Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Pancreatic Cancer: A Review on Pathophysiology, Naturopathy, Clinical Treatment and Outcomes

Author(s): Rituraj Chakraborty, Anupam Dutta, Bhargab Jyoti Baruah, Rajni Kumari, Priyanku Sarma, Ankita Sharma, Krishangi Goswami, Haritha Myakala and Akalesh Kumar Verma*

Volume 20, Issue 3, 2024

Published on: 06 September, 2023

Page: [263 - 282] Pages: 20

DOI: 10.2174/1573394719666230830125213

Price: $65

Abstract

The study aimed to comprehend the molecular mechanisms and pathophysiology of pancreatic cancer with an emphasis on the advances in treatment options and the use of natural products as anticancer agents. The study involved a literature survey using PubMed, Web of Science and Google scholar database. The literature search was done using keywords “Pancreatic cancer”, “Chemotherapy”, “Mutations”, and “Natural compounds”. 266 articles were studied of which 201 were taken into consideration based on relevance to the topic. Pancreatic cancer is associated with mutations of CDKN2A (encoding p16), KRAS, TP53 and SMAD4. MAPK, PI3K-AKT, and TGF- β pathway dysfunction also led to pancreatic cancer. Current clinical trial activities in pancreatic cancer target angiogenesis, surface receptors, cell cycle, DNA damage response, etc. Studies have shown that combining surgical resection with adjuvant chemotherapy increases survival rates in patients. New treatment options are on the rise for this cancer type, which is perioperative or neo-adjuvant therapy. Gemcitabine as a single treatment agent in pancreatic cancer has shown promising response with chemotherapy regimens using two combinations- Folfirinox and Gemcitabine/Nab-Paclitaxel giving a better response rate. Numerous natural substances, including curcumin, aloe vera, and taxol, which suppress oxidative stress, angiogenesis, JAK2 STAT3 pathways, and enhanced natural killer cell activity, have been explored as potential treatments for pancreatic cancer. With pancreatic cancer having a poor prognosis, investigations to comprehend its molecular underpinnings and research on natural chemicals could lead to the development of safer treatment alternatives with enhanced survival rates for pancreatic cancer patients.

Keywords: Cancer biomarkers, chemotherapy, clinical trials, curcumin, mutations, molecular pathophysiology.

Graphical Abstract
[1]
Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016; 388(10039): 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[2]
Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002; 2(12): 897-909.
[http://dx.doi.org/10.1038/nrc949] [PMID: 12459728]
[3]
Ghaneh P, Costello E, Neoptolemos JP. Biology and management of pancreatic cancer. Gut 2007; 56(8): 1134-52.
[PMID: 17625148]
[4]
Kern SE, Hruban RH, Hidalgo M, Yeo CJ. An introduction to pancreatic adenocarcinoma genetics, pathology and therapy. Cancer Biol Ther 2002; 1(6): 607-13.
[http://dx.doi.org/10.4161/cbt.307] [PMID: 12642681]
[5]
Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 2004; 363(9414): 1049-57.
[http://dx.doi.org/10.1016/S0140-6736(04)15841-8] [PMID: 15051286]
[6]
Rawla P, Sunkara T, Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol 2019; 10(1): 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[7]
Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer 2011; 105 (Suppl. 2): S77-81.
[8]
Hidalgo M. Pancreatic Cancer. N Engl J Med 2010; 362(17): 1605-17.
[http://dx.doi.org/10.1056/NEJMra0901557] [PMID: 20427809]
[9]
Li D, Morris JS, Liu J, et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 2009; 301(24): 2553-62.
[http://dx.doi.org/10.1001/jama.2009.886] [PMID: 19549972]
[10]
Lightsey D. Comment on ‘Red and processed meat consumption and risk of pancreatic cancer: Meta-analysis of prospective studies’. Br J Cancer 2012; 107(4): 754-5.
[http://dx.doi.org/10.1038/bjc.2012.111] [PMID: 22805322]
[11]
Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006; 20(2): 197-209.
[http://dx.doi.org/10.1016/j.bpg.2005.10.001] [PMID: 16549324]
[12]
Wolpin BM, Chan AT, Hartge P, et al. ABO blood group and the risk of pancreatic cancer. J Natl Cancer Inst 2009; 101(6): 424-31.
[http://dx.doi.org/10.1093/jnci/djp020] [PMID: 19276450]
[13]
Hakomori S. Antigen structure and genetic basis of histo-blood groups A, B and O: Their changes associated with human cancer. Biochim Biophys Acta, Gen Subj 1999; 1473(1): 247-66.
[http://dx.doi.org/10.1016/S0304-4165(99)00183-X] [PMID: 10580143]
[14]
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016; 2(1): 16022.
[http://dx.doi.org/10.1038/nrdp.2016.22] [PMID: 27158978]
[15]
Murphy KM, Brune KA, Griffin C, et al. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: Deleterious BRCA2 mutations in 17%. Cancer Res 2002; 62(13): 3789-93.
[PMID: 12097290]
[16]
Slater EP, Langer P, Niemczyk E, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet 2010; 78(5): 490-4.
[http://dx.doi.org/10.1111/j.1399-0004.2010.01425.x] [PMID: 20412113]
[17]
Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet 2011; 378(9791): 607-20.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[18]
Hirayama T. Epidemiology of pancreatic cancer in Japan. Jpn J Clin Oncol 1989; 19(3): 208-15.
[PMID: 2810821]
[19]
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol 2016; 22(44): 9694-705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[20]
Yeo TP, Lowenfels AB. Demographics and epidemiology of pancreatic cancer. Cancer J 2012; 18(6): 477-84.
[http://dx.doi.org/10.1097/PPO.0b013e3182756803] [PMID: 23187833]
[21]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[22]
Longnecker DS, Karagas MR, Tosteson TD, Mott LA. Racial differences in pancreatic cancer: Comparison of survival and histologic types of pancreatic carcinoma in Asians, blacks, and whites in the United States. Pancreas 2000; 21(4): 338-43.
[http://dx.doi.org/10.1097/00006676-200011000-00003] [PMID: 11075987]
[23]
Lynch HT, Deters CA, Lynch JF, Brand RE. Familial pancreatic carcinoma in Jews. Fam Cancer 2004; 3(3-4): 233-40.
[http://dx.doi.org/10.1007/s10689-004-9549-8] [PMID: 15516847]
[24]
Alghamdi IG, Almadi M, Alsohaibani F, et al. Epidemiology of Pancreatic Cancer in Saudi Arabia: A Retrospective Analysis of Pancreatic Cancer Diagnosed in Saudi Arabia Between 2004 and 2015. Clin Exp Gastroenterol 2021; 14: 45-57.
[http://dx.doi.org/10.2147/CEG.S289269] [PMID: 33603433]
[25]
Haidinger G. Epidemiology of Pancreatic Cancer Textbook of Pancreatic Cancer. Heidelberg: Springer 2021; pp. 17-27.
[http://dx.doi.org/10.1007/978-3-030-53786-9_2]
[26]
Pourshams A, Sepanlou SG, Ikuta KS, et al. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2019; 4(12): 934-47.
[http://dx.doi.org/10.1016/S2468-1253(19)30347-4] [PMID: 31648972]
[27]
Klein AP. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021; 18(7): 493-502.
[http://dx.doi.org/10.1038/s41575-021-00457-x] [PMID: 34002083]
[28]
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 2018; 103: 356-87.
[http://dx.doi.org/10.1016/j.ejca.2018.07.005] [PMID: 30100160]
[29]
Hawksworth G, Hales J, Martinez F, Hynes A, Hamilton A, Fernandez V. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Med Stud 2019; 35(2): 164-71.
[30]
Gaidhani RH, Balasubramaniam G. An epidemiological review of pancreatic cancer with special reference to India. Indian J Med Sci 2021; 73(1): 99-109.
[http://dx.doi.org/10.25259/IJMS_92_2020]
[31]
Hu JX, Zhao CF, Chen WB, et al. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol 2021; 27(27): 4298-321.
[http://dx.doi.org/10.3748/wjg.v27.i27.4298] [PMID: 34366606]
[32]
Ranganath R, Chu Q. Global trends in pancreas cancer among Asia-Pacific population. J Gastrointest Oncol 2021; 12(S2) (Suppl. 2): S374-86.
[http://dx.doi.org/10.21037/jgo-20-118] [PMID: 34422401]
[33]
McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 2018; 24(43): 4846-61.
[http://dx.doi.org/10.3748/wjg.v24.i43.4846] [PMID: 30487695]
[34]
Luo J, Iwasaki M, Inoue M, et al. Body mass index, physical activity and the risk of pancreatic cancer in relation to smoking status and history of diabetes: A large-scale population-based cohort study in Japan–The JPHC study. Cancer Causes Control 2007; 18(6): 603-12.
[http://dx.doi.org/10.1007/s10552-007-9002-z] [PMID: 17401636]
[35]
Bosetti C, Lucenteforte E, Silverman DT, et al. Cigarette smoking and pancreatic cancer: An analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 2012; 23(7): 1880-8.
[http://dx.doi.org/10.1093/annonc/mdr541] [PMID: 22104574]
[36]
Neureiter D, Jäger T, Ocker M, Kiesslich T. Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J Gastroenterol 2014; 20(24): 7830-48.
[http://dx.doi.org/10.3748/wjg.v20.i24.7830] [PMID: 24976721]
[37]
Haeberle L, Esposito I. Pathology of pancreatic cancer. Transl Gastroenterol Hepatol 2019; 4: 50.
[http://dx.doi.org/10.21037/tgh.2019.06.02] [PMID: 31304427]
[38]
Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7(5): 469-83.
[http://dx.doi.org/10.1016/j.ccr.2005.04.023] [PMID: 15894267]
[39]
Buchholz M, Kestler HA, Bauer A, et al. Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res 2005; 11(22): 8048-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1274] [PMID: 16299235]
[40]
Xu S, Furukawa T, Kanai N, Sunamura M, Horii A. Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J Hum Genet 2005; 50(4): 159-67.
[http://dx.doi.org/10.1007/s10038-005-0235-y] [PMID: 15824892]
[41]
Saiki Y, Horii A. Molecular pathology of pancreatic cancer. Pathol Int 2014; 64(1): 10-9.
[http://dx.doi.org/10.1111/pin.12114] [PMID: 24471965]
[42]
Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16 Ink4a and the p19 Arf -p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 2006; 103(15): 5947-52.
[http://dx.doi.org/10.1073/pnas.0601273103] [PMID: 16585505]
[43]
Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10(8): 789-99.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[44]
Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, Kern SE. Missense Mutations of MADH4. Clin Cancer Res 2004; 10(5): 1597-604.
[http://dx.doi.org/10.1158/1078-0432.CCR-1121-3] [PMID: 15014009]
[45]
Corbo V, Tortora G, Scarpa A. Molecular pathology of pancreatic cancer: From bench-to-bedside translation. Curr Drug Targets 2012; 13(6): 744-52.
[http://dx.doi.org/10.2174/138945012800564103] [PMID: 22458520]
[46]
Wilentz RE, Su GH, Dai JL, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: A new marker of DPC4 inactivation. Am J Pathol 2000; 156(1): 37-43.
[http://dx.doi.org/10.1016/S0002-9440(10)64703-7] [PMID: 10623651]
[47]
Erkan M, Reiser-Erkan C, Michalski CW, et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 2009; 11(5): 497-508.
[http://dx.doi.org/10.1593/neo.81618] [PMID: 19412434]
[48]
Infante JR, Matsubayashi H, Sato N, et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 2007; 25(3): 319-25.
[http://dx.doi.org/10.1200/JCO.2006.07.8824] [PMID: 17235047]
[49]
Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3): 1030-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2030] [PMID: 17283135]
[50]
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[51]
Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 103-19.
[http://dx.doi.org/10.1517/14728222.2011.645805] [PMID: 22239440]
[52]
Furukawa T. Impacts of activation of the mitogen-activated protein kinase pathway in pancreatic cancer. Front Oncol 2015; 5: 23.
[http://dx.doi.org/10.3389/fonc.2015.00023] [PMID: 25699241]
[53]
Knight T, Irving JAE. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting. Front Oncol 2014; 4: 160.
[http://dx.doi.org/10.3389/fonc.2014.00160] [PMID: 25009801]
[54]
Cseh B, Doma E, Baccarini M. “RAF” neighborhood: Protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 2014; 588(15): 2398-406.
[http://dx.doi.org/10.1016/j.febslet.2014.06.025] [PMID: 24937142]
[55]
Chappell WH, Steelman LS, Long JM, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2(3): 135-64.
[http://dx.doi.org/10.18632/oncotarget.240] [PMID: 21411864]
[56]
Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med 2012; 10(1): 85.
[http://dx.doi.org/10.1186/1479-5876-10-85] [PMID: 22554099]
[57]
Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004; 30(2): 193-204.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.007] [PMID: 15023437]
[58]
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol Biol Rep 2020; 47(6): 4587-629.
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[59]
Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: An updated review. Ann Med 2014; 46(6): 372-83.
[http://dx.doi.org/10.3109/07853890.2014.912836] [PMID: 24897931]
[60]
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9: 335.
[http://dx.doi.org/10.3389/fphys.2018.00335] [PMID: 29670543]
[61]
Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24(50): 7455-64.
[http://dx.doi.org/10.1038/sj.onc.1209085] [PMID: 16288292]
[62]
Syed V. TGF-β Signaling in Cancer. J Cell Biochem 2016; 117(6): 1279-87.
[http://dx.doi.org/10.1002/jcb.25496] [PMID: 26774024]
[63]
Wakefield LM, Hill CS. Beyond TGFβ: Roles of other TGFβ superfamily members in cancer. Nat Rev Cancer 2013; 13(5): 328-41.
[http://dx.doi.org/10.1038/nrc3500] [PMID: 23612460]
[64]
Chen W, ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol 2016; 16(12): 723-40.
[http://dx.doi.org/10.1038/nri.2016.112] [PMID: 27885276]
[65]
Gu S, Feng XH. TGF-β signaling in cancer. Acta Biochim Biophys Sin (Shanghai) 2018; 50(10): 941-9.
[http://dx.doi.org/10.1093/abbs/gmy092] [PMID: 30165534]
[66]
Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B Jr. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology 2016; 16(4): 489-96.
[67]
Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Pancreatic cancer stem cells: Emerging target for designing novel therapy. Cancer Lett 2013; 338(1): 94-100.
[http://dx.doi.org/10.1016/j.canlet.2012.03.018] [PMID: 22445908]
[68]
Abel EV, Goto M, Magnuson B, et al. HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. eLife 2018; 7: e33947.
[http://dx.doi.org/10.7554/eLife.33947] [PMID: 30074477]
[69]
Zhu YY, Yuan Z. Pancreatic cancer stem cells. Am J Cancer Res 2015; 5(3): 894-906.
[PMID: 26045976]
[70]
Abel EV, Simeone DM. Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 2013; 144(6): 1241-8.
[http://dx.doi.org/10.1053/j.gastro.2013.01.072] [PMID: 23622133]
[71]
Hermann PC, Sainz B Jr. Pancreatic cancer stem cells: A state or an entity? Semin Cancer Biol 2018; 53: 223-31.
[http://dx.doi.org/10.1016/j.semcancer.2018.08.007] [PMID: 30130664]
[72]
Rao CV, Mohammed A. New insights into pancreatic cancer stem cells. World J Stem Cells 2015; 7(3): 547-55.
[http://dx.doi.org/10.4252/wjsc.v7.i3.547] [PMID: 25914762]
[73]
Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008; 26(17): 2806-12.
[http://dx.doi.org/10.1200/JCO.2008.16.6702] [PMID: 18539958]
[74]
Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1(3): 313-23.
[http://dx.doi.org/10.1016/j.stem.2007.06.002] [PMID: 18371365]
[75]
English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: Therapeutic implications for gynecologic malignancies. Mol Diagn Ther 2013; 17(2): 85-99.
[http://dx.doi.org/10.1007/s40291-013-0024-9] [PMID: 23529353]
[76]
Momeny M, Esmaeili F, Hamzehlou S, et al. The ERBB receptor inhibitor dacomitinib suppresses proliferation and invasion of pancreatic ductal adenocarcinoma cells. Cell Oncol 2019; 42(4): 491-504.
[http://dx.doi.org/10.1007/s13402-019-00448-w] [PMID: 31025257]
[77]
Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer 2002; 38 (Suppl. 5): S3-S10.
[78]
Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol Cancer 2018; 17(1): 34.
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
[79]
Garcia-Sampedro A, Gaggia G, Ney A, Mahamed I, Acedo P. The state-of-the-art of phase II/III clinical trials for targeted pancreatic cancer therapies. J Clin Med 2021; 10(4): 566.
[http://dx.doi.org/10.3390/jcm10040566] [PMID: 33546207]
[80]
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 2017; 5(1): 53.
[http://dx.doi.org/10.1186/s40425-017-0257-y] [PMID: 28716061]
[81]
Wang-Gillam A, O’Reilly EM, Bendell JC, et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). Am Soc Clin Oncol 2019; 37(4)
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.TPS465]
[82]
Bousquet C, Puente E, Buscail L, Vaysse N, Susini C. Antiproliferative effect of somatostatin and analogs. Chemotherapy 2001; 47 (Suppl. 2): 30-9.
[http://dx.doi.org/10.1159/000049159] [PMID: 11275700]
[83]
Dreyer SB, Chang DK, Bailey P, Biankin AV. Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development. Clin Cancer Res 2017; 23(7): 1638-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2411] [PMID: 28373362]
[84]
Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495-501.
[http://dx.doi.org/10.1038/nature14169] [PMID: 25719666]
[85]
Kasi A, Chalise P, Williamson SK, et al. Niraparib in metastatic pancreatic cancer after previous chemotherapy (NIRA-PANC): A phase 2 trial. Am Soc Clin Oncol 2019; 37(15)
[86]
Piao J, Zhu L, Sun J, et al. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma. Gene 2019; 701: 15-22.
[http://dx.doi.org/10.1016/j.gene.2019.02.081] [PMID: 30898709]
[87]
Chu QS, Jonker DJ, Provencher DM, et al. A phase Ib study of oral Chk1 inhibitor LY2880070 in combination with gemcitabine in patients with advanced or metastatic cancer. Am Soc Clin Oncol 2020; 37(15)
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3581]
[88]
Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 2015; 44-46: 94-112.
[89]
Li S, Xu HX, Wu CT, et al. Angiogenesis in pancreatic cancer: Current research status and clinical implications. Angiogenesis 2019; 22(1): 15-36.
[http://dx.doi.org/10.1007/s10456-018-9645-2] [PMID: 30168025]
[90]
Rosen LS, Jacobs IA, Burkes RL. Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Target Oncol 2017; 12(5): 599-610.
[http://dx.doi.org/10.1007/s11523-017-0518-1] [PMID: 28801849]
[91]
Van Cutsem E, Vervenne WL, Bennouna J, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol 2009; 27(13): 2231-7.
[http://dx.doi.org/10.1200/JCO.2008.20.0238] [PMID: 19307500]
[92]
Luedke E, Jaime-Ramirez AC, Bhave N, Carson W. E 3rd. Monoclonal antibody therapy of pancreatic cancer with cetuximab: potential for immune modulation. J Immunother 2012; 35(5): 367-73.
[93]
Tiong KH, Mah LY, Leong CO. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis 2013; 18(12): 1447-68.
[94]
Wong KK. DNMT1 as a therapeutic target in pancreatic cancer: Mechanisms and clinical implications. Cell Oncol (Dordr) 2020; 43(5): 779-92.
[http://dx.doi.org/10.1007/s13402-020-00526-4] [PMID: 32504382]
[95]
Proia TA, Singh M, Woessner R, et al. STAT3 Antisense Oligonucleotide Remodels the Suppressive Tumor Microenvironment to Enhance Immune Activation in Combination with Anti–PD-L1. Clin Cancer Res 2020; 26(23): 6335-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1066] [PMID: 32943458]
[96]
Bekaii-Saab TS, Mikhail S, Langleben A, et al. A phase Ib/II study of BBI608 combined with weekly paclitaxel in advanced pancreatic cancer. Am Soc Clin Oncol 2016; 38(15)
[http://dx.doi.org/10.1200/jco.2016.34.4_suppl.196]
[97]
Coulombe P, Meloche S. Atypical mitogen-activated protein kinases: Structure, regulation and functions. Biochim Biophys Acta Mol Cell Res 2007; 1773(8): 1376-87.
[http://dx.doi.org/10.1016/j.bbamcr.2006.11.001] [PMID: 17161475]
[98]
Drosten M, Barbacid M. Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell 2020; 37(4): 543-50.
[http://dx.doi.org/10.1016/j.ccell.2020.03.013] [PMID: 32289276]
[99]
Bryant KL, Stalnecker CA, Zeitouni D, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 2019; 25(4): 628-40.
[http://dx.doi.org/10.1038/s41591-019-0368-8] [PMID: 30833752]
[100]
Sullivan RJ, Infante JR, Janku F, et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov 2018; 8(2): 184-95.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1119] [PMID: 29247021]
[101]
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: The long and winding road. Nat Rev Cancer 2015; 15(10): 577-92.
[http://dx.doi.org/10.1038/nrc4000] [PMID: 26399658]
[102]
Garnock-Jones KP. Cobimetinib: First Global Approval. Drugs 2015; 75(15): 1823-30.
[http://dx.doi.org/10.1007/s40265-015-0477-8] [PMID: 26452567]
[103]
Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol 2018; 15(11): 709-20.
[http://dx.doi.org/10.1038/s41571-018-0105-0] [PMID: 30275515]
[104]
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006; 20(10): 1218-49.
[http://dx.doi.org/10.1101/gad.1415606] [PMID: 16702400]
[105]
Kosmidis C, Sapalidis K, Kotidis E, et al. Pancreatic cancer from bench to bedside: Molecular pathways and treatment options. Ann Transl Med 2016; 4(9): 165.
[http://dx.doi.org/10.21037/atm.2016.05.11] [PMID: 27275478]
[106]
Ishii H, Furuse J, Nagase M, Yoshino M. Impact of gemcitabine on the treatment of metastatic pancreatic cancer. J Gastroenterol Hepatol 2005; 20(1): 62-6.
[http://dx.doi.org/10.1111/j.1440-1746.2004.03487.x] [PMID: 15610448]
[107]
Werner J, Combs SE, Springfeld C, Hartwig W, Hackert T, Büchler MW. Advanced-stage pancreatic cancer: Therapy options. Nat Rev Clin Oncol 2013; 10(6): 323-33.
[http://dx.doi.org/10.1038/nrclinonc.2013.66] [PMID: 23629472]
[108]
Adamska A, Elaskalani O, Emmanouilidi A, et al. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 2018; 68: 77-87.
[http://dx.doi.org/10.1016/j.jbior.2017.11.007] [PMID: 29221990]
[109]
Zhang Q, Zeng L, Chen Y, et al. Pancreatic Cancer Epidemiology, Detection, and Management. Gastroenterol Res Pract 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/8962321] [PMID: 26941789]
[110]
Simeone DM, Ji B, Banerjee M, et al. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 2007; 34(4): 436-43.
[http://dx.doi.org/10.1097/MPA.0b013e3180333ae3] [PMID: 17446843]
[111]
Strobel O, Neoptolemos J, Jäger D, Büchler MW. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11-26.
[http://dx.doi.org/10.1038/s41571-018-0112-1] [PMID: 30341417]
[112]
Hackert T, Klaiber U, Pausch T, Mihaljevic AL, Büchler MW. Fifty Years of Surgery for Pancreatic Cancer. Pancreas 2020; 49(8): 1005-13.
[http://dx.doi.org/10.1097/MPA.0000000000001634] [PMID: 32833940]
[113]
Loos M, Kleeff J, Friess H, Büchler MW. Surgical treatment of pancreatic cancer. Ann N Y Acad Sci 2008; 1138(1): 169-80.
[http://dx.doi.org/10.1196/annals.1414.024] [PMID: 18837898]
[114]
Bakens MJ, Geest LG, Putten M, et al. The use of adjuvant chemotherapy for pancreatic cancer varies widely between hospitals: A nationwide population-based analysis. Cancer Med 2016; 5(10): 2825-31.
[http://dx.doi.org/10.1002/cam4.921] [PMID: 27671746]
[115]
Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat Rev Gastroenterol Hepatol 2018; 15(6): 333-48.
[http://dx.doi.org/10.1038/s41575-018-0005-x] [PMID: 29717230]
[116]
Kolbeinsson HM, Chandana S, Wright GP, Chung M. Pancreatic cancer: A review of current treatment and novel therapies. J Invest Surg 2023; 36(1): 2129884.
[http://dx.doi.org/10.1080/08941939.2022.2129884] [PMID: 36191926]
[117]
Lin H-C, Shih Y-H. Adjuvant gemcitabine+ S1 as adjuvant therapy for resectable pancreatic cancer: A real-world experience in a single-center retrospective study. Am Soc Clin Oncol 2023; 41(4)
[118]
Verma V, Li J, Lin C. Neoadjuvant Therapy for Pancreatic Cancer. Am J Clin Oncol 2016; 39(3): 302-13.
[http://dx.doi.org/10.1097/COC.0000000000000278] [PMID: 26950464]
[119]
Xu X, Wu Q, Wang Z, Zheng S, Ge K, Jia C. Meta-analysis of FOLFIRINOX regimen as the first-line chemotherapy for locally advanced pancreatic cancer and borderline resectable pancreatic cancer. Clin Exp Med 2019; 19(1): 149-57.
[http://dx.doi.org/10.1007/s10238-018-0540-3] [PMID: 30498929]
[120]
Springfeld C, Ferrone CR, Katz MHG, et al. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol 2023; 20(5): 318-37.
[http://dx.doi.org/10.1038/s41571-023-00746-1] [PMID: 36932224]
[121]
de Geus SWL, Sachs TE. A Paradigm Shifts: Neoadjuvant Therapy for Clearly Resectable Pancreatic Cancer. Ann Surg Oncol 2023; 30(6): 3427-36.
[http://dx.doi.org/10.1245/s10434-023-13281-1] [PMID: 36869916]
[122]
Springfeld C, Jäger D, Büchler MW, et al. Chemotherapy for pancreatic cancer. Presse medicale 2019; 48(Pt 2): e159-74.
[123]
Williet N, Saint A, Pointet AL, et al. Folfirinox versus gemcitabine/nab-paclitaxel as first-line therapy in patients with metastatic pancreatic cancer: A comparative propensity score study. Therap Adv Gastroenterol 2019; 12.
[http://dx.doi.org/10.1177/1756284819878660] [PMID: 31598136]
[124]
Güngör C, Hofmann BT, Wolters-Eisfeld G, Bockhorn M. Pancreatic cancer. Br J Pharmacol 2014; 171(4): 849-58.
[http://dx.doi.org/10.1111/bph.12401] [PMID: 24024905]
[125]
Mancuso A, Calabrò F, Sternberg CN. Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol 2006; 58(3): 231-41.
[http://dx.doi.org/10.1016/j.critrevonc.2006.02.004] [PMID: 16725343]
[126]
Saung MT, Zheng L. Current Standards of Chemotherapy for Pancreatic Cancer. Clin Ther 2017; 39(11): 2125-34.
[http://dx.doi.org/10.1016/j.clinthera.2017.08.015] [PMID: 28939405]
[127]
Karasic TB, O’Hara MH, Loaiza-Bonilla A, et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer. JAMA Oncol 2019; 5(7): 993-8.
[http://dx.doi.org/10.1001/jamaoncol.2019.0684] [PMID: 31120501]
[128]
Zeh HJ, Bahary N, Boone BA, et al. A Randomized Phase II Preoperative Study of Autophagy Inhibition with High-Dose Hydroxychloroquine and Gemcitabine/Nab-Paclitaxel in Pancreatic Cancer Patients. Clin Cancer Res 2020; 26(13): 3126-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-4042] [PMID: 32156749]
[129]
Cho IR, Kang H, Jo JH, et al. FOLFIRINOX vs gemcitabine/nab-paclitaxel for treatment of metastatic pancreatic cancer: Single-center cohort study. World J Gastrointest Oncol 2020; 12(2): 182-94.
[http://dx.doi.org/10.4251/wjgo.v12.i2.182] [PMID: 32104549]
[130]
Goldstein D, El-Maraghi RH, Hammel P, et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: Long-term survival from a phase III trial. J Natl Cancer Inst 2015; 107(2): dju413.
[http://dx.doi.org/10.1093/jnci/dju413] [PMID: 25638248]
[131]
Chiorean EG, Cheung WY, Giordano G, Kim G, Al-Batran SE. Real-world comparative effectiveness of nab-paclitaxel plus gemcitabine versus FOLFIRINOX in advanced pancreatic cancer: A systematic review. Ther Adv Med Oncol 2019; 11.
[http://dx.doi.org/10.1177/1758835919850367] [PMID: 31205510]
[132]
Schlick K, Magnes T, Ratzinger L, et al. Novel models for prediction of benefit and toxicity with FOLFIRINOX treatment of pancreatic cancer using clinically available parameters. PLoS One 2018; 13(11): e0206688.
[http://dx.doi.org/10.1371/journal.pone.0206688] [PMID: 30412592]
[133]
Suker M, Beumer BR, Sadot E, et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol 2016; 17(6): 801-10.
[http://dx.doi.org/10.1016/S1470-2045(16)00172-8] [PMID: 27160474]
[134]
Pusceddu S, Ghidini M, Torchio M, et al. Comparative Effectiveness of Gemcitabine plus Nab-Paclitaxel and FOLFIRINOX in the First-Line Setting of Metastatic Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11(4): 484.
[http://dx.doi.org/10.3390/cancers11040484] [PMID: 30959763]
[135]
Sawada M, Kasuga A, Mie T, et al. Modified FOLFIRINOX as a second-line therapy following gemcitabine plus nab-paclitaxel therapy in metastatic pancreatic cancer. BMC Cancer 2020; 20(1): 449.
[http://dx.doi.org/10.1186/s12885-020-06945-8] [PMID: 32434547]
[136]
Kieler M, Unseld M, Bianconi D, Scheithauer W, Prager GW. A real-world analysis of second-line treatment options in pancreatic cancer: Liposomal-irinotecan plus 5-fluorouracil and folinic acid. Ther Adv Med Oncol 2019; 11.
[http://dx.doi.org/10.1177/1758835919853196] [PMID: 31360237]
[137]
Aprile G, Negri FV, Giuliani F, et al. Second-line chemotherapy for advanced pancreatic cancer: Which is the best option? Crit Rev Oncol Hematol 2017; 115: 1-12.
[http://dx.doi.org/10.1016/j.critrevonc.2017.03.025] [PMID: 28602164]
[138]
Hammel P, Fabienne P, Mineur L, et al. Erratum to ‘Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial’. Eur J Cancer 2020; 130: 275-6.
[139]
Kobayashi N, Shimamura T, Tokuhisa M, Goto A, Endo I, Ichikawa Y. Effect of FOLFIRINOX as second-line chemotherapy for metastatic pancreatic cancer after gemcitabine-based chemotherapy failure. Medicine (Baltimore) 2017; 96(19): e6769.
[http://dx.doi.org/10.1097/MD.0000000000006769] [PMID: 28489753]
[140]
Cantore M, Rabbi C, Fiorentini G, et al. Combined irinotecan and oxaliplatin in patients with advanced pre-treated pancreatic cancer. Oncology 2004; 67(2): 93-7.
[http://dx.doi.org/10.1159/000080993] [PMID: 15539911]
[141]
Zishan M, Saidurrahman S, Anayatullah A, Azeemuddin A, Ahmad Z, Hussain MW. Natural products used as anti-cancer agents. J Drug Deliv Ther 2017; 7(3): 11-8.
[http://dx.doi.org/10.22270/jddt.v7i3.1443]
[142]
Safe S, Kasiappan R. Natural Products as Mechanism-based Anticancer Agents: Sp Transcription Factors as Targets. Phytother Res 2016; 30(11): 1723-32.
[http://dx.doi.org/10.1002/ptr.5669] [PMID: 27384261]
[143]
Bimonte S, Barbieri A, Leongito M, et al. Curcumin AntiCancer Studies in Pancreatic Cancer. Nutrients 2016; 8(7): 433.
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[144]
Son YO, Kim J, Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol 2003; 41(10): 1421-8.
[145]
Kingston DGI. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 2007; 68(14): 1844-54.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.009] [PMID: 17184797]
[146]
Hait WN, Rubin E, Alli E, Goodin S. Tubulin targeting agents. Update Cancer Ther 2007; 2(1): 1-18.
[http://dx.doi.org/10.1016/j.uct.2006.10.001]
[147]
Hussain H, Green IR, Saleem M, Khattak KF, Irshad M, Ali M. Cucurbitacins as Anticancer Agents: A Patent Review. Recent Patents Anticancer Drug Discov 2019; 14(2): 133-43.
[http://dx.doi.org/10.2174/1574892813666181119123035] [PMID: 30451116]
[148]
Wang F, Gao Y, Gao L, Xing T. Study on the electrochemical behavior of the anticancer herbal drug berberine and its analytical application. J Chin Chem Soc (Taipei) 2011; 58(4): 450-6.
[http://dx.doi.org/10.1002/jccs.201190005]
[149]
Kaschula CH, Hunter R, Parker MI. Garlic-derived anticancer agents: Structure and biological activity of ajoene. (Biofactors)2010; 36(1) NA. http://dx.doi.org/10.1002/biof.76 PMID: 20108330
[150]
Nouroz F, Mehboob M, Noreen S, Zaidi F, Mobin T. A review on anticancer activities of garlic (Allium sativum L.). Middle East J Sci Res 2015; 23(6): 1145-51.
[151]
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: Multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6: 245.
[http://dx.doi.org/10.3389/fnagi.2014.00245] [PMID: 25278877]
[152]
Xu B, Li C, Sung C. Telomerase inhibitory effects of medicinal mushrooms and lichens, and their anticancer activity. Int J Med Mushrooms 2014; 16(1): 17-28.
[http://dx.doi.org/10.1615/IntJMedMushr.v16.i1.20] [PMID: 24940901]
[153]
Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36(2): 506-20.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[154]
Vandenborre G, Smagghe G, Van Damme EJM. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 2011; 72(13): 1538-50.
[http://dx.doi.org/10.1016/j.phytochem.2011.02.024] [PMID: 21429537]
[155]
Fahy J. Modifications in the “upper” velbenamine part of the Vinca alkaloids have major implications for tubulin interacting activities. Curr Pharm Des 2001; 7(13): 1181-97.
[http://dx.doi.org/10.2174/1381612013397483] [PMID: 11472261]
[156]
Yun-San Yip A, Yuen-Yuen Ong E, Chow LWC. Vinflunine: Clinical perspectives of an emerging anticancer agent. Expert Opin Investig Drugs 2008; 17(4): 583-91.
[http://dx.doi.org/10.1517/13543784.17.4.583] [PMID: 18363522]
[157]
Nobili S, Lippi D, Witort E, et al. Natural compounds for cancer treatment and prevention. Pharmacol Res 2009; 59(6): 365-78.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[158]
Schellens JH, McLeod HL, Newell DR. Cancer clinical pharmacology. United Kingdom: Oxford University Press 2005.
[159]
Prakash O, Kumar A, Kumar P, Ajeet A. Anticancer potential of plants and natural products. Am J Pharmacol Sci 2013; 1(6): 104-15.
[http://dx.doi.org/10.12691/ajps-1-6-1]
[160]
Nam NH. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Med Chem 2003; 10(17): 1697-722.
[http://dx.doi.org/10.2174/0929867033457151] [PMID: 12871118]
[161]
Blagosklonny MV. Flavopiridol, an inhibitor of transcription: Implications, problems and solutions. Cell Cycle 2004; 3(12): 1537-42.
[http://dx.doi.org/10.4161/cc.3.12.1278] [PMID: 15539947]
[162]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[163]
Hewlings S, Kalman D. Curcumin: A Review of Its Effects on Human Health. Basel, Switzerland: Foods 2017.
[164]
Nagaraju GP, Benton L, Bethi SR, Shoji M, El-Rayes BF. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int J Cancer 2019; 145(1): 10-9.
[http://dx.doi.org/10.1002/ijc.31867] [PMID: 30226272]
[165]
Agrawal DK, Mishra PK. Curcumin and its analogues: Potential anticancer agents. Med Res Rev 2010; 30(5): 818-60.
[PMID: 20027668]
[166]
Zhao C, Liu Z, Liang G. Promising curcumin-based drug design: Mono-carbonyl analogues of curcumin (MACs). Curr Pharm Des 2013; 19(11): 2114-35.
[PMID: 23116317]
[167]
Ohori H, Yamakoshi H, Tomizawa M, et al. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther 2006; 5(10): 2563-71.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0174] [PMID: 17041101]
[168]
Nagaraju GP, Zhu S, Wen J, et al. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett 2013; 341(2): 195-203.
[http://dx.doi.org/10.1016/j.canlet.2013.08.002] [PMID: 23933177]
[169]
Friedman L, Lin L, Ball S, et al. Curcumin analogues exhibit enhanced growth suppressive activity in human pancreatic cancer cells. Anticancer Drugs 2009; 20(6): 444-9.
[http://dx.doi.org/10.1097/CAD.0b013e32832afc04] [PMID: 19384191]
[170]
Nagaraju GP, Zhu S, Ko JE, et al. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer. Cancer Lett 2015; 357(2): 557-65.
[http://dx.doi.org/10.1016/j.canlet.2014.12.007] [PMID: 25497868]
[171]
Zhu Y, Bu S. Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells. Evid Based Complement Alternat Med 2017; 2017: 5787218.
[172]
Sa G, Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div 2008; 3(1): 14.
[http://dx.doi.org/10.1186/1747-1028-3-14] [PMID: 18834508]
[173]
He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules 2015; 20(5): 9183-213.
[http://dx.doi.org/10.3390/molecules20059183] [PMID: 26007179]
[174]
Campbell FC, Collett GP. Chemopreventive properties of curcumin. Future Oncol 2005; 1(3): 405-14.
[http://dx.doi.org/10.1517/14796694.1.3.405] [PMID: 16556014]
[175]
Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 2007; 595: 149-72.
[http://dx.doi.org/10.1007/978-0-387-46401-5_5] [PMID: 17569209]
[176]
Jadid MFS, Shademan B, Chavoshi R, et al. Enhanced anticancer potency of hydroxytyrosol and curcumin by PLGA-PAA nano-encapsulation on PANC -1 pancreatic cancer cell line. Environ Toxicol 2021; 36(6): 1043-51.
[http://dx.doi.org/10.1002/tox.23103] [PMID: 33496383]
[177]
Boyanapalli SSS, Kong ANT. “Curcumin, the King of Spices”: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases. Curr Pharmacol Rep 2015; 1(2): 129-39.
[http://dx.doi.org/10.1007/s40495-015-0018-x] [PMID: 26457241]
[178]
Chiang T, Wang WS, Liu HC, Yang ST, Tang NY, Chung JG. Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro. Oncol Rep 2015; 34(4): 1853-74.
[http://dx.doi.org/10.3892/or.2015.4159] [PMID: 26238775]
[179]
Shehzad A, Qureshi M, Anwar MN, Lee YS. Multifunctional Curcumin Mediate Multitherapeutic Effects. J Food Sci 2017; 82(9): 2006-15.
[http://dx.doi.org/10.1111/1750-3841.13793] [PMID: 28771714]
[180]
Youns M, Fathy GM. Upregulation of extrinsic apoptotic pathway in curcumin-mediated antiproliferative effect on human pancreatic carcinogenesis. J Cell Biochem 2013; 114(12): 2654-65.
[http://dx.doi.org/10.1002/jcb.24612] [PMID: 23794119]
[181]
Glienke W, Maute L, Wicht J, Bergmann L. Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Invest 2009; 28(2): 166-71.
[http://dx.doi.org/10.3109/07357900903287006] [PMID: 20121547]
[182]
Glienke W, Maute L, Wicht J, Bergmann L. Wilms’ tumour gene 1 (WT1) as a target in curcumin treatment of pancreatic cancer cells. Eur J Cancer 2009; 45(5): 874-0.
[183]
Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269(2): 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[184]
Swamy MV, Citineni B, Patlolla JMR, Mohammed A, Zhang Y, Rao CV. Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr Cancer 2008; 60 ((sup1)(Suppl. 1)): 81-9.
[http://dx.doi.org/10.1080/01635580802416703] [PMID: 19003584]
[185]
Dende C, Meena J, Nagarajan P, Nagaraj VA, Panda AK, Padmanaban G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Sci Rep 2017; 7(1): 10062.
[http://dx.doi.org/10.1038/s41598-017-10672-9] [PMID: 28855623]
[186]
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic Applications of Curcumin Nanoformulations. AAPS J 2015; 17(6): 1341-56.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[187]
Islam A, Rebello L, Chepyala S. Review on nanoformulations of curcumin (Curcuma longa Linn.): Special emphasis on Nanocurcumin®. Int J Nat Life Sci 2019; 3(1): 1-12.
[188]
Al-Shehri H. The Nanoformulations of Curcumin for Cancer Therapy: New Perspectives. J Cancer Res Treat 2019; 7(1): 21-6.
[189]
Rachmawati H, Yanda YL, Rahma A, Mase N, Curcumin-Loaded PLA. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation. Sci Pharm 2016; 84(1): 191-202.
[http://dx.doi.org/10.3797/scipharm.ISP.2015.10] [PMID: 27110509]
[190]
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351(1): 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[191]
Al-Shehri AH, Kabel AM, Abd Elmaaboud MA. The Nanoformulations of Curcumin for Cancer Therapy: New Perspectives. J Cancer Res 2019; 7(1): 21-6.
[192]
Orr WS, Denbo JW, Saab KR, et al. RETRACTED: Liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery 2012; 151(5): 736-44.
[http://dx.doi.org/10.1016/j.surg.2011.12.014] [PMID: 22284765]
[193]
Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin. Cancer 2005; 104(6): 1322-31.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[194]
Barui S, Saha S, Yakati V, Chaudhuri A. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth. Mol Pharm 2016; 13(2): 404-19.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00644] [PMID: 26716471]
[195]
Lee WH, Loo CY, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv 2014; 11(8): 1183-201.
[http://dx.doi.org/10.1517/17425247.2014.916686] [PMID: 24857605]
[196]
Yallapu MM, Jaggi M, Chauhan SC. Poly(β-cyclodextrin)/curcumin self-assembly: A novel approach to improve curcumin delivery and its therapeutic efficacy in prostate cancer cells. Macromol Biosci 2010; 10(10): 1141-51.
[http://dx.doi.org/10.1002/mabi.201000084] [PMID: 20572274]
[197]
Subramani PA, Panati K, Narala VR. Curcumin Nanotechnologies and Its Anticancer Activity. Nutr Cancer 2017; 69(3): 381-93.
[http://dx.doi.org/10.1080/01635581.2017.1285405] [PMID: 28287321]
[198]
Mangalathillam S, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 2012; 4(1): 239-50.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[199]
Yallapu MM, Ebeling MC, Khan S, et al. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther 2013; 12(8): 1471-80.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1227] [PMID: 23704793]
[200]
Sheikh E, Bhatt M, Tripathi M. Role of nano-curcumin: A treatment for cancer. Faslnamah-i Giyahan-i Daruyi 2017; 5: 394-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy