Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Targeting Cellular Senescence: A Potential Therapeutic approach for Alzheimer’s Disease

Author(s): Shrishti Singh and Lokesh Kumar Bhatt*

Volume 17, 2024

Published on: 13 July, 2023

Article ID: e010623217543 Pages: 14

DOI: 10.2174/1874467217666230601113430

open_access

Abstract

Although Amyloid beta plaque and neurofibrillary tangles are considered the two main hallmarks of Alzheimer’s disease (AD), the mechanism by which they contribute is not clearly understood. Cellular senescence (CS) has been demonstrated to be a key characteristic of AD. Recent research suggests that persistent buildup of senescent cells over time results in protracted activation of inflammatory stress as an organism ages because of the accumulation of irreversible DNA damage and oxidative stress as well as the deterioration of immune system function. Studies on both humans and animals have shown evidence that CS is a crucial factor in AD. The brains of AD patients have been found to have senescent glial cells and neurons, and removal of these senescent cells results in a decrease in Amyloid beta plaque and Neurofibrillary tangles, along with improved cognitive functions. This review summarises recent results and the mechanism by which CS contributes to the development of AD, and how the elimination of senescent cells may be a therapeutic target in the management of AD.

Keywords: Cellular senescence, Alzheimer’s disease, Senescent cells, Therapeutic target, Neurofibrillary tangles, Cognitive functions.

[1]
Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci., 2022, 23(22), 13954.
[http://dx.doi.org/10.3390/ijms232213954] [PMID: 36430432]
[2]
World Health Organization. Dementia. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia (Accessed on: Dec 4, 2022).
[3]
Saunders, A.M.; Burns, D.K.; Gottschalk, W.K. Reassessment of Pioglitazone for Alzheimer’s Disease. Front. Neurosci., 2021, 15, 666958.
[http://dx.doi.org/10.3389/fnins.2021.666958] [PMID: 34220427]
[4]
Alzheimer’s Association. Alzheimer’s stages-early, middle, late dementia symptoms. Available from: https://www.alz.org/alzheimers-dementia/stages#middle# (Accessed on: Apr 4, 2023).
[5]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[6]
Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology, 2002, 58(12), 1791-1800.
[http://dx.doi.org/10.1212/WNL.58.12.1791] [PMID: 12084879]
[7]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[8]
Guerrero, A.; De Strooper, B.; Arancibia-Cárcamo, I.L. Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci., 2021, 44(9), 714-727.
[http://dx.doi.org/10.1016/j.tins.2021.06.007] [PMID: 34366147]
[9]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[10]
Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of cellular senescence. In: Trends in Cell Biology; Elsevier Ltd, 2018; pp. 436-453.
[http://dx.doi.org/10.1016/j.tcb.2018.02.001]
[11]
Beck, J.; Horikawa, I.; Harris, C. Cellular senescence: Mechanisms, morphology, and mouse models. Vet. Pathol., 2020, 57(6), 747-757.
[http://dx.doi.org/10.1177/0300985820943841] [PMID: 32744147]
[12]
Herranz, N.; Gil, J. Mechanisms and functions of cellular senescence. J. Clin. Invest., 2018, 128(4), 1238-1246.
[http://dx.doi.org/10.1172/JCI95148] [PMID: 29608137]
[13]
Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 729-740.
[http://dx.doi.org/10.1038/nrm2233] [PMID: 17667954]
[14]
Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 482-496.
[http://dx.doi.org/10.1038/nrm3823] [PMID: 24954210]
[15]
de Lange, T. Telomere Capping-one strand fits all. Science (1979), 2001, 292(5519), 1075-1076.
[http://dx.doi.org/10.1126/science.1061032]
[16]
Ben-Porath, I.; Weinberg, R.A. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol., 2005, 37(5), 961-976.
[http://dx.doi.org/10.1016/j.biocel.2004.10.013] [PMID: 15743671]
[17]
Ben-Porath, I.; Weinberg, R.A. When cells get stressed: An integrative view of cellular senescence. J. Clin. Invest., 2004, 113(1), 8-13.
[http://dx.doi.org/10.1172/JCI200420663] [PMID: 14702100]
[18]
Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res., 1961, 25(3), 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[19]
Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular Senescence: Aging, cancer, and injury. Physiol. Rev., 2019, 99(2), 1047-1078.
[http://dx.doi.org/10.1152/physrev.00020.2018] [PMID: 30648461]
[20]
Saez-Atienzar, S.; Masliah, E. Cellular senescence and Alzheimer disease: The egg and the chicken scenario. Nat. Rev. Neurosci., 2020, 21(8), 433-444.
[http://dx.doi.org/10.1038/s41583-020-0325-z] [PMID: 32601397]
[21]
Ovadya, Y.; Landsberger, T.; Leins, H.; Vadai, E.; Gal, H.; Biran, A.; Yosef, R.; Sagiv, A.; Agrawal, A.; Shapira, A.; Windheim, J.; Tsoory, M.; Schirmbeck, R.; Amit, I.; Geiger, H.; Krizhanovsky, V. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun., 2018, 9(1), 5435.
[http://dx.doi.org/10.1038/s41467-018-07825-3] [PMID: 30575733]
[22]
Martínez-Cué, C.; Rueda, N. Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci., 2020, 14, 16.
[http://dx.doi.org/10.3389/fncel.2020.00016] [PMID: 32116562]
[23]
van Deursen, J.M. The role of senescent cells in ageing. Nature, 2014, 509(7501), 439-446.
[http://dx.doi.org/10.1038/nature13193] [PMID: 24848057]
[24]
Kumari, R.; Jat, P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol., 2021, 9, 645593.
[http://dx.doi.org/10.3389/fcell.2021.645593] [PMID: 33855023]
[25]
Debacq-Chainiaux, F.; Ben Ameur, R.; Bauwens, E.; Dumortier, E.; Toutfaire, M.; Toussaint, O. Stress-Induced (Premature); Senescence, 2016, pp. 243-262.
[http://dx.doi.org/10.1007/978-3-319-26239-0_13]
[26]
McConnell, B.B.; Starborg, M.; Brookes, S.; Peters, G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol., 1998, 8(6), 351-354.
[http://dx.doi.org/10.1016/S0960-9822(98)70137-X] [PMID: 9512419]
[27]
Rovillain, E.; Mansfield, L.; Lord, C.J.; Ashworth, A.; Jat, P.S. An RNA interference screen for identifying downstream effectors of the p53 and pRB tumour suppressor pathways involved in senescence. BMC Genomics, 2011, 12(1), 355.
[http://dx.doi.org/10.1186/1471-2164-12-355] [PMID: 21740549]
[28]
Provinciali, M.; Cardelli, M.; Marchegiani, F.; Pierpaoli, E. Impact of cellular senescence in aging and cancer. Curr. Pharm. Des., 2013, 19(9), 1699-1709.
[http://dx.doi.org/10.2174/1381612811319090017] [PMID: 23061727]
[29]
Di Micco, R.; Krizhanovsky, V.; Baker, D.; d’Adda di Fagagna, F. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 75-95.
[http://dx.doi.org/10.1038/s41580-020-00314-w] [PMID: 33328614]
[30]
Shay, J.; Pereira-Smith, O.M.; Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence*1. Exp. Cell Res., 1991, 196(1), 33-39.
[http://dx.doi.org/10.1016/0014-4827(91)90453-2] [PMID: 1652450]
[31]
Beauséjour, C.M.; Krtolica, A.; Galimi, F.; Narita, M.; Lowe, S.W.; Yaswen, P.; Campisi, J. Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J., 2003, 22(16), 4212-4222.
[http://dx.doi.org/10.1093/emboj/cdg417] [PMID: 12912919]
[32]
Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med., 2015, 21(12), 1424-1435.
[http://dx.doi.org/10.1038/nm.4000] [PMID: 26646499]
[33]
Sharpless, N.E.; Sherr, C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer, 2015, 15(7), 397-408.
[http://dx.doi.org/10.1038/nrc3960] [PMID: 26105537]
[34]
Fischer, M.; Müller, G.A. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit. Rev. Biochem. Mol. Biol., 2017, 52(6), 638-662.
[http://dx.doi.org/10.1080/10409238.2017.1360836] [PMID: 28799433]
[35]
Gil, J.; Peters, G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 667-677.
[http://dx.doi.org/10.1038/nrm1987] [PMID: 16921403]
[36]
Bracken, A.P.; Kleine-Kohlbrecher, D.; Dietrich, N.; Pasini, D.; Gargiulo, G.; Beekman, C.; Theilgaard-Mönch, K.; Minucci, S.; Porse, B.T.; Marine, J.C.; Hansen, K.H.; Helin, K. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev., 2007, 21(5), 525-530.
[http://dx.doi.org/10.1101/gad.415507] [PMID: 17344414]
[37]
Salminen, A.; Kauppinen, A.; Kaarniranta, K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell. Signal., 2012, 24(4), 835-845.
[http://dx.doi.org/10.1016/j.cellsig.2011.12.006] [PMID: 22182507]
[38]
Gaikwad, S.; Puangmalai, N.; Bittar, A.; Montalbano, M.; Garcia, S.; McAllen, S.; Bhatt, N.; Sonawane, M.; Sengupta, U.; Kayed, R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep., 2021, 36(3), 109419.
[http://dx.doi.org/10.1016/j.celrep.2021.109419] [PMID: 34289368]
[39]
McShea, A.; Harris, P.L.; Webster, K.R.; Wahl, A.F.; Smith, M.A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol., 1997, 150(6), 1933-1939.
[PMID: 9176387]
[40]
Thadathil, N.; Delotterie, D.F.; Xiao, J.; Hori, R.; McDonald, M.P.; Khan, M.M. DNA double-strand break accumulation in Alzheimer’s Disease: Evidence from experimental models and postmortem human brains. Mol. Neurobiol., 2021, 58(1), 118-131.
[http://dx.doi.org/10.1007/s12035-020-02109-8] [PMID: 32895786]
[41]
Liu, R.M. Aging, cellular senescence, and Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(4), 1989.
[http://dx.doi.org/10.3390/ijms23041989] [PMID: 35216123]
[42]
Bhat, R.; Crowe, E.P.; Bitto, A.; Moh, M.; Katsetos, C.D.; Garcia, F.U.; Johnson, F.B.; Trojanowski, J.Q.; Sell, C.; Torres, C. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One, 2012, 7(9), e45069.
[http://dx.doi.org/10.1371/journal.pone.0045069] [PMID: 22984612]
[43]
Caldeira, C.; Cunha, C.; Vaz, A.R.; Falcão, A.S.; Barateiro, A.; Seixas, E.; Fernandes, A.; Brites, D. Key aging-associated alterations in primary microglia response to beta-amyloid stimulation. Front. Aging Neurosci., 2017, 9, 277.
[http://dx.doi.org/10.3389/fnagi.2017.00277] [PMID: 28912710]
[44]
Musi, N.; Valentine, J.M.; Sickora, K.R.; Baeuerle, E.; Thompson, C.S.; Shen, Q.; Orr, M.E. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell, 2018, 17(6), e12840.
[http://dx.doi.org/10.1111/acel.12840] [PMID: 30126037]
[45]
Wang, Q.; Duan, L.; Li, X.; Wang, Y.; Guo, W.; Guan, F.; Ma, S. Glucose metabolism, neural cell senescence and Alzheimer’s Disease. Int. J. Mol. Sci., 2022, 23(8), 4351.
[http://dx.doi.org/10.3390/ijms23084351] [PMID: 35457168]
[46]
Bussian, T.J.; Aziz, A.; Meyer, C.F.; Swenson, B.L.; van Deursen, J.M.; Baker, D.J. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 2018, 562(7728), 578-582.
[http://dx.doi.org/10.1038/s41586-018-0543-y] [PMID: 30232451]
[47]
Angelova, D.M.; Brown, D.R. Altered processing of β-Amyloid in SH-SY5Y cells induced by model senescent microglia. ACS Chem. Neurosci., 2018, 9(12), 3137-3152.
[http://dx.doi.org/10.1021/acschemneuro.8b00334] [PMID: 30052418]
[48]
Mendelsohn, A.R.; Larrick, J.W. Cellular senescence as the key intermediate in Tau-Mediated neurodegeneration. Rejuvenation Res., 2018, 21(6), 572-579.
[http://dx.doi.org/10.1089/rej.2018.2155] [PMID: 30489222]
[49]
Baker, D.J.; Petersen, R.C. Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives. J. Clin. Invest., 2018, 128(4), 1208-1216.
[http://dx.doi.org/10.1172/JCI95145] [PMID: 29457783]
[50]
Mansour, H.; Chamberlain, C.G.; Weible, M.W., II; Hughes, S.; Chu, Y.; Chan-Ling, T. Aging-related changes in astrocytes in the rat retina: Imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell, 2008, 7(4), 526-540.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00402.x] [PMID: 18489730]
[51]
Pertusa, M.; García-Matas, S.; Rodríguez-Farré, E.; Sanfeliu, C.; Cristòfol, R. Astrocytes aged in vitro show a decreased neuroprotective capacity. J. Neurochem., 2007, 101(3), 794-805.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04369.x] [PMID: 17250685]
[52]
Kritsilis, M.; V Rizou, S.; Koutsoudaki, P.N.; Evangelou, K.; Gorgoulis, V.G.; Papadopoulos, D. Ageing, cellular senescence and neurodegenerative disease. Int. J. Mol. Sci., 2018, 19(10), 2937.
[http://dx.doi.org/10.3390/ijms19102937] [PMID: 30261683]
[53]
Bitto, A.; Sell, C.; Crowe, E.; Lorenzini, A.; Malaguti, M.; Hrelia, S.; Torres, C. Stress-induced senescence in human and rodent astrocytes. Exp. Cell Res., 2010, 316(17), 2961-2968.
[http://dx.doi.org/10.1016/j.yexcr.2010.06.021] [PMID: 20620137]
[54]
Evans, R.J.; Wyllie, F.S.; Wynford-Thomas, D.; Kipling, D.; Jones, C.J.A. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res., 2003, 63(16), 4854-4861.
[PMID: 12941806]
[55]
Shang, D.; Hong, Y.; Xie, W.; Tu, Z.; Xu, J. Interleukin-1β drives cellular senescence of rat astrocytes induced by oligomerized amyloid β peptide and oxidative stress. Front. Neurol., 2020, 11, 929.
[http://dx.doi.org/10.3389/fneur.2020.00929] [PMID: 33013631]
[56]
Shang, D.; Sun, D.; Shi, C.; Xu, J.; Shen, M.; Hu, X.; Liu, H.; Tu, Z. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging Cell, 2020, 19(5), e13145.
[http://dx.doi.org/10.1111/acel.13145] [PMID: 32323422]
[57]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[58]
Han, X.; Zhang, T.; Liu, H.; Mi, Y.; Gou, X. Astrocyte senescence and Alzheimer’s Disease: A review. Front. Aging Neurosci., 2020, 12, 148.
[http://dx.doi.org/10.3389/fnagi.2020.00148] [PMID: 32581763]
[59]
Liu, C.C.; Hu, J.; Zhao, N.; Wang, J.; Wang, N.; Cirrito, J.R.; Kanekiyo, T.; Holtzman, D.M.; Bu, G. Astrocytic LRP1 mediates brain Aβ clearance and impacts amyloid deposition. J. Neurosci., 2017, 37(15), 4023-4031.
[http://dx.doi.org/10.1523/JNEUROSCI.3442-16.2017] [PMID: 28275161]
[60]
Ries, M.; Sastre, M. Mechanisms of Aβ clearance and degradation by glial cells. Front. Aging Neurosci., 2016, 8, 160.
[http://dx.doi.org/10.3389/fnagi.2016.00160] [PMID: 27458370]
[61]
Frost, G.R.; Li, Y.M. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol., 2017, 7(12), 170228.
[http://dx.doi.org/10.1098/rsob.170228] [PMID: 29237809]
[62]
Garwood, C.J.; Ratcliffe, L.E.; Simpson, J.E.; Heath, P.R.; Ince, P.G.; Wharton, S.B. Review: Astrocytes in Alzheimer’s disease and other age-associated dementias: A supporting player with a central role. Neuropathol. Appl. Neurobiol., 2017, 43(4), 281-298.
[http://dx.doi.org/10.1111/nan.12338] [PMID: 27442752]
[63]
Angelova, D.M.; Brown, D.R. Microglia and the aging brain: Are senescent microglia the key to neurodegeneration? J. Neurochem., 2019, 151(6), 676-688.
[http://dx.doi.org/10.1111/jnc.14860] [PMID: 31478208]
[64]
Flanary, B.E.; Sammons, N.W.; Nguyen, C.; Walker, D.; Streit, W.J. Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res., 2007, 10(1), 61-74.
[http://dx.doi.org/10.1089/rej.2006.9096] [PMID: 17378753]
[65]
Flanary, B.E.; Streit, W.J. Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia, 2004, 45(1), 75-88.
[http://dx.doi.org/10.1002/glia.10301] [PMID: 14648548]
[66]
Taylor, J.M.; Moore, Z.; Minter, M.R.; Crack, P.J. Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease. J. Neural Transm., 2018, 125(5), 797-807.
[http://dx.doi.org/10.1007/s00702-017-1745-4] [PMID: 28676934]
[67]
Safaiyan, S.; Kannaiyan, N.; Snaidero, N.; Brioschi, S.; Biber, K.; Yona, S.; Edinger, A.L.; Jung, S.; Rossner, M.J.; Simons, M. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci., 2016, 19(8), 995-998.
[http://dx.doi.org/10.1038/nn.4325] [PMID: 27294511]
[68]
Barker, R.; Ashby, E.L.; Wellington, D.; Barrow, V.M.; Palmer, J.C.; Kehoe, P.G.; Esiri, M.M.; Love, S. Pathophysiology of white matter perfusion in Alzheimer’s disease and vascular dementia. Brain, 2014, 137(5), 1524-1532.
[http://dx.doi.org/10.1093/brain/awu040] [PMID: 24618270]
[69]
Childs, B.G.; Gluscevic, M.; Baker, D.J.; Laberge, R.M.; Marquess, D.; Dananberg, J.; van Deursen, J.M. Senescent cells: An emerging target for diseases of ageing. Nat. Rev. Drug Discov., 2017, 16(10), 718-735.
[http://dx.doi.org/10.1038/nrd.2017.116] [PMID: 28729727]
[70]
Lagoumtzi, S.M.; Chondrogianni, N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic. Biol. Med., 2021, 171, 169-190.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.05.003] [PMID: 33989756]
[71]
Alshadidi, R. Anti-Senescence Therapy. In: Mechanisms and Management of Senescence; Heshmati, H.M. IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.101585]
[72]
Song, S.; Tchkonia, T.; Jiang, J.; Kirkland, J.L.; Sun, Y. Targeting senescent cells for a healthier aging: Challenges and opportunities. Adv. Sci., 2020, 7(23), 2002611.
[http://dx.doi.org/10.1002/advs.202002611] [PMID: 33304768]
[73]
Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.; Kirkland, J.L.; van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479(7372), 232-236.
[http://dx.doi.org/10.1038/nature10600] [PMID: 22048312]
[74]
Gasek, N.S.; Kuchel, G.A.; Kirkland, J.L.; Xu, M. Strategies for targeting senescent cells in human disease. Nature Aging, 2021, 1(10), 870-879.
[http://dx.doi.org/10.1038/s43587-021-00121-8] [PMID: 34841261]
[75]
Ovadya, Y.; Krizhanovsky, V. Strategies targeting cellular senescence. J. Clin. Invest., 2018, 128(4), 1247-1254.
[http://dx.doi.org/10.1172/JCI95149] [PMID: 29608140]
[76]
Sasaki, M.; Kumazaki, T.; Takano, H.; Nishiyama, M.; Mitsui, Y. Senescent cells are resistant to death despite low Bcl-2 level. Mech. Ageing Dev., 2001, 122(15), 1695-1706.
[http://dx.doi.org/10.1016/S0047-6374(01)00281-0] [PMID: 11557274]
[77]
Yosef, R.; Pilpel, N.; Tokarsky-Amiel, R.; Biran, A.; Ovadya, Y.; Cohen, S.; Vadai, E.; Dassa, L.; Shahar, E.; Condiotti, R.; Ben-Porath, I.; Krizhanovsky, V. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun., 2016, 7(1), 11190.
[http://dx.doi.org/10.1038/ncomms11190] [PMID: 27048913]
[78]
Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; O’Hara, S.P.; LaRusso, N.F.; Miller, J.D.; Roos, C.M.; Verzosa, G.C.; LeBrasseur, N.K.; Wren, J.D.; Farr, J.N.; Khosla, S.; Stout, M.B.; McGowan, S.J.; Fuhrmann-Stroissnigg, H.; Gurkar, A.U.; Zhao, J.; Colangelo, D.; Dorronsoro, A.; Ling, Y.Y.; Barghouthy, A.S.; Navarro, D.C.; Sano, T.; Robbins, P.D.; Niedernhofer, L.J.; Kirkland, J.L. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell, 2015, 14(4), 644-658.
[http://dx.doi.org/10.1111/acel.12344] [PMID: 25754370]
[79]
Zhang, P.; Kishimoto, Y.; Grammatikakis, I.; Gottimukkala, K.; Cutler, R.G.; Zhang, S.; Abdelmohsen, K.; Bohr, V.A.; Misra Sen, J.; Gorospe, M.; Mattson, M.P. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci., 2019, 22(5), 719-728.
[http://dx.doi.org/10.1038/s41593-019-0372-9] [PMID: 30936558]
[80]
Dhawan, G.; Combs, C.K. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J. Neuroinflammation, 2012, 9(1), 563.
[http://dx.doi.org/10.1186/1742-2094-9-117] [PMID: 22673542]
[81]
Dhawan, G.; Floden, A.M.; Combs, C.K. Amyloid-β oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol. Aging, 2012, 33(10), 2247-2261.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.027] [PMID: 22133278]
[82]
Lagas, J.S.; van Waterschoot, R.A.B.; van Tilburg, V.A.C.J.; Hillebrand, M.J.; Lankheet, N.; Rosing, H.; Beijnen, J.H.; Schinkel, A.H. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin. Cancer Res., 2009, 15(7), 2344-2351.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2253] [PMID: 19276246]
[83]
Gonzales, M.M.; Garbarino, V.R.; Marques Zilli, E.; Petersen, R.C.; Kirkland, J.L.; Tchkonia, T.; Musi, N.; Seshadri, S.; Craft, S.; Orr, M.E. Senolytic therapy to modulate the progression of Alzheimer’s Disease (SToMP-AD): A pilot clinical trial. J. Prev. Alzheimers Dis., 2021, 1-8.
[http://dx.doi.org/10.14283/jpad.2021.62] [PMID: 35098970]
[84]
Gonzales, M.M.; Krishnamurthy, S.; Garbarino, V.; Daeihagh, A.S.; Gillispie, G.J.; Deep, G.; Craft, S.; Orr, M.E. A geroscience motivated approach to treat Alzheimer’s disease: Senolytics move to clinical trials. Mech. Ageing Dev., 2021, 200, 111589.
[http://dx.doi.org/10.1016/j.mad.2021.111589] [PMID: 34687726]
[85]
Yousefzadeh, M.J.; Zhu, Y.; McGowan, S.J.; Angelini, L.; Fuhrmann-Stroissnigg, H.; Xu, M.; Ling, Y.Y.; Melos, K.I.; Pirtskhalava, T.; Inman, C.L.; McGuckian, C.; Wade, E.A.; Kato, J.I.; Grassi, D.; Wentworth, M.; Burd, C.E.; Arriaga, E.A.; Ladiges, W.L.; Tchkonia, T.; Kirkland, J.L.; Robbins, P.D.; Niedernhofer, L.J. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.015] [PMID: 30279143]
[86]
Currais, A.; Farrokhi, C.; Dargusch, R.; Armando, A.; Quehenberger, O.; Schubert, D.; Maher, P. Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J. Gerontol. A Biol. Sci. Med. Sci., 2018, 73(3), 299-307.
[http://dx.doi.org/10.1093/gerona/glx104] [PMID: 28575152]
[87]
The University of Texas Health Science Center at San Antonio. Senolytic Therapy to Modulate Progression of Alzheimer’s Disease Available from: https://clinicaltrials.gov/ct2/show/study/NCT04063124
[88]
Wake Forest University Health Sciences. Senolytic therapy to modulate the progression of Alzheimer’s Disease (SToMP-AD) study. Available from: https://clinicaltrials.gov/ct2/show/study/NCT04685590
[89]
James, L.K ALSENLITE: Senolytics for Alzheimer’s Disease. Available from: https://clinicaltrials.gov/ct2/show/study/NCT04785300
[90]
Chang, J.; Wang, Y.; Shao, L.; Laberge, R.M.; Demaria, M.; Campisi, J.; Janakiraman, K.; Sharpless, N.E.; Ding, S.; Feng, W.; Luo, Y.; Wang, X.; Aykin-Burns, N.; Krager, K.; Ponnappan, U.; Hauer-Jensen, M.; Meng, A.; Zhou, D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med., 2016, 22(1), 78-83.
[http://dx.doi.org/10.1038/nm.4010] [PMID: 26657143]
[91]
Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; Wren, J.D.; Niedernhofer, L.J.; Robbins, P.D.; Kirkland, J.L. Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 2016, 15(3), 428-435.
[http://dx.doi.org/10.1111/acel.12445] [PMID: 26711051]
[92]
Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5836] [PMID: 18451170]
[93]
Pan, J.; Li, D.; Xu, Y.; Zhang, J.; Wang, Y.; Chen, M.; Lin, S.; Huang, L.; Chung, E. J.; Citrin, D. E.; Wang, Y.; Hauer-Jensen, M.; Zhou, D.; Meng, A. Inhibition of Bcl-2/Xl With ABT-263 selectively kills senescent Type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int. J. Radiat. Oncol. Biol. Phys., 2017, 99(2), 353-361.
[http://dx.doi.org/10.1016/j.ijrobp.2017.02.216]
[94]
Han, L.; Schuringa, J.J.; Mulder, A.; Vellenga, E. Dasatinib impairs long-term expansion of leukemic progenitors in a subset of acute myeloid leukemia cases. Ann. Hematol., 2010, 89(9), 861-871.
[http://dx.doi.org/10.1007/s00277-010-0948-7] [PMID: 20387067]
[95]
Li, J.; Rix, U.; Fang, B.; Bai, Y.; Edwards, A.; Colinge, J.; Bennett, K.L.; Gao, J.; Song, L.; Eschrich, S.; Superti-Furga, G.; Koomen, J.; Haura, E.B. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol., 2010, 6(4), 291-299.
[http://dx.doi.org/10.1038/nchembio.332] [PMID: 20190765]
[96]
Del Gaizo Moore, V.; Brown, J.R.; Certo, M.; Love, T.M.; Novina, C.D.; Letai, A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest., 2007, 117(1), 112-121.
[http://dx.doi.org/10.1172/JCI28281] [PMID: 17200714]
[97]
van Delft, M.F.; Wei, A.H.; Mason, K.D.; Vandenberg, C.J.; Chen, L.; Czabotar, P.E.; Willis, S.N.; Scott, C.L.; Day, C.L.; Cory, S.; Adams, J.M.; Roberts, A.W.; Huang, D.C.S. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 2006, 10(5), 389-399.
[http://dx.doi.org/10.1016/j.ccr.2006.08.027] [PMID: 17097561]
[98]
Konopleva, M.; Contractor, R.; Tsao, T.; Samudio, I.; Ruvolo, P.P.; Kitada, S.; Deng, X.; Zhai, D.; Shi, Y.X.; Sneed, T.; Verhaegen, M.; Soengas, M.; Ruvolo, V.R.; McQueen, T.; Schober, W.D.; Watt, J.C.; Jiffar, T.; Ling, X.; Marini, F.C.; Harris, D.; Dietrich, M.; Estrov, Z.; McCubrey, J.; May, W.S.; Reed, J.C.; Andreeff, M. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell, 2006, 10(5), 375-388.
[http://dx.doi.org/10.1016/j.ccr.2006.10.006] [PMID: 17097560]
[99]
Zhu, Y.; Doornebal, E.J.; Pirtskhalava, T.; Giorgadze, N.; Wentworth, M.; Fuhrmann-Stroissnigg, H.; Niedernhofer, L.J.; Robbins, P.D.; Tchkonia, T.; Kirkland, J.L. New agents that target senescent cells: The flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging, 2017, 9(3), 955-963.
[http://dx.doi.org/10.18632/aging.101202] [PMID: 28273655]
[100]
Wang, Y.; Chang, J.; Liu, X.; Zhang, X.; Zhang, S.; Zhang, X.; Zhou, D.; Zheng, G. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY), 2016, 8(11), 2915-2926.
[http://dx.doi.org/10.18632/aging.101100] [PMID: 27913811]
[101]
Zheng, J.; Son, D.J.; Gu, S.M.; Woo, J.R.; Ham, Y.W.; Lee, H.P.; Kim, W.J.; Jung, J.K.; Hong, J.T. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway. Sci. Rep., 2016, 6(1), 26357.
[http://dx.doi.org/10.1038/srep26357] [PMID: 27198178]
[102]
Roe, S.M.; Prodromou, C.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem., 1999, 42(2), 260-266.
[http://dx.doi.org/10.1021/jm980403y] [PMID: 9925731]
[103]
Fuhrmann-Stroissnigg, H.; Ling, Y.Y.; Zhao, J.; McGowan, S.J.; Zhu, Y.; Brooks, R.W.; Grassi, D.; Gregg, S.Q.; Stripay, J.L.; Dorronsoro, A.; Corbo, L.; Tang, P.; Bukata, C.; Ring, N.; Giacca, M.; Li, X.; Tchkonia, T.; Kirkland, J.L.; Niedernhofer, L.J.; Robbins, P.D. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun., 2017, 8(1), 422.
[http://dx.doi.org/10.1038/s41467-017-00314-z] [PMID: 28871086]
[104]
Samaraweera, L.; Adomako, A.; Rodriguez-Gabin, A.; McDaid, H.M. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci. Rep., 2017, 7(1), 1900.
[http://dx.doi.org/10.1038/s41598-017-01964-1] [PMID: 28507307]
[105]
Triana-Martínez, F.; Picallos-Rabina, P.; Da Silva-Álvarez, S.; Pietrocola, F.; Llanos, S.; Rodilla, V.; Soprano, E.; Pedrosa, P.; Ferreirós, A.; Barradas, M.; Hernández-González, F.; Lalinde, M.; Prats, N.; Bernadó, C.; González, P.; Gómez, M.; Ikonomopoulou, M.P.; Fernández-Marcos, P.J.; García-Caballero, T.; del Pino, P.; Arribas, J.; Vidal, A.; González-Barcia, M.; Serrano, M.; Loza, M.I.; Domínguez, E.; Collado, M. Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun., 2019, 10(1), 4731.
[http://dx.doi.org/10.1038/s41467-019-12888-x] [PMID: 31636264]
[106]
Baar, M.P.; Brandt, R.M.C.; Putavet, D.A.; Klein, J.D.D.; Derks, K.W.J.; Bourgeois, B.R.M.; Stryeck, S.; Rijksen, Y.; van Willigenburg, H.; Feijtel, D.A.; van der Pluijm, I.; Essers, J.; van Cappellen, W.A.; van IJcken, W.F.; Houtsmuller, A.B.; Pothof, J.; de Bruin, R.W.F.; Madl, T.; Hoeijmakers, J.H.J.; Campisi, J.; de Keizer, P.L.J. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell, 2017, 169(1), 132-147.e16.
[http://dx.doi.org/10.1016/j.cell.2017.02.031] [PMID: 28340339]
[107]
Li, W.; He, Y.; Zhang, R.; Zheng, G.; Zhou, D. The curcumin analog EF24 is a novel senolytic agent. Aging (Albany NY), 2019, 11(2), 771-782.
[http://dx.doi.org/10.18632/aging.101787] [PMID: 30694217]
[108]
Guerrero, A.; Herranz, N.; Sun, B.; Wagner, V.; Gallage, S.; Guiho, R.; Wolter, K.; Pombo, J.; Irvine, E.E.; Innes, A.J.; Birch, J.; Glegola, J.; Manshaei, S.; Heide, D.; Dharmalingam, G.; Harbig, J.; Olona, A.; Behmoaras, J.; Dauch, D.; Uren, A.G.; Zender, L.; Vernia, S.; Martínez-Barbera, J.P.; Heikenwalder, M.; Withers, D.J.; Gil, J. Cardiac glycosides are broad-spectrum senolytics. Nat. Metab., 2019, 1(11), 1074-1088.
[http://dx.doi.org/10.1038/s42255-019-0122-z] [PMID: 31799499]
[109]
Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; Rohlena, J.; Neuzil, J. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ., 2019, 26(2), 276-290.
[http://dx.doi.org/10.1038/s41418-018-0118-3] [PMID: 29786070]
[110]
Jeon, O.H.; Kim, C.; Laberge, R.M.; Demaria, M.; Rathod, S.; Vasserot, A.P.; Chung, J.W.; Kim, D.H.; Poon, Y.; David, N.; Baker, D.J.; van Deursen, J.M.; Campisi, J.; Elisseeff, J.H. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med., 2017, 23(6), 775-781.
[http://dx.doi.org/10.1038/nm.4324] [PMID: 28436958]
[111]
Lim, H.; Park, H.; Kim, H.P. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem. Pharmacol., 2015, 96(4), 337-348.
[http://dx.doi.org/10.1016/j.bcp.2015.06.013] [PMID: 26093063]
[112]
Moiseeva, O.; Deschênes-Simard, X.; St-Germain, E.; Igelmann, S.; Huot, G.; Cadar, A.E.; Bourdeau, V.; Pollak, M.N.; Ferbeyre, G. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NFB activation. Aging Cell, 2013, 12(3), 489-498.
[http://dx.doi.org/10.1111/acel.12075] [PMID: 23521863]
[113]
Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; Georgilis, A.; Montoya, A.; Wolter, K.; Dharmalingam, G.; Faull, P.; Carroll, T.; Martínez-Barbera, J.P.; Cutillas, P.; Reisinger, F.; Heikenwalder, M.; Miller, R.A.; Withers, D.; Zender, L.; Thomas, G.J.; Gil, J. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol., 2015, 17(9), 1205-1217.
[http://dx.doi.org/10.1038/ncb3225] [PMID: 26280535]
[114]
Laberge, R.M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; Limbad, C.; Demaria, M.; Li, P.; Hubbard, G.B.; Ikeno, Y.; Javors, M.; Desprez, P.Y.; Benz, C.C.; Kapahi, P.; Nelson, P.S.; Campisi, J. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol., 2015, 17(8), 1049-1061.
[http://dx.doi.org/10.1038/ncb3195] [PMID: 26147250]
[115]
Xu, M.; Tchkonia, T.; Ding, H.; Ogrodnik, M.; Lubbers, E.R.; Pirtskhalava, T.; White, T.A.; Johnson, K.O.; Stout, M.B.; Mezera, V.; Giorgadze, N.; Jensen, M.D.; LeBrasseur, N.K.; Kirkland, J.L. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl. Acad. Sci. USA, 2015, 112(46), E6301-E6310.
[http://dx.doi.org/10.1073/pnas.1515386112] [PMID: 26578790]
[116]
Pitozzi, V.; Mocali, A.; Laurenzana, A.; Giannoni, E.; Cifola, I.; Battaglia, C.; Chiarugi, P.; Dolara, P.; Giovannelli, L. Chronic resveratrol treatment ameliorates cell adhesion and mitigates the inflammatory phenotype in senescent human fibroblasts. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(4), 371-381.
[http://dx.doi.org/10.1093/gerona/gls183] [PMID: 22933405]
[117]
Kumar, R.; Sharma, A.; Kumari, A.; Gulati, A.; Padwad, Y.; Sharma, R. Epigallocatechin gallate suppresses premature senescence of preadipocytes by inhibition of PI3K/Akt/mTOR pathway and induces senescent cell death by regulation of Bax/Bcl-2 pathway. Biogerontology, 2019, 20(2), 171-189.
[http://dx.doi.org/10.1007/s10522-018-9785-1] [PMID: 30456590]
[118]
Laberge, R.M.; Zhou, L.; Sarantos, M.R.; Rodier, F.; Freund, A.; de Keizer, P.L.J.; Liu, S.; Demaria, M.; Cong, Y.S.; Kapahi, P.; Desprez, P.Y.; Hughes, R.E.; Campisi, J. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell, 2012, 11(4), 569-578.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00818.x] [PMID: 22404905]
[119]
Kang, H.T.; Park, J.T.; Choi, K.; Kim, Y.; Choi, H.J.C.; Jung, C.W.; Lee, Y.S.; Park, S.C. Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol., 2017, 13(6), 616-623.
[http://dx.doi.org/10.1038/nchembio.2342] [PMID: 28346404]
[120]
Tilstra, J.S.; Robinson, A.R.; Wang, J.; Gregg, S.Q.; Clauson, C.L.; Reay, D.P.; Nasto, L.A.; St Croix, C.M.; Usas, A.; Vo, N.; Huard, J.; Clemens, P.R.; Stolz, D.B.; Guttridge, D.C.; Watkins, S.C.; Garinis, G.A.; Wang, Y.; Niedernhofer, L.J.; Robbins, P.D. NF-κB inhibition delays DNA damage–induced senescence and aging in mice. J. Clin. Invest., 2012, 122(7), 2601-2612.
[http://dx.doi.org/10.1172/JCI45785] [PMID: 22706308]
[121]
Wiley, C.D.; Schaum, N.; Alimirah, F.; Lopez-Dominguez, J.A.; Orjalo, A.V.; Scott, G.; Desprez, P.Y.; Benz, C.; Davalos, A.R.; Campisi, J. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci. Rep., 2018, 8(1), 2410.
[http://dx.doi.org/10.1038/s41598-018-20000-4] [PMID: 29402901]
[122]
Bae, Y.U.; Son, Y.; Kim, C.H.; Kim, K.S.; Hyun, S.H.; Woo, H.G.; Jee, B.A.; Choi, J.H.; Sung, H.K.; Choi, H.C.; Park, S.Y.; Bae, J.H.; Doh, K.O.; Kim, J.R. Embryonic stem cell–derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-β receptor 2 pathway. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(9), 1359-1367.
[http://dx.doi.org/10.1093/gerona/gly208] [PMID: 30239625]

© 2024 Bentham Science Publishers | Privacy Policy