Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

A Systemic Review on Photodynamic Therapy: Emerging Technology with Healing Process

Author(s): Prachi Varshney, Yogesh Kumar, Devdhar Yadav, Amit Singh*, Naga Rani Kagithala, Pramod Kumar Sharma, Omji Porwal, Neeraj Kumar Fuloria, Pradeep Kumar Sharma, Ashok Kumar Gupta and G.S.N. Koteswara Rao

Volume 20, Issue 3, 2024

Published on: 05 October, 2023

Page: [283 - 306] Pages: 24

DOI: 10.2174/0115733947263042230920040145

Price: $65

conference banner
Abstract

Photodynamic therapy (PDT) is a non-invasive treatment of cancer patients who take a photosensitizer and expose their tumours to light after administering it topically or intravenously. Understanding apoptosis under oxidative conditions makes PDT a more effective treatment. Tissue oxygen, tumour-selective photosensitizer dyes, and customised lighting are needed to create fatal reactive oxygen species (ROS) in cancer. PDT has decreased morbidity and improved survival and status of life when used in combination with other treatments, especially in early-stage malignant tumours. Using interstitial light delivery, PDT can cure large, hidden tumours that would otherwise necessitate extensive surgery. This overview describes the foundational historical work that has shaped the technique since the early 1900s. PDT's efficacy is also increased by innovative photosensitizers and tweaks that increase tumour selectivity. Adverse effects and treatment during therapy, as well as innovative PDT-based applications, are explored in this review. Finally, PDT research gaps and clinical trials have been identified as potential issues.

Keywords: Photodynamic therapy (PDT), photosensitizer (Ps), combination therapy, application of PDT, cancer treatment by PDT, psoriatic arthritis.

Graphical Abstract
[1]
Luo D, Carter KA, Miranda D, Lovell JF. Chemo phototherapy: An emerging treatment option for solid tumours. Adv Sci 2017; 4(1): 1600106.
[http://dx.doi.org/10.1002/advs.201600106] [PMID: 28105389]
[2]
Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: Clinical applications. Lasers Surg Med 2011; 43(7): 755-67.
[http://dx.doi.org/10.1002/lsm.21080] [PMID: 22057503]
[3]
Sperandio F, Huang Y-Y, Hamblin M. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Patents Anti-Infect Drug Disc 2013; 8(2): 108-20.
[http://dx.doi.org/10.2174/1574891X113089990012]
[4]
Babilas P, Schreml S, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology: State-of-the-art. Photodermatol Photoimmunol Photomed 2010; 26(3): 118-32.
[http://dx.doi.org/10.1111/j.1600-0781.2010.00507.x] [PMID: 20584250]
[5]
Touma D, Yaar M, Whitehead S, Konnikov N, Gilchrest BA. A trial of short incubation, broad-area photodynamic therapy for facial actinic keratoses and diffuse photodamage. Arch Dermatol 2004; 140(1): 33-40.
[http://dx.doi.org/10.1001/archderm.140.1.33] [PMID: 14732657]
[6]
Zhen S, Yi X, Zhao Z, Lou X, Xia F, Tang BZ. Drug delivery micelles with efficient near-infrared photosensitizer for combined imageguided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019; 218: 119330.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119330] [PMID: 31301577]
[7]
Sun W, Luo L, Feng Y, et al. Gadolinium-rose bengal coordination polymer nanodots for MR‐/Fluorescence‐Image‐Guided Radiation and Photodynamic Therapy. Adv Mater 2020; 32(23): 2000377.
[http://dx.doi.org/10.1002/adma.202000377] [PMID: 32363649]
[8]
Zhang L, Gao Y, Sun S, Li Z, Wu A, Zeng L. pH-Responsive metal–organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer. J Mater Chem B Mater Biol Med 2020; 8(8): 1739-47.
[http://dx.doi.org/10.1039/C9TB02621E] [PMID: 32030386]
[9]
Luo L, Sun W, Feng Y, et al. Conjugation of a scintillator complex and gold nanorods for dual-modal image-guided photothermal and X-ray-induced photodynamic therapy of tumours. ACS Appl Mater Interfaces 2020; 12(11): 12591-9.
[http://dx.doi.org/10.1021/acsami.0c01189] [PMID: 32105438]
[10]
Yang H, Zhuang J, Li N, et al. Efficient near-infrared photosensitizer with aggregation-induced emission characteristics for mitochondria-targeted and image-guided photodynamic cancer therapy. Mater Chem Front 2020; 4(7): 2064-71.
[http://dx.doi.org/10.1039/D0QM00170H]
[11]
Yang Z, Yin W, Zhang S, et al. Synthesis of AIE-active materials with their applications for antibacterial activity, specific imaging of mitochondrion and image-guided photodynamic therapy. ACS Appl Bio Mater 2020; 3(2): 1187-96.
[http://dx.doi.org/10.1021/acsabm.9b01094] [PMID: 35019319]
[12]
Zhang P, Kuang H, Xu Y, et al. Rational design of a high-performance quinoxalinone-based AIE photosensitizer for image-guided photodynamic therapy. ACS Appl Mater Interfaces 2020; 12(38): 42551-7.
[http://dx.doi.org/10.1021/acsami.0c12670] [PMID: 32862640]
[13]
Dave D, Desai U, Despande N. Photodynamic therapy: A view through light. J Orofacial Res 2012; pp. 82-6.
[http://dx.doi.org/10.5005/jp-journals-10026-1019]
[14]
Policard A. Etude sur les aspects offerts par des tumeurs experimentales examinees a la limiere de wood. Biologue Comptes Rendus 1924; 91: 1423.
[15]
Ronchese F. The fluorescence of cancer under the wood light. Oral Surg Oral Med Oral Pathol 1954; 7(9): 967-71.
[http://dx.doi.org/10.1016/0030-4220(54)90295-9] [PMID: 13194302]
[16]
Winkelman J. Metabolic studies on the accumulation of tetraphenylporphinesulfonate in tumors. Experientia 1967; 23(11): 949-50.
[http://dx.doi.org/10.1007/BF02136242] [PMID: 4168179]
[17]
Figge FHJ, Weiland GS, Manganiello LOJ. Cancer detection and therapy; affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Exp Biol Med 1948; 68(3): 640-1.
[http://dx.doi.org/10.3181/00379727-68-16580] [PMID: 18884315]
[18]
Von Tappeiner H. Uber die wirkung der photodynamischen (fluorescierenden) stoffe auf protozoen und enzyme. Dtsch Arch Klin Med 1904; 80: 427-87.
[19]
Lipson RL, Baldes EJ, Gray MJ. Hematoporphyrin derivative for detection and management of cancer. Cancer 1967; 20(12): 2255-7.
[http://dx.doi.org/10.1002/1097-0142(196712)20:12<2255:AID-CNCR2820201229>3.0.CO;2-U] [PMID: 6073903]
[20]
Dougherty TJ. A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute. J Clin Laser Med Surg 1996; 14(5): 219-21.
[http://dx.doi.org/10.1089/clm.1996.14.219] [PMID: 9612186]
[21]
Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 1976; 36(7 PT 1): 2326-9.
[PMID: 1277137]
[22]
Gao S, Zhang M, Zhu X, et al. Apoptotic effects of Photofrin-Diomed 630-PDT on SHEEC human esophageal squamous cancer cells. Int J Clin Exp Med 2015; 8(9): 15098-107.
[PMID: 26628993]
[23]
Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: Illuminating the road from cell death towards anti-tumour immunity. Apoptosis 2010; 15(9): 1050-71.
[http://dx.doi.org/10.1007/s10495-010-0479-7] [PMID: 20221698]
[24]
He J, Yang L, Yi W, et al. Combination of fluorescence-guided surgery with photodynamic therapy for the treatment of cancer. Mol Imaging 2017; 16.
[http://dx.doi.org/10.1177/1536012117722911] [PMID: 28849712]
[25]
Sobhani N, Dolat E, Darroudi M, et al. Accompanying photocytotoxic activity of gold nanoechinus and zinc phthalocyanine on cancerous cell lines. Photodiagn Photodyn Ther 2020; 32: 101929.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101929] [PMID: 32795508]
[26]
Ancona A, Dumontel B, Garino N, et al. Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials 2018; 8(3): 143.
[http://dx.doi.org/10.3390/nano8030143] [PMID: 29498676]
[27]
Pires Marques EC, Piccolo Lopes F, Nascimento IC, et al. Photobiomodulation and photodynamic therapy for the treatment of oral mucositis in patients with cancer. Photodiagn Photodyn Ther 2020; 29: 101621.
[http://dx.doi.org/10.1016/j.pdpdt.2019.101621]
[28]
Mordente A, Meucci E, Martorana GE, Tavian D, Silvestrini A. Topoisomerases, and anthracyclines: Recent advances and perspectives in anticancer therapy and prevention of cardiotoxicity. Curr Med Chem 2017; 24(15): 1607-26.
[PMID: 27978799]
[29]
Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(5): e1560.
[http://dx.doi.org/10.1002/wnan.1560] [PMID: 31058443]
[30]
Grant WE, Hopper C, Speight PM, Macrobert AJ, Bown SG. Photodynamic therapy of malignant and premalignant lesions in patients with ‘field cancerization’ of the oral cavity. J Laryngol Otol 1993; 107(12): 1140-5.
[http://dx.doi.org/10.1017/S0022215100125496] [PMID: 8289004]
[31]
Cao J, Zhu B, Zheng K, et al. Recent progress in NIR-II contrast agent for biological imaging. Front Bioeng Biotechnol 2020; 7: 487.
[http://dx.doi.org/10.3389/fbioe.2019.00487] [PMID: 32083067]
[32]
Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc 2013; 46(1): 24-9.
[http://dx.doi.org/10.5946/ce.2013.46.1.24] [PMID: 23422955]
[33]
Mekhilef S, Saidur R, Kamalisarvestani M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 2012; 16(5): 2920-5.
[http://dx.doi.org/10.1016/j.rser.2012.02.012]
[34]
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004; 1(4): 279-93.
[http://dx.doi.org/10.1016/S1572-1000(05)00007-4] [PMID: 25048432]
[35]
Nowak-Stepniowska A,. Pergoł P, Padzik-Graczyk A. Photodynamic method of cancer diagnosis and therapy--mechanisms and applications Postepy Biochem 2013; 59(1): 53-63.
[PMID: 23821943]
[36]
Luksiene Z. Photodynamic therapy: Mechanism of action and ways to improve the efficiency of treatment. Medicina 2003; 39(12): 1137-50.
[PMID: 14704501]
[37]
Juzeniene A, Moan J. The history of PDT in norway. Photodiagn Photodyn Ther 2007; 4(1): 3-11.
[http://dx.doi.org/10.1016/j.pdpdt.2006.11.002] [PMID: 25047184]
[38]
Fonseca SM, Pina J, Arnaut LG, et al. Triplet-state and singlet oxygen formation in fluorene-based alternating copolymers. J Phys Chem B 2006; 110(16): 8278-83.
[http://dx.doi.org/10.1021/jp060251f] [PMID: 16623508]
[39]
Kessel D, Oleinick NL. Photodynamic therapy and cell death pathways.In: Photodynamic Therapy Methods in Molecular Biology. Totowa, NJ: Humana Press 2010; 635: pp. 35-46.
[http://dx.doi.org/10.1007/978-1-60761-697-9_3]
[40]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[41]
de Villiers MM, Lvov YM. Layer-by-layer self-assembled nanoshells for drug delivery. Adv Drug Deliv Rev 2011; 63(9): 699-700.
[http://dx.doi.org/10.1016/j.addr.2011.06.001] [PMID: 21718729]
[42]
Nakamura M, Tahara Y, Fukata S, et al. Significance of optimization of phospholipid poly (ethylene glycol) quantity for coating carbon nanohorns to achieve low cytotoxicity. Bull Chem Soc Jpn 2017; 90(6): 662-6.
[http://dx.doi.org/10.1246/bcsj.20170003]
[43]
Hamblin MR, Chiang LY, Lakshmanan S, et al. Nanotechnology for photodynamic therapy: A perspective from the Laboratory of Dr. Michael R. Nanotechnol Rev 2015; 4(4): 359-72.
[http://dx.doi.org/10.1515/ntrev-2015-0027] [PMID: 26640747]
[44]
Ding H, Yu H, Dong Y, et al. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Control Release 2011; 156(3): 276-80.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.019] [PMID: 21888934]
[45]
Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: One step ahead with self-assembled nanoparticles. J Biomed Nanotechnol 2014; 10(9): 1937-52.
[http://dx.doi.org/10.1166/jbn.2014.1953] [PMID: 25580097]
[46]
Zeisser-Labouèbe M, Lange N, Gurny R, Delie F. Hypericinloaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm 2006; 326(1-2): 174-81.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.012] [PMID: 16930882]
[47]
Wang S, Fan W, Kim G, et al. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy. Lasers Surg Med 2011; 43(7): 686-95.
[http://dx.doi.org/10.1002/lsm.21113] [PMID: 22057496]
[48]
Qin M, Hah HJ, Kim G, Nie G, Lee YEK, Kopelman R. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci 2011; 10(5): 832-41.
[http://dx.doi.org/10.1039/c1pp05022b] [PMID: 21479315]
[49]
Tang W, Xu H, Park EJ, Philbert MA, Kopelman R. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 2008; 369(2): 579-83.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.066] [PMID: 18298950]
[50]
Kuruppuarachchi M, Savoie H, Lowry A, Alonso C, Boyle RW. Polyacrylamide nanoparticles as a delivery system in photodynamic therapy. Mol Pharm 2011; 8(3): 920-31.
[http://dx.doi.org/10.1021/mp200023y] [PMID: 21410233]
[51]
Tang W, Xu H, Kopelman R, Philbert MA. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 2005; 81(2): 242-9.
[http://dx.doi.org/10.1562/2004-05-24-RA-176.1] [PMID: 15595888]
[52]
Kopeček J, Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv Drug Deliv Rev 2010; 62(2): 122-49.
[http://dx.doi.org/10.1016/j.addr.2009.10.004] [PMID: 19919846]
[53]
Yang Y, Gao N, Hu Y, et al. Gold nanoparticle-enhanced photodynamic therapy: Effects of surface charge and mitochondrial targeting. Ther Deliv 2015; 6(3): 307-21.
[http://dx.doi.org/10.4155/tde.14.115] [PMID: 25853307]
[54]
Meyers JD, Cheng Y, Broome AM, et al. Peptide‐targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact 2015; 32(4): 448-57.
[http://dx.doi.org/10.1002/ppsc.201400119] [PMID: 25999665]
[55]
Xiao L, Gu L, Howell SB, Sailor MJ. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 2011; 5(5): 3651-9.
[http://dx.doi.org/10.1021/nn1035262] [PMID: 21452822]
[56]
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nano architectonics and cell-macromolecular nano architectonics. Bull Chem Soc Jpn 2017; 90(9): 967-1004.
[http://dx.doi.org/10.1246/bcsj.20170156]
[57]
Zhang P, Steelant W, Kumar M, Scholfield M. Versatile photosensitizers for photodynamic therapy at infrared excitation. J Am Chem Soc 2007; 129(15): 4526-7.
[http://dx.doi.org/10.1021/ja0700707] [PMID: 17385866]
[58]
Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata CH. Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 2004; 1(1): 27-42.
[http://dx.doi.org/10.1016/S1572-1000(04)00007-9] [PMID: 25048062]
[59]
Tochner Z, Mitchell JB, Hoekstra HJ, et al. Photodynamic therapy of the canine peritoneum: Normal tissue response to intraperitoneal and intravenous photofrin followed by 630 nm light. Lasers Surg Med 1991; 11(2): 158-64.
[http://dx.doi.org/10.1002/lsm.1900110210] [PMID: 1827854]
[60]
Panjehpour M, Overholt BF, Denovo RC, Petersen MG, Sneed RE. Comparative study between pulsed and continuous wave lasers for Photofrin® photodynamic therapy. Lasers Surg Med 1993; 13(3): 296-304.
[http://dx.doi.org/10.1002/lsm.1900130306] [PMID: 8515669]
[61]
Whelan HT, Schmidt MH, Segura AD, et al. The role of photodynamic therapy in posterior fossa brain tumors. J Neurosurg 1993; 79(4): 562-8.
[http://dx.doi.org/10.3171/jns.1993.79.4.0562] [PMID: 8410226]
[62]
Zhu TC, Finlay JC. The role of photodynamic therapy (PDT) physics. Med Phys 2008; 35(7Part1): 3127-36.
[http://dx.doi.org/10.1118/1.2937440] [PMID: 18697538]
[63]
Joo MK. Endoscopic approach for major complications of bariatric surgery. Clin Endosc 2017; 50(1): 31-41.
[http://dx.doi.org/10.5946/ce.2016.140] [PMID: 28008162]
[64]
Moriwaki K, Sawada T, Akiyama M, et al. Synthesis and photophysical properties of S-mannosylated chlorins and their effect on photocytotoxicity in HeLa cells. Bull Chem Soc Jpn 2018; 91(2): 230-6.
[http://dx.doi.org/10.1246/bcsj.20170271]
[65]
De Rosa FS, Bentley MVLB. Photodynamic therapy of skin cancers: Sensitizers, clinical studies and future directives. Pharm Res 2000; 17(12): 1447-55.
[http://dx.doi.org/10.1023/A:1007612905378] [PMID: 11303952]
[66]
Morton CA. The emerging role of 5-ALA-PDT in dermatology: Is PDT superior to standard treatments. J Dermatol Treat 2002; 13(S1): s25-9.
[67]
Josefsen LB, Boyle RW. Photodynamic therapy: Novel thirdgeneration photosensitizers one step closer? Br J Pharmacol 2008; 154(1): 1-3.
[http://dx.doi.org/10.1038/bjp.2008.98] [PMID: 18362894]
[68]
Kataoka H, Nishie H, Hayashi N, et al. New photodynamic therapy with next-generation photosensitizers. Ann Transl Med 2017; 5(8): 183.
[http://dx.doi.org/10.21037/atm.2017.03.59] [PMID: 28616398]
[69]
Savellano MD, Hasan T. Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem Photobiol 2003; 77(4): 431-9.
[http://dx.doi.org/10.1562/0031-8655(2003)077<0431:TCTOTE>2.0.CO;2] [PMID: 12733655]
[70]
DeRosa M, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev 2002; 233-234: 351-71.
[http://dx.doi.org/10.1016/S0010-8545(02)00034-6]
[71]
Ethirajan M, Chen Y, Joshi P, Pandey RK. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 2011; 40(1): 340-62.
[http://dx.doi.org/10.1039/B915149B] [PMID: 20694259]
[72]
Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces 2015; 7(20): 10671-6.
[http://dx.doi.org/10.1021/acsami.5b03087] [PMID: 25974979]
[73]
Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 2011; 69(5): 245-58.
[http://dx.doi.org/10.1111/j.1753-4887.2011.00388.x] [PMID: 21521227]
[74]
Tu HL, Lin YS, Lin HY, et al. In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater 2009; 21(2): 172-7.
[http://dx.doi.org/10.1002/adma.200800548]
[75]
Bellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Dougherty TJ. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX. Lasers Surg Med 2006; 38(5): 439-44.
[http://dx.doi.org/10.1002/lsm.20340] [PMID: 16634075]
[76]
Nava HR, Allamaneni SS, Dougherty TJ, et al. Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with barrett’s esophagus. Lasers Surg Med 2011; 43(7): 705-12.
[http://dx.doi.org/10.1002/lsm.21112] [PMID: 22057498]
[77]
Miller J, Baron E, Scull H, et al. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical–translational studies. Toxicol Appl Pharmacol 2007; 224(3): 290-9.
[http://dx.doi.org/10.1016/j.taap.2007.01.025] [PMID: 17397888]
[78]
Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 2013; 10(10): 3946-58.
[http://dx.doi.org/10.1021/mp400397t] [PMID: 24020847]
[79]
Yurt F, Ince M, Colak SG, et al. Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO 2 nanoparticles. Int J Pharm 2017; 524(1-2): 467-74.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.050] [PMID: 28365390]
[80]
Zhao Z, Han Y, Lin C, et al. Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 2012; 7(4): 830-7.
[http://dx.doi.org/10.1002/asia.201100879] [PMID: 22279027]
[81]
Ai F, Ju Q, Zhang X, Chen X, Wang F, Zhu G. A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer. Sci Rep 2015; 5(1): 10785.
[http://dx.doi.org/10.1038/srep10785] [PMID: 26035527]
[82]
Piao MJ, Zhang R, Lee NH, Hyun JW. Phloroglucinol attenuates ultraviolet B radiation-induced matrix metalloproteinase-1 production in human keratinocytes via inhibitory actions against mitogenactivated protein kinases and activator protein-1. Photochem Photobiol 2012; 88(2): 381-8.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01074.x] [PMID: 22220584]
[83]
Senge MO. mTHPC - A drug on its way from second to third generation photosensitizer? Photodiagn Photodyn Ther 2012; 9(2): 170-9.
[http://dx.doi.org/10.1016/j.pdpdt.2011.10.001] [PMID: 22594988]
[84]
Huggett MT, Jermyn M, Gillams A, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer 2014; 110(7): 1698-704.
[http://dx.doi.org/10.1038/bjc.2014.95] [PMID: 24569464]
[85]
Guo M, Mao H, Li Y, et al. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 2014; 35(16): 4656-66.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.018] [PMID: 24613048]
[86]
Huang L, Li Z, Zhao Y, et al. Enhancing photodynamic therapy through resonance energy transfer constructed near‐infrared photosensitized nanoparticles. Adv Mater 2017; 29(28): 1604789.
[http://dx.doi.org/10.1002/adma.201604789] [PMID: 28586102]
[87]
Shafirstein G, Bäumler W, Hennings LJ, et al. Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma. Int J Cancer 2012; 130(5): 1208-15.
[http://dx.doi.org/10.1002/ijc.26126] [PMID: 21484791]
[88]
Wöhrle D, Shopova M, Müller S, Milev AD, Mantareva VN, Krastev KK. Liposome-delivered Zn(II)-2,3-naphthalocyanines as potential sensitizers for PDT: Synthesis, photochemical, pharmacokinetic and phototherapeutic studies. J Photochem Photobiol B 1993; 21(2-3): 155-65.
[http://dx.doi.org/10.1016/1011-1344(93)80178-C] [PMID: 8301412]
[89]
He SJ, Cao J, Li YS, et al. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. World J Gastroenterol 2016; 22(21): 5012-22.
[http://dx.doi.org/10.3748/wjg.v22.i21.5012] [PMID: 27275093]
[90]
Xie J, Pan X, Wang M, et al. Targeting, and photodynamic killing of cancer cell by nitrogen-doped titanium dioxide coupled with folic acid. Nanomaterials 2016; 6(6): 113.
[http://dx.doi.org/10.3390/nano6060113] [PMID: 28335242]
[91]
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016; 7(1): 13193.
[http://dx.doi.org/10.1038/ncomms13193] [PMID: 27767031]
[92]
Du L, Qin H, Ma T, Zhang T, Xing D. In vivo imaging-guided photothermal/photoacoustic synergistic therapy with biorthogonal metabolic glycoengineering-activated tumor targeting nanoparticles. ACS Nano 2017; 11(9): 8930-43.
[http://dx.doi.org/10.1021/acsnano.7b03226] [PMID: 28892360]
[93]
Hoekstra DC, Nickmans K, Lub J, Debije MG, Schenning APHJ. Air-curable, high-resolution patternable oxetane-based liquid crystalline photonic films via flexographic printing. ACS Appl Mater Interfaces 2019; 11(7): 7423-30.
[http://dx.doi.org/10.1021/acsami.8b21464] [PMID: 30688061]
[94]
Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 2012; 18(10): 1580-5.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[95]
Noh I, Lee D, Kim H, et al. Enhanced photodynamic cancer treatment by mitochondria‐targeting and brominated near‐infrared fluorophores. Adv Sci 2018; 5(3): 1700481.
[http://dx.doi.org/10.1002/advs.201700481] [PMID: 29593951]
[96]
Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 2005; 4(3): 283-93.
[http://dx.doi.org/10.1177/153303460500400308] [PMID: 15896084]
[97]
Vrouenraets MB, Visser GW, Snow GB, van Dongen GA. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 2003; 23(1B): 505-22.
[PMID: 12680139]
[98]
Lovell JF, Liu TWB, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev 2010; 110(5): 2839-57.
[http://dx.doi.org/10.1021/cr900236h] [PMID: 20104890]
[99]
Li X, Kolemen S, Yoon J, Akkaya EU. Activatable photosensitizers: Agents for selective photodynamic therapy. Adv Funct Mater 2017; 27(5): 1604053.
[http://dx.doi.org/10.1002/adfm.201604053]
[100]
Li X, Zheng BY, Ke MR, Zhang Y, Huang JD, Yoon J. A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics 2017; 7(10): 2746-56.
[http://dx.doi.org/10.7150/thno.18861] [PMID: 28819460]
[101]
Li X, Fan H, Guo T, et al. Sequential protein-responsive nanophotosensitizer complex for enhancing tumor-specific therapy. ACS Nano 2019; 13(6): 6702-10.
[http://dx.doi.org/10.1021/acsnano.9b01100] [PMID: 31184131]
[102]
Chaves YN, Torezan LA, Niwa ABM, Sanches Junior JA, Festa Neto C. Pain in photodynamic therapy: Mechanism of action and management strategies. An Bras Dermatol 2012; 87(4): 521-9.
[http://dx.doi.org/10.1590/S0365-05962012000400001] [PMID: 22892763]
[103]
Babilas P, Knobler R, Hummel S, et al. Variable pulsed light is less painful than light-emitting diodes for topical photodynamic therapy of actinic keratosis: A prospective randomized controlled trial. Br J Dermatol 2007; 157(1): 111-7.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07959.x] [PMID: 17542980]
[104]
Leff DR, Nortley M, Dang V, Bhutiani RP. The effect of local cooling on pain perception during infiltration of local anaesthetic agents, a prospective randomised controlled trial. Anaesthesia 2007; 62(7): 677-82.
[http://dx.doi.org/10.1111/j.1365-2044.2007.05056.x] [PMID: 17567343]
[105]
Wulf HC, Philipsen P. Allergic contact dermatitis to 5-aminolaevulinic acid methylester but not to 5-aminolaevulinic acid after photodynamic therapy. Br J Dermatol 2004; 150(1): 143-5.
[http://dx.doi.org/10.1111/j.1365-2133.2004.05723.x] [PMID: 14746630]
[106]
Jungersted JM, Dam TN, Bryld LE, Agner T. Allergic reactions to Metvix ® (ALA-ME). Contact Dermat 2008; 58(3): 184-6.
[http://dx.doi.org/10.1111/j.1600-0536.2007.01241.x] [PMID: 18279171]
[107]
Borgia F, Giuffrida R, Caradonna E, Vaccaro M, Guarneri F, Cannavò S. Early and late onset side effects of photodynamic therapy. Biomedicines 2018; 6(1): 12.
[http://dx.doi.org/10.3390/biomedicines6010012] [PMID: 29382133]
[108]
Lehmann P. Nebenwirkungen der topischen photodynamischen Therapie. Hautarzt 2007; 58(7): 597-603.
[http://dx.doi.org/10.1007/s00105-007-1363-4] [PMID: 17579821]
[109]
Calzavara-Pinton PG, Rossi MT, Aronson E, Sala R. A retrospective analysis of real-life practice of off-label photodynamic therapy using methyl aminolevulinate (MAL-PDT) in 20 Italian dermatology departments. Part 1: Inflammatory and aesthetic indications. Photochem Photobiol Sci 2012; 12(1): 148-57.
[http://dx.doi.org/10.1039/c2pp25124h] [PMID: 22949035]
[110]
Stender IM, Na R, Fogh H, Gluud C, Wulf HC. Photodynamic therapy with 5-aminolaevulinic acid or placebo for recalcitrant foot and hand warts: Randomised double-blind trial. Lancet 2000; 355(9208): 963-6.
[http://dx.doi.org/10.1016/S0140-6736(00)90013-8] [PMID: 10768434]
[111]
Shin HT, Kim JH, Shim J, et al. Photodynamic therapy using a new formulation of 5-aminolevulinic acid for wrinkles in Asian skin: A randomized controlled split face study. J Dermatolog Treat 2015; 26(3): 246-51.
[http://dx.doi.org/10.3109/09546634.2014.933163] [PMID: 24913131]
[112]
Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021; 13(9): 1332.
[http://dx.doi.org/10.3390/pharmaceutics13091332] [PMID: 34575408]
[113]
Jerjes W, Upile T, Hamdoon Z, et al. Interstitial PDT for vascular anomalies. Lasers Surg Med 2011; 43(5): 357-65.
[http://dx.doi.org/10.1002/lsm.21058] [PMID: 21674540]
[114]
Comacchi C, Bencini PL, Galimberti MG, Cappugi P, Torchia D. Topical photodynamic therapy for idiopathic hirsutism and hypertrichosis. Plast Reconstr Surg 2012; 129(6): 1012e-4e.
[http://dx.doi.org/10.1097/PRS.0b013e31824f00cc] [PMID: 22634678]
[115]
Bruscino N, Lotti T, Rossi R. Photodynamic therapy for a hypertrophic scarring: A promising choice. Photodermatol Photoimmunol Photomed 2011; 27(6): 334-5.
[http://dx.doi.org/10.1111/j.1600-0781.2011.00619.x] [PMID: 22092740]
[116]
Linares-González L, Ródenas-Herranz T, Sáenz-Guirado S, Ruiz-Villaverde R. Successful response to photodynamic therapy with 5‐aminolevulinic acid nanoemulsified gel in a patient with universal alopecia areata refractory to conventional treatment. Dermatol Ther 2020; 33(3): e13416.
[http://dx.doi.org/10.1111/dth.13416] [PMID: 32291883]
[117]
van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: The PLACE trial. Ophthalmology 2018; 125(10): 1547-55.
[http://dx.doi.org/10.1016/j.ophtha.2018.04.021] [PMID: 29776672]
[118]
Plaetzer K, Berneburg M, Kiesslich T, Maisch T. New applications of photodynamic therapy in biomedicine and biotechnology. BioMed Res Int 2013; 2013: 1-3.
[http://dx.doi.org/10.1155/2013/161362] [PMID: 23862135]
[119]
Huang L, Dai T, Hamblin MR. Antimicrobial photodynamic inactivation and photodynamic therapy for infections. In: Photodynamic Therapy. Totowa, NJ: Humana Press 2010; pp. 155-73.
[http://dx.doi.org/10.1007/978-1-60761-697-9_12]
[120]
Weber M, Mehran YZ, Orthaber A, Saadat HH, Weber R, Wojcik M. Antiviral photodynamic therapy in Covid-19: A new approach to treatment in early disease stages. Akupunktur Aurikulomedizin 2021; 47(1): 29-34.
[http://dx.doi.org/10.1007/s15009-021-5701-x]
[121]
Janeth Rimachi Hidalgo K, Cabrini Carmello J, Carolina Jordão C, et al. Antimicrobial photodynamic therapy in combination with nystatin in the treatment of experimental oral candidiasis induced by Candida albicans resistant to fluconazole. Pharmaceuticals 2019; 12(3): 140.
[http://dx.doi.org/10.3390/ph12030140] [PMID: 31540476]
[122]
Rodrigues JA, Correia JH. Enhanced photodynamic therapy: A review of combined energy sources. Cells 2022; 11(24): 3995.
[http://dx.doi.org/10.3390/cells11243995] [PMID: 36552759]
[123]
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998; 90(12): 889-905.
[http://dx.doi.org/10.1093/jnci/90.12.889] [PMID: 9637138]
[124]
Crescenzi E, Varriale L, Iovino M, Chiaviello A, Veneziani BM, Palumbo G. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol Cancer Ther 2004; 3(5): 537-44.
[http://dx.doi.org/10.1158/1535-7163.537.3.5] [PMID: 15141011]
[125]
Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg 1996; 14(5): 329-34.
[http://dx.doi.org/10.1089/clm.1996.14.329] [PMID: 9612200]
[126]
Lynch DH, Haddad S, King VJ, Ott MJ, Straight RC, Jolles CJ. Systemic immunosuppression induced by photodynamic therapy (PDT) is adoptively transferred by macrophages. Photochem Photobiol 1989; 49(4): 453-8.
[http://dx.doi.org/10.1111/j.1751-1097.1989.tb09194.x] [PMID: 2727085]
[127]
van Duijnhoven FH, Aalbers RIJM, Rovers JP, Terpstra OT, Kuppen PJK. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 2003; 207(2): 105-13.
[http://dx.doi.org/10.1078/0171-2985-00221] [PMID: 12675268]
[128]
Bugaj AM. Targeted photodynamic therapy - A promising strategy of tumor treatment. Photochem Photobiol Sci 2011; 10(7): 1097-109.
[http://dx.doi.org/10.1039/c0pp00147c] [PMID: 21547329]
[129]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011; 61(4): 250-81.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[130]
Firczuk M, Winiarska M, Szokalska A, et al. Approaches to improve photodynamic therapy of cancer. Front Biosci 2011; 16(1): 208-24.
[http://dx.doi.org/10.2741/3684] [PMID: 21196167]
[131]
Vandongen G, Visser G, Vrouenraets M. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 2004; 56(1): 31-52.
[http://dx.doi.org/10.1016/j.addr.2003.09.003] [PMID: 14706444]
[132]
Savellano MD, Pogue BW, Hoopes PJ, Vitetta ES, Paulsen KD. Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates. Cancer Res 2005; 65(14): 6371-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0426] [PMID: 16024640]
[133]
Spangler CW, Starkey JR, Meng F, et al. Targeted two-photon photodynamic therapy for the treatment of subcutaneous tumors. In: Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIV SPIE. 2005; 5689: pp. 141-8.
[http://dx.doi.org/10.1117/12.589210]
[134]
Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 2011; 10(5): 822-31.
[http://dx.doi.org/10.1039/c1pp05014a] [PMID: 21455532]
[135]
Juzeniene A, Peng Q, Moan J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 2007; 6(12): 1234-45.
[http://dx.doi.org/10.1039/b705461k] [PMID: 18046478]
[136]
Torres T, Fernandes I, Costa V, Selores M. Photodynamic therapy as adjunctive therapy for morpheaform basal cell carcinoma. Acta Dermatovenerol Alp Panonica Adriat 2011; 20(1): 23-5.
[PMID: 21879201]
[137]
Redfearn DP, Trim GM, Skanes AC, et al. Esophageal temperature monitoring during radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2005; 16(6): 589-93.
[http://dx.doi.org/10.1111/j.1540-8167.2005.40825.x] [PMID: 15946354]
[138]
Wang HX, Xiong MH, Wang YC, Zhu J, Wang J. N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver. J Control Release 2013; 166(2): 106-14.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.017] [PMID: 23266452]
[139]
Attoub S, Hassan AH, Vanhoecke B, et al. Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol 2011; 651(1-3): 18-25.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.063] [PMID: 21074525]
[140]
Kwitniewski M, Juzeniene A, Glosnicka R, Moan J. Immunotherapy: A way to improve the therapeutic outcome of photodynamic therapy? Photochem Photobiol Sci 2008; 7(9): 1011-7.
[http://dx.doi.org/10.1039/b806710d] [PMID: 18754046]
[141]
Castano AP, Pawel M, Mei XW, et al. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc Natl Acad Sci 2008; 105(14): 5459-00.
[142]
Separovic D, Bielawski J, Pierce JS, et al. Enhanced tumor cures after Foscan photodynamic therapy combined with the ceramide analog LCL29. Evidence from mouse squamous cell carcinomas for sphingolipids as biomarkers of treatment response. Int J Oncol 2011; 38(2): 521-7.
[http://dx.doi.org/10.3892/ijo.2010.863] [PMID: 21152858]
[143]
Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci 2009; 66(14): 2275-83.
[http://dx.doi.org/10.1007/s00018-009-0016-4] [PMID: 19333552]
[144]
Ferrario A, Von Tiehl K, Wong S, Luna M, Gomer CJ. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer Res 2002; 62(14): 3956-61.
[PMID: 12124326]
[145]
Kästle M, Grimm S, Nagel R, Breusing N, Grune T. Combination of PDT and inhibitor treatment affects melanoma cells and spares keratinocytes. Free Radic Biol Med 2011; 50(2): 305-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.012] [PMID: 21078385]
[146]
Kaiser PK. Verteporfin photodynamic therapy and anti-angiogenic drugs: Potential for combination therapy in exudative age-related macular degeneration. Curr Med Res Opin 2007; 23(3): 477-87.
[http://dx.doi.org/10.1185/030079907X167624] [PMID: 17355729]
[147]
Kello M, Mikeš J, Jendželovský R,. Kovaľ J, Fedoročko P. PUFAs enhance oxidative stress and apoptosis in tumour cells exposed to hypericin-mediated PDT. Photochem Photobiol Sci 2010; 9(9): 1244-51.
[http://dx.doi.org/10.1039/c0pp00085j] [PMID: 20714672]
[148]
Canti G, Calastretti A, Bevilacqua A, Reddi E, Palumbo G, Nicolin A. Combination of photodynamic therapy + immunotherapy + chemotherapy in murine leukiemia. Neoplasma 2010; 57(2): 184-8.
[http://dx.doi.org/10.4149/neo_2010_02_184] [PMID: 20099984]
[149]
Villanueva A, Stockert JC, Cañete M, Acedo P. A new protocol in photodynamic therapy: Enhanced tumour cell death by combining two different photosensitizers. Photochem Photobiol Sci 2010; 9(3): 295-7.
[http://dx.doi.org/10.1039/b9pp00153k] [PMID: 20221454]
[150]
Faber M, Coudray C, Hida H, Mousseau M, Favier A. Lipid peroxidation products, and vitamin and trace element status in patients with cancer before and after chemotherapy, including adriamycin. Biol Trace Elem Res 1995; 47(1-3): 117-23.
[http://dx.doi.org/10.1007/BF02790108] [PMID: 7779537]
[151]
Morabito A, Longo R, Gattuso D, et al. Trastuzumab in combination with gemcitabine and vinorelbine as second-line therapy for HER-2/neu overexpressing metastatic breast cancer. Oncol Rep 2006; 16(2): 393-8.
[http://dx.doi.org/10.3892/or.16.2.393] [PMID: 16820921]
[152]
Zhang Q, Li L. Photodynamic combinational therapy in cancer treatment. J BUON 2018; 23(3): 561-7.
[PMID: 30003719]
[153]
Mohammadpour H, Fekrazad R. Antitumor effect of combined Dkk-3 and 5-ALA mediated photodynamic therapy in breast cancer cell’s colony. Photodiagn Photodyn Ther 2016; 14: 200-3.
[http://dx.doi.org/10.1016/j.pdpdt.2016.04.001] [PMID: 27071704]
[154]
Feng X, Wang P, Liu Q, Zhang T, Mai B, Wang X. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 2015; 47(3): 189-97.
[http://dx.doi.org/10.1007/s10863-015-9604-1] [PMID: 25631472]
[155]
Gabrysiak M, Wachowska M, Barankiewicz J, et al. Low dose of GRP78-targeting subtilase cytotoxin improves the efficacy of photodynamic therapy in vivo. Oncol Rep 2016; 35(6): 3151-8.
[http://dx.doi.org/10.3892/or.2016.4723] [PMID: 27035643]
[156]
Zhang Y, Yang Y, Zou X, Huang Z. 5-Aminolevulinic Acid Photodynamic Therapy combined with CO2 laser therapy in treatment of laryngeal papilloma: Case report. Photodiagn Photodyn Ther 2016; 14: 131-3.
[http://dx.doi.org/10.1016/j.pdpdt.2016.03.008] [PMID: 27045601]
[157]
Li Q, Hong L, Li H, Liu C. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron 2017; 89(Pt 1): 477-82.
[http://dx.doi.org/10.1016/j.bios.2016.03.072] [PMID: 27055602]
[158]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25(3): 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[159]
Kessel D, Oleinick NL. Cell death pathways associated with photodynamic therapy: An update. Photochem Photobiol 2018; 94(2): 213-8.
[http://dx.doi.org/10.1111/php.12857] [PMID: 29143339]
[160]
Soriano J, Mora-Espí I, Alea-Reyes ME, et al. Cell death mechanisms in tumoral and non-tumoral human cell lines triggered by photodynamic treatments: Apoptosis, necrosis and parthanatos. Sci Rep 2017; 7(1): 41340.
[http://dx.doi.org/10.1038/srep41340] [PMID: 28112275]
[161]
Sun M, Zhou C, Zeng H, et al. Hiporfin-mediated photodynamic therapy in preclinical treatment of osteosarcoma. Photochem Photobiol 2015; 91(3): 533-44.
[http://dx.doi.org/10.1111/php.12424] [PMID: 25619546]
[162]
Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers 2011; 3(2): 2516-39.
[http://dx.doi.org/10.3390/cancers3022516] [PMID: 23914299]
[163]
Pucelik B, Arnaut LG, Stochel G,. Dąbrowski JM. Design of Pluronic-based formulation for enhanced redaporfin-photodynamic therapy against pigmented melanoma. ACS Appl Mater Interfaces 2016; 8(34): 22039-55.
[http://dx.doi.org/10.1021/acsami.6b07031] [PMID: 27492026]
[164]
Luo W, Liu RS, Zhu JG, Li YC, Liu HC. Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line. Oncol Lett 2015; 9(2): 551-6.
[http://dx.doi.org/10.3892/ol.2014.2720] [PMID: 25621023]
[165]
Plaetzer K, Kiesslich T, Krammer B, Hammerl P. Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci 2002; 1(3): 172-7.
[http://dx.doi.org/10.1039/b108816e] [PMID: 12659513]
[166]
Miki Y, Akimoto J, Hiranuma M, Fujiwara Y. Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci 2014; 39(6): 821-7.
[http://dx.doi.org/10.2131/jts.39.821] [PMID: 25374373]
[167]
Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy. Photochem Photobiol 2001; 74(5): 656-69.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2] [PMID: 11723793]
[168]
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother 2012; 61(2): 215-21.
[http://dx.doi.org/10.1007/s00262-011-1184-2] [PMID: 22193987]
[169]
van Straten D, Mashayekhi V, de Bruijn H, Oliveira S, Robinson D. Oncologic photodynamic therapy: Basic principles, current clinical status, and future directions. Cancers 2017; 9(12): 19.
[http://dx.doi.org/10.3390/cancers9020019] [PMID: 28218708]
[170]
Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim Biophys Acta Rev Cancer 2019; 1872(2): 188308.
[http://dx.doi.org/10.1016/j.bbcan.2019.07.003] [PMID: 31401103]
[171]
Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31(5): 1062-79.
[http://dx.doi.org/10.1038/emboj.2011.497] [PMID: 22252128]
[172]
Dine K. Synthesis and characterization of ruthenium complexes and their potential as photosensitizers for photodynamic therapy 2022.
[173]
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated photosensitizers for imaging and PDT in cancer research. J Med Chem 2020; 63(23): 14119-50.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00047] [PMID: 32990442]
[174]
Pushpan S, Venkatraman S, Anand V, et al. Porphyrins in photodynamic therapy - A search for ideal photosensitizers. Curr Med Chem Anticancer Agents 2002; 2(2): 187-207.
[http://dx.doi.org/10.2174/1568011023354137] [PMID: 12678743]
[175]
Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: Relevance for tumor response. Cancer Res 2005; 65(3): 1018-26.
[http://dx.doi.org/10.1158/0008-5472.1018.65.3] [PMID: 15705903]
[176]
Korbelik M, Zhang W, Merchant S. Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: Surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol Immunother 2011; 60(10): 1431-7.
[http://dx.doi.org/10.1007/s00262-011-1047-x] [PMID: 21644033]
[177]
Reinhold U, Petering H, Dirschka T, et al. Photodynamic therapy with a 5‐ALA patch does not increase the risk of conversion of actinic keratoses into squamous cell carcinoma. Exp Dermatol 2018; 27(12): 1399-402.
[http://dx.doi.org/10.1111/exd.13804] [PMID: 30326156]
[178]
Ji J, Fan Z, Zhou F, et al. Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma. Oncotarget 2015; 6(19): 17135-46.
[http://dx.doi.org/10.18632/oncotarget.3529] [PMID: 25915530]
[179]
Mitra S, Giesselman BR, De Jesús-Andino FJ, Foster TH. Tumor response to mTHPC-mediated photodynamic therapy exhibits strong correlation with extracellular release of HSP70. Lasers Surg Med 2011; 43(7): 632-43.
[http://dx.doi.org/10.1002/lsm.21108] [PMID: 22057491]
[180]
Gomes-da-Silva LC, Zhao L, Bezu L, et al. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus. EMBO J 2018; 37(13): e98354.
[http://dx.doi.org/10.15252/embj.201798354] [PMID: 29807932]
[181]
Poiroux G, Barre A, Rougé P, Benoist H. Targeting glycosylation aberrations to improve the efficiency of cancer phototherapy. Curr Cancer Drug Targets 2019; 19(5): 349-59.
[http://dx.doi.org/10.2174/1568009618666180628101059] [PMID: 29952259]
[182]
Kobayashi W, Liu Q, Nakagawa H, et al. Photodynamic therapy with mono-l-aspartyl chlorin e6 can cause necrosis of squamous cell carcinoma of tongue: Experimental study on an animal model of nude mouse. Oral Oncol 2006; 42(1): 45-9.
[http://dx.doi.org/10.1016/j.oraloncology.2005.05.009] [PMID: 16266818]
[183]
Keeley SB, Pennathur A, Gooding W, Landreneau RJ, Christie NA, Luketich J. Photodynamic therapy with curative intent for Barrett’s esophagus with high grade dysplasia and superficial esophageal cancer. Ann Surg Oncol 2007; 14(8): 2406-10.
[http://dx.doi.org/10.1245/s10434-007-9392-x] [PMID: 17534685]
[184]
Ormond A, Freeman H. Dye sensitizers for photodynamic therapy. Materials 2013; 6(3): 817-40.
[http://dx.doi.org/10.3390/ma6030817] [PMID: 28809342]
[185]
Paul S, Altorki N. Outcomes in the management of esophageal cancer. J Surg Oncol 2014; 110(5): 599-610.
[http://dx.doi.org/10.1002/jso.23759] [PMID: 25146593]
[186]
Ronellenfitsch U, Schwarzbach M, Hofheinz R, et al. Preoperative chemo(radio)therapy versus primary surgery for gastroesophageal adenocarcinoma: Systematic review with meta-analysis combining individual patient and aggregate data. Eur J Cancer 2013; 49(15): 3149-58.
[http://dx.doi.org/10.1016/j.ejca.2013.05.029] [PMID: 23800671]
[187]
Yano T, Muto M, Minashi K, Ohtsu A, Yoshida S. Photodynamic therapy as salvage treatment for local failures after definitive chemoradiotherapy for esophageal cancer. Gastrointest Endosc 2005; 62(1): 31-6.
[http://dx.doi.org/10.1016/S0016-5107(05)00545-6] [PMID: 15990816]
[188]
Yano T, Muto M, Hattori S, et al. Long-term results of salvage endoscopic mucosal resection in patients with local failure after definitive chemoradiotherapy for esophageal squamous cell carcinoma. Endoscopy 2008; 40(9): 717-21.
[http://dx.doi.org/10.1055/s-2008-1077480] [PMID: 18773340]
[189]
Mackenzie GD, Dunn JM, Selvasekar CR, et al. Optimal conditions for successful ablation of high-grade dysplasia in Barrett’s oesophagus using aminolaevulinic acid photodynamic therapy. Lasers Med Sci 2009; 24(5): 729-34.
[http://dx.doi.org/10.1007/s10103-008-0630-7] [PMID: 19057983]
[190]
Yano T, Muto M, Yoshimura K, et al. Phase I study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer. Radiat Oncol 2012; 7(1): 113.
[http://dx.doi.org/10.1186/1748-717X-7-113] [PMID: 22824179]
[191]
Li X, Yu S, Lee D, et al. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano 2018; 12(1): 681-8.
[http://dx.doi.org/10.1021/acsnano.7b07809] [PMID: 29232105]
[192]
Weider pass EL, Stewart BW. World cancer report. The International Agency for Research on Cancer (IARC) 2020.
[193]
Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res 1978; 38(8): 2628-35.
[PMID: 667856]
[194]
Zeitouni N, Oseroff AR, Shieh S. Photodynamic therapy for nonmelanoma skin cancersCurrent review and update. Mol Immunol 2003; 39(17-18): 1133-6.
[http://dx.doi.org/10.1016/S0161-5890(03)00083-X] [PMID: 12835091]
[195]
de Bruijn HS, van der Veen N, Robinson DJ, Star WM. Improvement of systemic 5-aminolevulinic acid-based photodynamic therapy in vivo using light fractionation with a 75-minute interval. Cancer Res 1999; 59(4): 901-4.
[PMID: 10029082]
[196]
Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin. J Photochem Photobiol B 1990; 6(1-2): 143-8.
[http://dx.doi.org/10.1016/1011-1344(90)85083-9] [PMID: 2121931]
[197]
Szeimies RM, Ibbotson S, Murrell DF, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol 2008; 22(11): 1302-11.
[http://dx.doi.org/10.1111/j.1468-3083.2008.02803.x] [PMID: 18624836]
[198]
Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet 2008; 371(9625): 1695-709.
[http://dx.doi.org/10.1016/S0140-6736(08)60728-X] [PMID: 18486742]
[199]
Marchal S, Dolivet G, Lassalle HP, Guillemin F, Bezdetnaya L. Targeted photodynamic therapy in head and neck squamous cell carcinoma: Heading into the future. Lasers Med Sci 2015; 30(9): 2381-7.
[http://dx.doi.org/10.1007/s10103-014-1703-4] [PMID: 25563461]
[200]
Feyh J, Goetz A, Müller W, Königsberger R, Kastenbauer E. Photodynamic therapy in head and neck surgery. J Photochem Photobiol B 1990; 7(2-4): 353-8.
[http://dx.doi.org/10.1016/1011-1344(90)85168-V] [PMID: 2150861]
[201]
Feyh J. Photodynamic treatment for cancers of the head and neck. J Photochem Photobiol B 1996; 36(2): 175-7.
[http://dx.doi.org/10.1016/S1011-1344(96)07366-6] [PMID: 9002255]
[202]
Dtlkes MG, DeJode ML, Gardiner Q, Kenyon GS, McKelvie P. Treatment of head and neck cancer with photodynamic therapy: Results after one year. J Laryngol Otol 1995; 109(11): 1072-6.
[http://dx.doi.org/10.1017/S0022215100132050] [PMID: 8551123]
[203]
Copper MP, Tan IB, Oppelaar H, Ruevekamp MC, Stewart FA. Meta-tetra(hydroxyphenyl)chlorin photodynamic therapy in early-stage squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2003; 129(7): 709-11.
[http://dx.doi.org/10.1001/archotol.129.7.709] [PMID: 12874068]
[204]
Scheff RJ, Schneider BJ. Non–small-cell lung cancer: Treatment of late-stage disease: Chemotherapeutics and new frontiers. Semin Intervent Radiol 2013; 30(02): 191-8.
[205]
Simone CB II, Cengel KA. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol 2014; 41(6): 820-30.
[http://dx.doi.org/10.1053/j.seminoncol.2014.09.017]
[206]
Weinberg BD, Allison RR, Sibata C, Parent T, Downie G. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer (NSCLC). Photodiagn Photodyn Ther 2010; 7(1): 50-8.
[http://dx.doi.org/10.1016/j.pdpdt.2009.12.002] [PMID: 20230994]
[207]
Ji W, Yoo J, Bae EK, Lee JH, Choi CM. The effect of Radachlorin® PDT in advanced NSCLC: A pilot study. Photodiagn Photodyn Ther 2013; 10(2): 120-6.
[http://dx.doi.org/10.1016/j.pdpdt.2013.01.004] [PMID: 23769277]
[208]
Chen KC, Hsieh YS, Tseng YF, et al. Pleural photodynamic therapy and surgery in lung cancer and thymoma patients with pleural spread. PLoS One 2015; 10(7): e0133230.
[http://dx.doi.org/10.1371/journal.pone.0133230] [PMID: 26193470]
[209]
Usuda J, Ichinose S, Ishizumi T, et al. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res 2010; 16(7): 2198-204.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2520] [PMID: 20332318]
[210]
Kimura M, Miyajima K, Kojika M, Kono T, Kato H. Photodynamic therapy (PDT) with chemotherapy for advanced lung cancer with airway stenosis. Int J Mol Sci 2015; 16(10): 25466-75.
[http://dx.doi.org/10.3390/ijms161025466] [PMID: 26512656]
[211]
Mazor O, Brandis A, Plaks V, et al. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model. Photochem Photobiol 2005; 81(2): 342-51.
[http://dx.doi.org/10.1562/2004-06-14-RA-199.1] [PMID: 15623318]
[212]
Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369(18): 1691-703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[213]
Wilt TJ, MacDonald R, Rutks I, Shamliyan TA, Taylor BC, Kane RL. Systematic review: Comparative effectiveness and harms of treatments for clinically localized prostate cancer. Ann Intern Med 2008; 148(6): 435-48.
[http://dx.doi.org/10.7326/0003-4819-148-6-200803180-00209] [PMID: 18252677]
[214]
Sultan SM, El-Doray AA, Hofstetter A, Abdel-Gawad O. El-Mahdy Ael-D, Khoder W. Photodynamic selectivity of 5-aminolevulinic acid to prostate cancer cells. J Egypt Natl Canc Inst 2006; 18(4): 382-6.
[PMID: 18301462]
[215]
Moore CM, Nathan TR, Lees WR, et al. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg Med 2006; 38(5): 356-63.
[http://dx.doi.org/10.1002/lsm.20275] [PMID: 16392142]
[216]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[217]
Cadeddu JA. Re: TOOKAD® soluble vascular-targeted photodynamic (VTP) therapy: Determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. J Urol 2014; 191(5): 1290.
[http://dx.doi.org/10.1016/j.juro.2014.02.055] [PMID: 24745491]
[218]
Kawczyk-Krupka A, Wawrzyniec K, Musiol SK, Potempa M, Bugaj AM. Sieroń A. Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review. Photodiagn Photodyn Ther 2015; 12(4): 567-74.
[http://dx.doi.org/10.1016/j.pdpdt.2015.10.001] [PMID: 26467273]
[219]
Lee JY, Diaz RR, Cho KS, et al. Efficacy and safety of photodynamic therapy for recurrent, high grade nonmuscle invasive bladder cancer refractory or intolerant to bacille Calmette-Guérin immunotherapy. J Urol 2013; 190(4): 1192-9.
[http://dx.doi.org/10.1016/j.juro.2013.04.077] [PMID: 23648222]
[220]
Bader MJ, Stepp H, Beyer W, et al. Photodynamic therapy of bladder cancer-A phase I study using hexaminolevulinate (HAL). Urol Oncol 2013; 31(7): 1178-83.
[221]
Jichlinski P, Leisinger HJ. Photodynamic therapy in superficial bladder cancer: Past, present and future. Urol Res 2001; 29(6): 396-405.
[http://dx.doi.org/10.1007/s002400100215] [PMID: 11828993]
[222]
Muller PJ, Wilson BC. Photodynamic therapy of brain tumors-A work in progress. Lasers Surg Med 2006; 38(5): 384-9.
[http://dx.doi.org/10.1002/lsm.20338] [PMID: 16788926]
[223]
Kostron H, Fiegele T, Akatuna E. Combination of FOSCAN® mediated fluorescence guided resection and photodynamic treatment as new therapeutic concept for malignant brain tumors. Med Laser Appl 2006; 21(4): 285-90.
[http://dx.doi.org/10.1016/j.mla.2006.08.001]
[224]
Esnaola NF, Meyer JE, Karachristos A, Maranki JL, Camp ER, Denlinger CS. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer 2016; 122(9): 1349-69.
[http://dx.doi.org/10.1002/cncr.29692] [PMID: 26799932]
[225]
Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001; 33(6): 1353-7.
[http://dx.doi.org/10.1053/jhep.2001.25087] [PMID: 11391522]
[226]
McCaughan JS Jr, Mertens BF, Cho C, Barabash RD, Payton HW. Photodynamic therapy to treat tumors of the extrahepatic biliary ducts. A case report. Arch Surg 1991; 126(1): 111-3.
[http://dx.doi.org/10.1001/archsurg.1991.01410250119022] [PMID: 1824676]
[227]
Hillemanns P, Einstein MH, Iversen OE. Topical hexaminolevulinate photodynamic therapy for the treatment of persistent human papilloma virus infections and cervical intraepithelial neoplasia. Expert Opin Investig Drugs 2015; 24(2): 273-81.
[http://dx.doi.org/10.1517/13543784.2015.990150] [PMID: 25514095]
[228]
Hahn SM, Fraker DL, Mick R, et al. A phase II trial of intraperitoneal photodynamic therapy for patients with peritoneal carcinomatosis and sarcomatosis. Clin Cancer Res 2006; 12(8): 2517-25.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1625] [PMID: 16638861]
[229]
Hillemanns P, Wang X, Hertel H, et al. Pharmacokinetics and selectivity of porphyrin synthesis after topical application of hexaminolevulinate in patients with cervical intraepithelial neoplasia. Am J Obstet Gynecol 2008; 198(3): 300.e1-7.
[http://dx.doi.org/10.1016/j.ajog.2007.07.045] [PMID: 18177838]
[230]
Soergel P, Loehr-Schulz R, Hillemanns M, Landwehr S, Makowski L, Hillemanns P. Effects of photodynamic therapy using topical applied hexylaminolevulinate and methylaminolevulinate upon the integrity of cervical epithelium. Lasers Surg Med 2010; 42(9): 784-90.
[http://dx.doi.org/10.1002/lsm.20979] [PMID: 20976802]
[231]
Nakamura T, Oinuma T. Usefulness of photodynamic diagnosis and therapy using talaporfin sodium for an advanced-aged patient with inoperable gastric cancer (a secondary publication). Laser Ther 2014; 23(3): 201-10.
[http://dx.doi.org/10.5978/islsm.14-OR-16] [PMID: 25368446]
[232]
van der Snoek EM, den Hollander JC, Aans JB, Sterenborg HJCM, van der Ende ME, Robinson DJ. Photodynamic therapy with systemic meta-tetrahydroxyphenylchlorin in the treatment of anal intraepithelial neoplasia, grade 3. Lasers Surg Med 2012; 44(8): 637-44.
[http://dx.doi.org/10.1002/lsm.22062] [PMID: 22899359]
[233]
Welbourn H, Duthie G, Powell J, Moghissi K. Can photodynamic therapy be the preferred treatment option for anal intraepithelial neoplasia? Initial results of a pilot study. Photodiagn Photodyn Ther 2014; 11(1): 20-1.
[http://dx.doi.org/10.1016/j.pdpdt.2013.11.004] [PMID: 24280437]
[234]
Boixadera A, Arumí JG, Martínez-Castillo V, et al. Prospective clinical trial evaluating the efficacy of photodynamic therapy for symptomatic circumscribed choroidal hemangioma. Ophthalmology 2009; 116(1): 100-105.e1.
[http://dx.doi.org/10.1016/j.ophtha.2008.08.029] [PMID: 18973950]
[235]
Campbell WG, Pejnovic TM. Treatment of amelanotic choroidal melanoma with photodynamic therapy. Retina 2012; 32(7): 1356-62.
[http://dx.doi.org/10.1097/IAE.10.1097/IAE.0b013e31822c28ec] [PMID: 22146128]
[236]
Kaliki S, Shields CL, Al-Dahmash SA, Mashayekhi A, Shields JA. Photodynamic therapy for choroidal metastasis in 8 cases. Ophthalmology 2012; 119(6): 1218-22.
[http://dx.doi.org/10.1016/j.ophtha.2011.12.024] [PMID: 22386261]
[237]
Blasi MA, Tiberti AC, Scupola A, et al. Photodynamic therapy with verteporfin for symptomatic circumscribed choroidal hemangioma: Five-year outcomes. Ophthalmology 2010; 117(8): 1630-7.
[http://dx.doi.org/10.1016/j.ophtha.2009.12.033] [PMID: 20417564]
[238]
Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Quantum dots as photosensitizers? Nat Biotechnol 2004; 22(11): 1360-1.
[http://dx.doi.org/10.1038/nbt1104-1360] [PMID: 15529155]
[239]
Juzenas P, Chen W, Sun YP, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 2008; 60(15): 1600-14.
[http://dx.doi.org/10.1016/j.addr.2008.08.004] [PMID: 18840487]
[240]
Burgess DJ. Tissue penetration of photodynamic therapy. Nat Rev Cancer 2012; 12(11): 737.
[241]
Ruysschaert N. (Self) hypnosis in the prevention of burnout and compassion fatigue for caregivers: Theory and induction. Contemp Hypn 2009; 26(3): 159-72.
[http://dx.doi.org/10.1002/ch.382]
[242]
Kolemen S, Ozdemir T, Lee D, et al. Remote‐controlled release of singlet oxygen by the plasmonic heating of endoperoxide‐modified gold nanorods: Towards a paradigm change in photodynamic therapy. Angew Chem Int Ed 2016; 55(11): 3606-10.
[http://dx.doi.org/10.1002/anie.201510064] [PMID: 26845734]
[243]
Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the barriers of light penetration: Strategies, perspectives and possibilities for photodynamic therapy. Theranostics 2016; 6(13): 2458-87.
[http://dx.doi.org/10.7150/thno.16183] [PMID: 27877247]
[244]
Ozdemir T, Lu YC, Kolemen S, Tanriverdi-Ecik E, Akkaya EU. Generation of singlet oxygen by persistent luminescent nanoparticle-photosensitizer conjugates: A proof of principle for photodynamic therapy without light. ChemPhotoChem 2017; 1(5): 183-7.
[http://dx.doi.org/10.1002/cptc.201600049]
[245]
Oleinick NL, Evans HH. The photobiology of photodynamic therapy: Cellular targets and mechanisms. Radiat Res 1998; 150(5): S146-56.
[246]
Bolze F, Jenni S, Sour A, Heitz V. Molecular photosensitisers for two-photon photodynamic therapy. Chem Commun 2017; 53(96): 12857-77.
[http://dx.doi.org/10.1039/C7CC06133A] [PMID: 29115314]
[247]
Chen G, Qiu H. Up conversion nanoparticles: Design, nano chemistry, and applications in theranostics. Chem Rev 2014; 114: 5161-214.
[http://dx.doi.org/10.1021/cr400425h] [PMID: 24605868]
[248]
Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev 2016; 45(23): 6488-519.
[http://dx.doi.org/10.1039/C6CS00616G] [PMID: 27722560]
[249]
Ni K, Lan G, Chan C, et al. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 2018; 9(1): 2351.
[http://dx.doi.org/10.1038/s41467-018-04703-w] [PMID: 29907739]
[250]
Blum NT, Zhang Y, Qu J, Lin J, Huang P. Recent advances in self-exciting photodynamic therapy. Front Bioeng Biotechnol 2020; 8: 594491.
[http://dx.doi.org/10.3389/fbioe.2020.594491] [PMID: 33195164]
[251]
Abdurahman R, Yang CX, Yan XP. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem Commun 2016; 52(90): 13303-6.
[http://dx.doi.org/10.1039/C6CC07616E] [PMID: 27782263]
[252]
Bisland SK, Lilge L, Lin A, Rusnov R, Wilson BC. Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: Rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem Photobiol 2004; 80(1): 22-30.
[http://dx.doi.org/10.1562/2004-03-05-RA-100.1] [PMID: 15339204]
[253]
Braathen LR, Morton CA, Basset-Seguin N, et al. Photodynamic therapy for skin field cancerization: An international consensus. J Eur Acad Dermatol Venereol 2012; 26(9): 1063-6.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04432.x] [PMID: 22220503]
[254]
Kashef N, Ravaei Sharif Abadi G, Djavid GE. Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli. Photodiagn Photodyn Ther 2012; 9(1): 11-5.
[http://dx.doi.org/10.1016/j.pdpdt.2011.11.004] [PMID: 22369724]
[255]
Rai P, Mallidi S, Zheng X, et al. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1094-124.
[http://dx.doi.org/10.1016/j.addr.2010.09.002] [PMID: 20858520]
[256]
Akopov A, Rusanov A, Gerasin A, Kazakov N, Urtenova M, Chistyakov I. Preoperative endobronchial photodynamic therapy improves resectability in initially irresectable (inoperable) locally advanced non small cell lung cancer. Photodiagn Photodyn Ther 2014; 11(3): 259-64.
[http://dx.doi.org/10.1016/j.pdpdt.2014.03.011]
[257]
Gupta A, Wang S, Marko A, et al. Polyacrylamide-based biocompatible nanoplatform enhances the tumor uptake, PET/fluorescence imaging and anticancer activity of a chlorophyll analog. Theranostics 2014; 4(6): 614-28.
[http://dx.doi.org/10.7150/thno.8478] [PMID: 24723983]
[258]
Entract GM, Bryden F, Domarkas J, et al. Development of PDT/PET theranostics: Synthesis and biological evaluation of an 18F-radiolabeled water-soluble porphyrin. Mol Pharm 2015; 12(12): 4414-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00606] [PMID: 26559906]
[259]
Muhanna N, Cui L, Chan H, et al. Multimodal image-guided surgical and photodynamic interventions in head and neck cancer: From primary tumor to metastatic drainage. Clin Cancer Res 2016; 22(4): 961-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1235] [PMID: 26463705]
[260]
Lu S, Tu D, Hu P, et al. Multifunctional nano‐bioprobes based on rattle‐structured upconverting luminescent nanoparticles. Angew Chem Int Ed 2015; 54(27): 7915-9.
[http://dx.doi.org/10.1002/anie.201501468] [PMID: 26013002]
[261]
Li Y, Lin T, Luo Y, et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 2014; 5(1): 4712.
[http://dx.doi.org/10.1038/ncomms5712] [PMID: 25158161]
[262]
Song X, Liang C, Gong H, Chen Q, Wang C, Liu Z. Photosensitizer‐conjugated albumin- polypyrrole nanoparticles for imaging‐guided in vivo photodynamic/photothermal therapy. Small 2015; 11(32): 3932-41.
[http://dx.doi.org/10.1002/smll.201500550] [PMID: 25925790]
[263]
Schmitt J, Heitz V, Sour A, et al. A theranostic agent combining a two‐photon‐absorbing photosensitizer for photodynamic therapy and a gadolinium (III) complex for MRI detection. Chemistry 2016; 22(8): 2775-86.
[http://dx.doi.org/10.1002/chem.201503433] [PMID: 26791109]
[264]
Shams M, Owczarczak B, Manderscheid-Kern P, Bellnier DA, Gollnick SO. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol Immunother 2015; 64(3): 287-97.
[http://dx.doi.org/10.1007/s00262-014-1633-9] [PMID: 25384911]
[265]
Korbelik M. Cancer vaccines generated by photodynamic therapy. Photochem Photobiol Sci 2011; 10(5): 664-9.
[http://dx.doi.org/10.1039/c0pp00343c] [PMID: 21258728]
[266]
Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004; 5(8): 497-508.
[http://dx.doi.org/10.1016/S1470-2045(04)01529-3] [PMID: 15288239]
[267]
Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections-State of the art. Photodiagn Photodyn Ther 2009; 6(3-4): 170-88.
[http://dx.doi.org/10.1016/j.pdpdt.2009.10.008] [PMID: 19932449]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy