.fitote.2011.11.014] [PMID: 22155188]
[40]
Chiang, L.C.; Chiang, W.; Liu, M.C.; Lin, C.C. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrob. Chemother., 2003, 52(2), 194-198.
[http://dx.doi.org/10.1093/jac/dkg291] [PMID: 12837746]
[41]
Ganesan, S.; Faris, A.N.; Comstock, A.T.; Wang, Q.; Nanua, S.; Hershenson, M.B.; Sajjan, U.S. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res., 2012, 94(3), 258-271.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.005] [PMID: 22465313]
[42]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza a virus (IAV) Entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[43]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[44]
Zhang, W.; Qiao, H.; Lv, Y.; Wang, J.; Chen, X.; Hou, Y.; Tan, R.; Li, E. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One, 2014, 9(10), e110429.
[http://dx.doi.org/10.1371/journal.pone.0110429] [PMID: 25330384]
[45]
Qian, S.; Fan, W.; Qian, P.; Zhang, D.; Wei, Y.; Chen, H.; Li, X. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses, 2015, 7(4), 1613-1626.
[http://dx.doi.org/10.3390/v7041613] [PMID: 25835532]
[46]
Shibata, C.; Ohno, M.; Otsuka, M.; Kishikawa, T.; Goto, K.; Muroyama, R.; Kato, N.; Yoshikawa, T.; Takata, A.; Koike, K. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology, 2014, 462-463, 42-48.
[http://dx.doi.org/10.1016/j.virol.2014.05.024] [PMID: 25092460]
[47]
Sithisarn, P.; Michaelis, M.; Schubert-Zsilavecz, M.; Cinatl, J. Jr Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res., 2013, 97(1), 41-48.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.004] [PMID: 23098745]
[48]
Li, X.; Liu, Y.; Wu, T.; Jin, Y.; Cheng, J.; Wan, C.; Qian, W.; Xing, F.; Shi, W. The antiviral effect of baicalin on enterovirus 71 in vitro. Viruses, 2015, 7(8), 4756-4771.
[http://dx.doi.org/10.3390/v7082841] [PMID: 26295407]
[49]
Moghaddam, E.; Teoh, B.T.; Sam, S.S.; Lani, R.; Hassandarvish, P.; Chik, Z.; Yueh, A.; Abubakar, S.; Zandi, K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci. Rep., 2014, 4(1), 5452.
[http://dx.doi.org/10.1038/srep05452] [PMID: 24965553]
[50]
Jia, Y.; Xu, R.; Hu, Y.; Zhu, T.; Ma, T.; Wu, H.; Hu, L. Anti-NDV activity of baicalin from a traditional Chinese medicine in vitro. J. Vet. Med. Sci., 2016, 78(5), 819-824.
[http://dx.doi.org/10.1292/jvms.15-0572] [PMID: 26902693]
[51]
Kong, L.; Li, S.; Liao, Q.; Zhang, Y.; Sun, R.; Zhu, X.; Zhang, Q.; Wang, J.; Wu, X.; Fang, X.; Zhu, Y. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res., 2013, 98(1), 44-53.
[http://dx.doi.org/10.1016/j.antiviral.2013.02.003] [PMID: 23422646]
[52]
Lin, T.P.; Chen, S.Y.; Duh, P.D.; Chang, L.K.; Liu, Y.N. Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol. Pharm. Bull., 2008, 31(11), 2018-2023.
[http://dx.doi.org/10.1248/bpb.31.2018] [PMID: 18981566]
[53]
Al Rawi, A.A.S.; Al Dulaimi, H.S.H.; Al Rawi, M.A.A. Antiviral activity of mangifera extract on influenza virus cultivated in different cell cultures. J. Pure Appl. Microbiol., 2019, 13(1), 455-458.
[http://dx.doi.org/10.22207/JPAM.13.1.50]
[54]
El-Ansari, M.A.; Ibrahim, L.F.; Sharaf, M. Anti-HIV activity of some natural phenolics. Herba Pol., 2020, 66(2), 34-43.
[http://dx.doi.org/10.2478/hepo-2020-0010]
[55]
Astani, A.; Reichling, J.; Schnitzler, P. Screening for antiviral activities of isolated compounds from essential oils. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8.
[http://dx.doi.org/10.1093/ecam/nep187] [PMID: 20008902]
[56]
Peerzada, A.M.; Ali, H.H.; Naeem, M.; Latif, M.; Bukhari, A.H.; Tanveer, A. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol., 2015, 174, 540-560.
[http://dx.doi.org/10.1016/j.jep.2015.08.012] [PMID: 26297840]
[57]
Bourjot, M.; Leyssen, P.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J. Nat. Prod., 2012, 75(4), 752-758.
[http://dx.doi.org/10.1021/np300059n] [PMID: 22439591]
[58]
Xu, J.; Xu, Z.; Zheng, W. A review of the antiviral role of green tea catechins. Molecules, 2017, 22(8), 1337.
[http://dx.doi.org/10.3390/molecules22081337] [PMID: 28805687]
[59]
Hudson, J.D. Antiviral Compounds from Plants; CRC Press, Inc.: Boca Raton, Florida, 1990, pp. 43-57.
[60]
Cos, P.; Berghe, D.; Bruyne, T.; Vlietinck, A. Plant substances as antiviral agents: An update (1997-2001). Curr. Org. Chem., 2003, 7(12), 1163-1180.
[http://dx.doi.org/10.2174/1385272033486558]
[61]
El Sayed, K.A. Natural products as antiviral agents. In: Studies in natural products chemistry; , 2000; 24, p. 473-572.
[62]
Becker, Y. Antiviral agents from natural sources. Pharmacol. Ther., 1980, 10(1), 119-159.
[http://dx.doi.org/10.1016/0163-7258(80)90011-X] [PMID: 6157168]
[63]
Ng, T.B.; Huang, B.; Fong, W.P.; Yeung, H.W. Anti-human immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors. Life Sci., 1997, 61(10), 933-949.
[http://dx.doi.org/10.1016/S0024-3205(97)00245-2] [PMID: 9296332]
[64]
MacRae, W.D.; Towers, G.H.N. Biological activities of lignans. Phytochemistry, 1984, 23(6), 1207-1220.
[http://dx.doi.org/10.1016/S0031-9422(00)80428-8]
[65]
Balasaraswathi, R.; Sadasivam, S.; Ward, M.; Walker, J.M. An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation. Phytochemistry, 1998, 47(8), 1561-1565.
[http://dx.doi.org/10.1016/S0031-9422(97)00788-7] [PMID: 9612957]
[66]
Stripe, F. Ribosome-inactivating proteins.Protein Toxins and Their Use in Cell Biology; Rappuoli, R.; Montecucco, C.. 57-58.
[67]
Wachsman, M.B.; Castilla, V.; Coto, C.E. Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated from Melia azedarach L leaves. Arch. Virol., 1998, 143(3), 581-590.
[http://dx.doi.org/10.1007/s007050050314] [PMID: 9572558]
[68]
Hancock, R.E.W. The therapeutic potential of cationic peptides. Expert Opin. Investig. Drugs, 1998, 7(2), 167-174.
[http://dx.doi.org/10.1517/13543784.7.2.167] [PMID: 15991950]
[69]
Yao, Y.; Xia, M.; Wang, H.; Li, G.; Shen, H.; Ji, G.; Meng, Q.; Xie, Y. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur. J. Pharm. Sci., 2016, 91, 144-153.
[http://dx.doi.org/10.1016/j.ejps.2016.06.014] [PMID: 27328876]
[70]
Qian, J.; Meng, H.; Xin, L.; Xia, M.; Shen, H.; Li, G.; Xie, Y. Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2017, 160, 101-109.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.020] [PMID: 28917148]
[71]
Hong, C.; Dang, Y.; Lin, G.; Yao, Y.; Li, G.; Ji, G.; Shen, H.; Xie, Y. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: An in vitro and in vivo evaluation. Int. J. Pharm., 2014, 477(1-2), 251-260.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.044] [PMID: 25445518]
[72]
Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur. J. Pharm. Sci., 2017, 108, 36-49.
[http://dx.doi.org/10.1016/j.ejps.2016.12.009] [PMID: 27939619]
[73]
Zhao, L.; Zhang, L.; Meng, L.; Wang, J.; Zhai, G. Design and evaluation of a self-microemulsifying drug delivery system for apigenin. Drug Dev. Ind. Pharm., 2013, 39(5), 662-669.
[http://dx.doi.org/10.3109/03639045.2012.687378] [PMID: 22607130]
[74]
Zhang, H.; Yang, X.; Zhao, L.; Jiao, Y.; Liu, J.; Zhai, G. In vitro and in vivo study of baicalin-loaded mixed micelles for oral delivery. Drug Deliv., 2015, 23(6), 1933-1939.
[PMID: 25693642]
[75]
Yang, R.; Huang, X.; Dou, J.; Zhai, G.; Su, L. Self-microemulsifying drug delivery system for improved oral bioavailability of oleanolic acid: Design and evaluation. Int. J. Nanomedicine, 2013, 8, 2917-2926.
[PMID: 23966781]
[76]
Teng, Y.F.; Xu, L.; Wei, M.Y.; Wang, C.Y.; Gu, Y.C.; Shao, C.L. Recent progresses in marine microbial-derived antiviral natural products. Arch. Pharm. Res., 2020, 43(12), 1215-1229.
[http://dx.doi.org/10.1007/s12272-020-01286-3] [PMID: 33222073]
[77]
Hou, X.M.; Wang, C.Y.; Gerwick, W.H.; Shao, C.L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem., 2019, 165, 273-292.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.026] [PMID: 30685527]
[78]
Riccio, G.; Ruocco, N.; Mutalipassi, M.; Costantini, M.; Zupo, V.; Coppola, D.; de Pascale, D.; Lauritano, C. Ten-year research update review: Antiviral activities from marine organisms. Biomolecules, 2020, 10(7), 1007.
[http://dx.doi.org/10.3390/biom10071007] [PMID: 32645994]
[79]
Rowley, D.; Kelly, S.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Halovirs A–E, new antiviral agents from a marine-Derived fungus of the genus Scytalidium. Bioorg. Med. Chem., 2003, 11(19), 4263-4274.
[http://dx.doi.org/10.1016/S0968-0896(03)00395-X] [PMID: 12951157]
[80]
Minagawa, K.; Kouzuki, S.; Yoshimoto, J.; Kawamura, Y.; Tani, H.; Iwata, T.; Terui, Y.; Nakai, H.; Yagi, S.; Hattori, N.; Fujiwara, T.; Kamigauchi, T. Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. J. Antibiot., 2002, 55(2), 155-164.
[http://dx.doi.org/10.7164/antibiotics.55.155] [PMID: 12002997]
[81]
Yasuhara-Bell, J.; Lu, Y. Marine compounds and their antiviral activities. Antiviral Res., 2010, 86(3), 231-240.
[http://dx.doi.org/10.1016/j.antiviral.2010.03.009] [PMID: 20338196]
[82]
Yu, G.; Zhou, G.; Zhu, M.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Neosartoryadins A and B, fumiquinazoline alkaloids from a mangrove derived fungus Neosartoryaudagawae HDN13-313. Org. Lett., 2016, 18(2), 244-247.
[http://dx.doi.org/10.1021/acs.orglett.5b02964] [PMID: 26713369]
[83]
Li, J.; Wang, Y.; Hao, X.; Li, S.; Jia, J.; Guan, Y.; Peng, Z.; Bi, H.; Xiao, C.; Cen, S.; Gan, M. Broad-spectrum antiviral natural products from the marine-derived Penicillium sp. IMB17-046. Molecules, 2019, 24(15), 2821-2831.
[http://dx.doi.org/10.3390/molecules24152821] [PMID: 31382398]
[84]
Venkateshwar, G.T.; Srinivasa, R.N.; Raghavendra, S.N.; Siva, R.T.; Venkateswarlu, Y. Anti-HIV active petrosins from the marine sponge Petrosia similis. Biol. Pharm. Bull., 2003, 26(10), 1498-1501.
[http://dx.doi.org/10.1248/bpb.26.1498] [PMID: 14519963]
[85]
Huang, Z.; Nong, X.; Ren, Z.; Wang, J.; Zhang, X.; Qi, S. Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg. Med. Chem. Lett., 2017, 27(4), 787-791.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.032] [PMID: 28129981]
[86]
Yu, Y.; Jia, T.; Chen, X. The ‘how’ and ‘where’ of plant micro RNA s. New Phytol., 2017, 216(4), 1002-1017.
[http://dx.doi.org/10.1111/nph.14834] [PMID: 29048752]
[87]
Yim, S.K.; Kim, I.; Warren, B.; Kim, J.; Jung, K.; Ku, B. Antiviral activity of two marine carotenoids against SARS-CoV-2 virus entry in silico and in vitro. Int. J. Mol. Sci., 2021, 22(12), 6481.
[http://dx.doi.org/10.3390/ijms22126481] [PMID: 34204256]
[88]
González, M.E.; Alarcón, B.; Carrasco, L. Polysaccharides as antiviral agents: Antiviral activity of carrageenan. Antimicrob. Agents Chemother., 1987, 31(9), 1388-1393.
[http://dx.doi.org/10.1128/AAC.31.9.1388] [PMID: 2823697]
[89]
Bohn, T. Carotenoids and markers of oxidative stress in human observational studies and intervention trials: Implications for chronic diseases. Antioxidants, 2019, 8(6), 179.
[http://dx.doi.org/10.3390/antiox8060179] [PMID: 31213029]
[90]
Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res., 2014, 34(11), 907-929.
[http://dx.doi.org/10.1016/j.nutres.2014.07.010] [PMID: 25134454]
[91]
Neushul, M. Antiviral carbohydrates from marine red algae. In: Bioactive Compounds from Marine Organisms; Thompson, M.F.; Sarojini, R.; Nagabhushanam, R. Oxford & IB H Publishing Co . Pvt. Ltd.: New Delhi , India, 1991; p. 275-281.
[92]
Mohamed, S.F.; Agili, F.A. Antiviral sulphated polysaccharide from brown algae Padina pavonia characterization and structure elucidation. Int. J. Chemtech Res., 2013, 5(4), 1469-1476.
[93]
Demain, A.L. Microbial Secondary Metabolism: a New Theoretical Frontier for Academia, a New Opportunity for Industry, in Ciba Foundation Symposium171 Secondary Metabolites: Their Function and Evolution: Secondary Metabolites: Their Function and Evolution: Ciba Foundation Symposium 171; Wiley Online Library, 2007, p. 3-16.
[94]
Raihan, T.; Azad, A.K.; Ahmed, J.; Shepon, M.R.; Dey, P.; Chowdhury, N.; Aunkor, T.H.; Ali, H.; Suhani, S. Extracellular metabolites of endophytic fungi from Azadirachta indica inhibit multidrug-resistant bacteria and phytopathogens. Future Microbiol., 2021, 16(8), 557-576.
[http://dx.doi.org/10.2217/fmb-2020-0259] [PMID: 33998269]
[95]
Selim, K.; Elkhateeb, W.; Tawila, A.; El-Beih, A.; Abdel-Rahman, T.; El-Diwany, A.; Ahmed, E. Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation, 2018, 4(3), 49.
[http://dx.doi.org/10.3390/fermentation4030049]
[96]
Steffen, R.; Jiang, Z.D.; Gracias, G.M.L.; Araujo, P.; Stiess, M.; Nacak, T.; Greinwald, R.; DuPont, H.L. Rifamycin SV-MMX® for treatment of travellers’ diarrhea: Equally effective as ciprofloxacin and not associated with the acquisition of multi-drug resistant bacteria. J. Travel Med., 2018, 25(1), 1-11.
[http://dx.doi.org/10.1093/jtm/tay116]
[97]
Pathak, Y.; Mishra, A.; Choudhir, G.; Kumar, A.; Tripathi, V. Rifampicin and Letermovir as potential repurposed drug candidate for COVID-19 treatment: Insights from an in silico study. Pharmacol. Rep., 2021, 73(3), 926-938.
[http://dx.doi.org/10.1007/s43440-021-00228-0] [PMID: 33970450]
[98]
Wehrli, W. Topics in current chemistry. In: Ansamycins chemistry, biosynthesis and biological activity; Springer: Berlin/Heidelberg, Germany, 1977; pp. 21-49.
[99]
Came, P.E.; Steinberg, B.A. Chemotherapy of viral infection. Natural Products. In: Handbook of Experimental Pharmacology; Springe Verlag: Berlin, 1982; 61, p. 479-518.
[http://dx.doi.org/10.1007/978-3-642-68487-6]
[100]
Wang, N.J.; Fu, Y.; Yan, G.H.; Bao, G.H.; Xu, C.F.; He, C.H. Isolation and structure of a new ansamycin antibiotic kanglemycin A from a Nocardia. J. Antibiot., 1988, 41(2), 264-267.
[http://dx.doi.org/10.7164/antibiotics.41.264] [PMID: 3281924]
[101]
Broggini, M.; Marchini, S.; Fontana, E.; Moneta, D.; Fowst, C.; Geroni, C. Brostallicin: A new concept in minor groove DNA binder development. Anticancer Drugs, 2004, 15(1), 1-6.
[http://dx.doi.org/10.1097/00001813-200401000-00001] [PMID: 15090736]
[102]
Matteoli, B.; Bernardini, S.; Iuliano, R.; Parenti, S.; Freer, G.; Broccolo, F.; Baggiani, A.; Subissi, A.; Arcamone, F.; Ceccherini-Nelli, L. In vitro antiviral activity of distamycin A against clinical isolates of herpes simplex virus 1 and 2 from transplanted patients. Intervirology, 2008, 51(3), 166-172.
[http://dx.doi.org/10.1159/000148199] [PMID: 18663321]
[103]
Borbély, A.; Pethő, L.; Szabó, I.; Al-Majidi, M.; Steckel, A.; Nagy, T.; Kéki, S.; Kalló, G.; Csősz, É.; Mező, G.; Schlosser, G. Structural characterization of daunomycin-peptide conjugates by various tandem mass spectrometric techniques. Int. J. Mol. Sci., 2021, 22(4), 1648.
[http://dx.doi.org/10.3390/ijms22041648] [PMID: 33562082]
[104]
Visone, V.; Szabó, I.; Perugino, G.; Hudecz, F.; Bánóczi, Z.; Valenti, A. Topoisomerases inhibition and DNA binding mode of daunomycin–oligoarginine conjugate. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1363-1371.
[http://dx.doi.org/10.1080/14756366.2020.1780226] [PMID: 32552137]
[105]
Johnson-Arbor, K.; Dubey, R. Doxorubicin.StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy