Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Caspase-3 Activators as Anticancer Agents

Author(s): Nitin Srivastava and Anil Kumar Saxena*

Volume 24, Issue 10, 2023

Published on: 31 March, 2023

Page: [783 - 804] Pages: 22

DOI: 10.2174/1389203724666230227115305

Price: $65

conference banner
Abstract

Background: The cancer is still a major cause of death worldwide. Among different targets to design anticancer agents, caspase-3 is an important target as its cleavage and activation lead to apoptosis and finally, cancer cell death. Apart from some naturally occurring molecules, many small molecules have been reported as caspase-3 activators.

Objectives: In view of the above, the objective has been to review the published work on small molecules reported as caspase-3 activators and their anticancer activity to get some novel lead molecules for designing novel molecules of improved cancer therapeutic.

Methods: Literature search has been carried out using different search engines like google, Elsevier, Science direct, RSC, etc. for the publications of small molecules as caspase-3 activators inducing apoptosis in cancer cells.

Results: In this review, the small molecules showing caspase-3 cleavage and activation have been discussed under different broad chemical classes so as to provide some insight into the structural features responsible for caspase-3 activation leading to anticancer activity. The review also encompasses the established drugs, novel organometallics showing caspase-3 activation and anticancer activity.

Conclusion: A large number of small molecules including some established drugs and organometallics have shown cleavage and activation of caspase-3 leading to apoptosis and anticancer activity. Many reported potent molecules of different chemical classes may be useful as lead molecules for optimization of anticancer activity as well as they may provide an insight of structural features which may be useful in designing novel caspase-3 activators as anticancer agents for drug development.

Keywords: Caspase-3, cancer cells, caspase-3 activation, apoptosis, cytochrome c, anticancer agent, hemostasis, EGFR, BCRABL kinase.

Graphical Abstract
[2]
National Cancer Institute. Available from : https://www.cancer.gov/about-cancer/under-standing/statistics
[3]
Dynlacht, B.D. Regulation of transcription by proteins that control the cell cycle. Nature, 1997, 389(6647), 149-152.
[http://dx.doi.org/10.1038/38225] [PMID: 9296491]
[4]
Elledge, S.J. Cell cycle checkpoints: Preventing an identity crisis. Science, 1996, 274(5293), 1664-1672.
[http://dx.doi.org/10.1126/science.274.5293.1664] [PMID: 8939848]
[5]
Baselga, J. Targeting tyrosine kinases in cancer: The second wave. Science, 2006, 312(5777), 1175-1178.
[http://dx.doi.org/10.1126/science.1125951] [PMID: 16728632]
[6]
Cross, S.A.; Lyseng-Williamson, K.A. Imatinib. Drugs, 2007, 67(17), 2645-2654.
[http://dx.doi.org/10.2165/00003495-200767170-00013] [PMID: 18034597]
[7]
Roccaro, A.; Vacca, A.; Ribatti, D. Bortezomib in the treatment of cancer. Recent Patents Anticancer Drug Discov., 2006, 1(3), 397-403.
[http://dx.doi.org/10.2174/157489206778776925] [PMID: 18221049]
[8]
Rini, B.I. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin. Cancer Res., 2008, 14(5), 1286-1290.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4719] [PMID: 18316545]
[9]
Deeken, J.F.; Löscher, W. The blood-brain barrier and cancer: Transporters, treatment, and Trojan horses. Clin. Cancer Res., 2007, 13(6), 1663-1674.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2854] [PMID: 17363519]
[10]
Norbury, C.J.; Hickson, I.D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 367-401.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.367] [PMID: 11264462]
[11]
Lockshin, R.A.; Williams, C.M. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. J. Insect Physiol., 1965, 11(2), 123-133.
[http://dx.doi.org/10.1016/0022-1910(65)90099-5] [PMID: 14287218]
[12]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[13]
Kerr, J F R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[14]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(6805), 770-776.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[15]
Obeng, E. Apoptosis (programmed cell death) and its signals-a review. Braz. J. Biol., 2021, 81(4), 1133-1143.
[http://dx.doi.org/10.1590/1519-6984.228437] [PMID: 33111928]
[16]
Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P.; Sliva, D.; Subbarayan, P.R.; Sarkar, M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Ye, L.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Nowsheen, S.; Pantano, F.; Santini, D. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Seminars. Cancer Biol., 2015, 35(Supplement.), S244-S275.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.008]
[17]
Earnshaw, W.C.; Martins, L.M.; Kaufmann, S.H. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem., 1999, 68(1), 383-424.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.383] [PMID: 10872455]
[18]
Fernández, D.J.; Lamkanfi, M. Inflammatory caspases: Key regulators of inflammation and cell death. Biol. Chem., 2015, 396(3), 193-203.
[http://dx.doi.org/10.1515/hsz-2014-0253] [PMID: 25389992]
[19]
Rendl, M.; Ban, J.; Mrass, P.; Mayer, C.; Lengauer, B.; Eckhart, L.; Declerq, W.; Tschachler, E. Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J. Invest. Dermatol., 2002, 119(5), 1150-1155.
[http://dx.doi.org/10.1046/j.1523-1747.2002.19532.x] [PMID: 12445205]
[20]
Yadav, P.; Yadav, R.; Jain, S.; Vaidya, A. Caspase‐3: A primary target for natural and synthetic compounds for cancer therapy. Chem. Biol. Drug Des., 2021, 98(1), 144-165.
[http://dx.doi.org/10.1111/cbdd.13860] [PMID: 33963665]
[21]
Crawford, E.D.; Seaman, J.E.; Agard, N.; Hsu, G.W.; Julien, O.; Mahrus, S.; Nguyen, H.; Shimbo, K.; Yoshihara, H.A.I.; Zhuang, M.; Chalkley, R.J.; Wells, J.A. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Mol. Cell. Proteomics, 2013, 12(3), 813-824.
[http://dx.doi.org/10.1074/mcp.O112.024372] [PMID: 23264352]
[22]
Kothakota, S.; Azuma, T.; Reinhard, C.; Klippel, A.; Tang, J.; Chu, K.; McGarry, T.J.; Kirschner, M.W.; Koths, K.; Kwiatkowski, D.J.; Williams, L.T. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science, 1997, 278(5336), 294-298.
[http://dx.doi.org/10.1126/science.278.5336.294] [PMID: 9323209]
[23]
Harrington, H.A.; Ho, K.L.; Ghosh, S.; Tung, K.C. Construction and analysis of a modular model of caspase activation in apoptosis. Theor. Biol. Med. Model., 2008, 5(1), 26.
[http://dx.doi.org/10.1186/1742-4682-5-26] [PMID: 19077196]
[24]
Trapani, J.A.; Smyth, M.J. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol., 2002, 2(10), 735-747.
[http://dx.doi.org/10.1038/nri911] [PMID: 12360212]
[25]
Lieberman, J.; Fan, Z. Nuclear war: The granzyme A-bomb. Curr. Opin. Immunol., 2003, 15(5), 553-559.
[http://dx.doi.org/10.1016/S0952-7915(03)00108-0] [PMID: 14499264]
[26]
Wyllie, A.H. Apoptosis: An overview. Br. Med. Bull., 1997, 53(3), 451-465.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a011623] [PMID: 9374030]
[27]
Perry, D.K.; Smyth, M.J.; Stennicke, H.R.; Salvesen, G.S.; Duriez, P.; Poirier, G.G.; Hannun, Y.A. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem., 1997, 272(30), 18530-18533.
[http://dx.doi.org/10.1074/jbc.272.30.18530] [PMID: 9228015]
[28]
Stennicke, H.R.; Renatus, M.; Meldal, M.; Salvesen, G.S. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem. J., 2000, 350(2), 563-568.
[http://dx.doi.org/10.1042/bj3500563] [PMID: 10947972]
[29]
Salvesen, G.S. Caspases: Opening the boxes and interpreting the arrows. Cell Death Differ., 2002, 9(1), 3-5.
[http://dx.doi.org/10.1038/sj.cdd.4400963] [PMID: 11803369]
[30]
Gervais, F.G.; Xu, D.; Robertson, G.S.; Vaillancourt, J.P.; Zhu, Y.; Huang, J.; LeBlanc, A.; Smith, D.; Rigby, M.; Shearman, M.S.; Clarke, E.E.; Zheng, H.; Van Der Ploeg, L.H.T.; Ruffolo, S.C.; Thornberry, N.A.; Xanthoudakis, S.; Zamboni, R.J.; Roy, S.; Nicholson, D.W. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell, 1999, 97(3), 395-406.
[http://dx.doi.org/10.1016/S0092-8674(00)80748-5] [PMID: 10319819]
[31]
Entrez Gene: CASP3 caspase 3, apoptosis-related cysteine peptidase by https://www.ncbi.nlm.nih.gov/gene/836
[32]
Lavrik, I.N.; Golks, A.; Krammer, P.H. Caspases: Pharmacological manipulation of cell death. J. Clin. Invest., 2005, 115(10), 2665-2672.
[http://dx.doi.org/10.1172/JCI26252] [PMID: 16200200]
[33]
Agniswamy, J.; Fang, B.; Weber, I.T. Plasticity of S2-S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis. FEBS J., 2007, 274(18), 4752-4765.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05994.x]
[34]
Thornberry, N.A.; Rano, T.A.; Peterson, E.P.; Rasper, D.M.; Timkey, T.; Garcia-Calvo, M.; Houtzager, V.M.; Nordstrom, P.A.; Roy, S.; Vaillancourt, J.P.; Chapman, K.T.; Nicholson, D.W. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem., 1997, 272(29), 17907-17911.
[http://dx.doi.org/10.1074/jbc.272.29.17907] [PMID: 9218414]
[35]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[36]
Weber, I.; Fang, B.; Agniswamy, J. Caspases: Structure-guided design of drugs to control cell death. Mini Rev. Med. Chem., 2008, 8(11), 1154-1162.
[http://dx.doi.org/10.2174/138955708785909899] [PMID: 18855730]
[37]
Cheng, E.H.Y.; Kirsch, D.G.; Clem, R.J.; Ravi, R.; Kastan, M.B.; Bedi, A.; Ueno, K.; Hardwick, J.M. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science, 1997, 278(5345), 1966-1968.
[http://dx.doi.org/10.1126/science.278.5345.1966] [PMID: 9395403]
[38]
Takahashi, A.; Alnemri, E.S.; Lazebnik, Y.A.; Fernandes-Alnemri, T.; Litwack, G.; Moir, R.D.; Goldman, R.D.; Poirier, G.G.; Kaufmann, S.H.; Earnshaw, W.C. Cleavage of lamin A by Mch2 α but not CPP32: Multiple interleukin 1 β-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8395-8400.
[http://dx.doi.org/10.1073/pnas.93.16.8395] [PMID: 8710882]
[39]
Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem., 2021.
[http://dx.doi.org/10.1002/bab.2233] [PMID: 34342377]
[40]
Huan, L.C. (E)- N′-Arylidene-2-(3-oxo-2,3-dihydro-4H-benzo[b] [1,4]oxazin-4-yl)acetohydrazides: Synthesis and evaluation of caspase activation activity and cytotoxicity. Chem. Biodivers., 2018, 15(10), e1800322.
[http://dx.doi.org/10.1002/cbdv.201800322] [PMID: 30054973]
[41]
Kassab, A.E.; Hassan, R.A. Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg. Chem., 2018, 80, 531-544.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.008] [PMID: 30014921]
[42]
Dung, D.T.M.; Park, E.J.; Anh, D.T.; Phan, D.T.P.; Na, I.H.; Kwon, J.H.; Kang, J.S.; Tung, T.T.; Han, S.B.; Nam, N.H. Design, synthesis and evaluation of novel 2-oxoindoline-based acetohydrazides as antitumor agents. Sci. Rep., 2022, 12(1), 2886.
[http://dx.doi.org/10.1038/s41598-022-06887-0] [PMID: 35190616]
[43]
Huan, L.C.; Phuong, C.V.; Truc, L.C.; Thanh, V.N.; Pham-The, H.; Huong, L.T.T.; Thuan, N.T.; Park, E.J.; Ji, A.Y.; Kang, J.S.; Han, S.B.; Tran, P.T.; Nam, N.H. (E)- N′ -Arylidene-2-(4-oxoquinazolin-4(3H)-yl) acetohydrazides: Synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 465-478.
[http://dx.doi.org/10.1080/14756366.2018.1555536] [PMID: 30734614]
[44]
Şenkardeş, S.; Erdoğan, Ö.; Çevik, Ö.; Küçükgüzel, Ş.G. Synthesisand biological evaluation of novel aryloxyacetic acid hydrazide derivatives as anticancer agents. Synth. Commun., 2021, 51(17), 2634-2643.
[http://dx.doi.org/10.1080/00397911.2021.1945105]
[45]
Kassab, A.E.; Gedawy, E.M.; Hamed, M.I.A.; Doghish, A.S.; Hassan, R.A. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 922-939.
[http://dx.doi.org/10.1080/14756366.2021.1901089] [PMID: 33896327]
[46]
Feng, J.; Fang, H.; Wang, X.; Jia, Y.; Zhang, L.; Jiao, J.; Zhang, J.; Gu, L.; Xu, W. Discovery of N-hydroxy-4-(3-phenylpropanamido)-benzamide derivative 5j, a novel histone deacetylase inhibitor, as a potential therapeutic agent for human breast cancer. Cancer Biol. Ther., 2011, 11(5), 477-489.
[http://dx.doi.org/10.4161/cbt.11.5.14529] [PMID: 21263218]
[47]
Salah Ayoup, M.; Wahby, Y.; Abdel-Hamid, H.; Ramadan, E.S.; Teleb, M.; Abu-Serie, M.M.; Noby, A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem., 2019, 168, 340-356.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.051]
[48]
Syam, S.; Abdelwahab, S.I.; Al-Mamary, M.A.; Mohan, S. Synthesis of chalcones with anticancer activities. Molecules, 2012, 17(6), 6179-6195.
[http://dx.doi.org/10.3390/molecules17066179] [PMID: 22634834]
[49]
Nagraj, J.; Chatterjee, S.; Pal, T.; Sakpal, A.S.; Gota, V.; Ramaa, C.S.; Ray, P. A novel series of di-fluorinated propanedione derivatives synergistically augment paclitaxel mediated caspase 3 activation in ovarian cancer cells. J. Cancer Res. Ther., 2014, 10(3), 701-709.
[PMID: 25313764]
[50]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group. J. Med. Chem., 2004, 47(25), 6299-6310.
[http://dx.doi.org/10.1021/jm049640t] [PMID: 15566300]
[51]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions. J. Med. Chem., 2007, 50(12), 2858-2864.
[http://dx.doi.org/10.1021/jm070216c] [PMID: 17497765]
[52]
Ahmed, H.E.A.; El-Nassag, M.A.A.; Hassan, A.H.; Okasha, R.M.; Ihmaid, S.; Fouda, A.M.; Afifi, T.H.; Aljuhani, A.; El-Agrody, A.M. Introducing novel potent anticancer agents of 1H -benzo[ f]chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1074-1088.
[http://dx.doi.org/10.1080/14756366.2018.1476503] [PMID: 29923425]
[53]
Ko, J.H.; Ho Baek, S.; Nam, D.; Chung, W.S.; Lee, S.G.; Lee, J.; Mo Yang, W.; Um, J.Y.; Seok Ahn, K. 3-Formylchromone inhibits proliferation and induces apoptosis of multiple myeloma cells by abrogating STAT3 signaling through the induction of PIAS3. Immunopharmacol. Immunotoxicol., 2016, 38(5), 334-343.
[http://dx.doi.org/10.1080/08923973.2016.1203928] [PMID: 27324722]
[54]
Chung, Y.M.; Yoo, Y.D.; Kim, J.S.; Lee, C.Y.; Kim, H.J. The activity of 2′-benzoyloxycinnamaldehyde against drug-resistant cancer cell lines. J. Chemother., 2007, 19(4), 428-437.
[http://dx.doi.org/10.1179/joc.2007.19.4.428] [PMID: 17855188]
[55]
Zhang, H.Z.; Drewe, J.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery and SAR of indole-2-carboxylic acid benzylidene-hydrazides as a new series of potent apoptosis inducers using a cell-based HTS assay. Bioorg. Med. Chem., 2004, 12(13), 3649-3655.
[http://dx.doi.org/10.1016/j.bmc.2004.04.017] [PMID: 15186849]
[56]
Sarma, P.; Bag, I.; Ramaiah, M.J.; Kamal, A.; Bhadra, U.; Pal Bhadra, M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol. Ther., 2015, 16(10), 1486-1501.
[http://dx.doi.org/10.1080/15384047.2015.1071731] [PMID: 26192233]
[57]
Eldehna, W.M.; Abo-Ashour, M.F.; Ibrahim, H.S.; Al-Ansary, G.H.; Ghabbour, H.A.; Elaasser, M.M.; Ahmed, H.Y.A.; Safwat, N.A. Novel [(3-indolylmethylene)hydrazono]indolin-2-ones as apoptotic anti-proliferative agents: Design, synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 686-700.
[http://dx.doi.org/10.1080/14756366.2017.1421181] [PMID: 29560733]
[58]
Zhang, X.F.; Sun, R.; Jia, Y.; Chen, Q.; Tu, R.F.; Li, K.; Zhang, X.D.; Du, R.L.; Cao, R. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents. Sci. Rep., 2016, 6(1), 33204.
[http://dx.doi.org/10.1038/srep33204] [PMID: 27625151]
[59]
Molatlhegi, R.P.; Phulukdaree, A.; Anand, K.; Gengan, R.M.; Tiloke, C.; Chuturgoon, A.A. Cytotoxic effect of a novel synthesized carbazole compound on A549 lung cancer cell line. PLoS One, 2015, 10(7), e0129874.
[http://dx.doi.org/10.1371/journal.pone.0129874] [PMID: 26134408]
[60]
Zhang, H.; Xun, W.; Guo, S.; Wang, X.; Liu, X. Anticancer activity of heptazoline against the SCC-15 human oral cancer cells and inhibition of PI3K/AKT signalling pathway. All Life, 2022, 15(1), 371-377.
[http://dx.doi.org/10.1080/26895293.2022.2052191]
[61]
Usmorov, A.; Ratter, F.; Lehmann, V. Nitric oxide- induced apoptosis in human Leukemic lines require mitochondrial lipid degradation and cytochrome c release. Blood, 1999, 93, 2342-2352.
[http://dx.doi.org/10.1182/blood.V93.7.2342] [PMID: 10090945]
[62]
Yabuki, M.; Tsutsui, K.; Horton, A.A.; Yoshioka, T.; Utsumi, K. Caspase activation and cytochrome c release during HL-60 cell apoptosis induced by a nitric oxide donor. Free Radic. Res., 2000, 32(6), 507-514.
[http://dx.doi.org/10.1080/10715760000300511] [PMID: 10798716]
[63]
Yadav, N.; Kumar, P.; Chhikara, A.; Chopra, M. Development of 1,3,4-oxadiazole thione based novel anticancer agents: Design, synthesis and in vitro studies. Biomed. Pharmacother., 2017, 95, 721-730.
[http://dx.doi.org/10.1016/j.biopha.2017.08.110] [PMID: 28888209]
[64]
El Mansouri, A.E.; Oubella, A.; Maatallah, M. AitItto, M.Y.; Zahouily, M.; Morjani, H.; Lazrek, H.B. Design, synthesis, biological evaluation and molecular docking of new uracil analogs-1,2,4-oxadiazole hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2020, 30(19), 127438.
[http://dx.doi.org/10.1016/j.bmcl.2020.127438] [PMID: 32736079]
[65]
Zhang, H.Z.; Kasibhatla, S.; Kuemmerle, J.; Kemnitzer, W.; Ollis-Mason, K.; Qiu, L.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery and structure-activity relationship of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. J. Med. Chem., 2005, 48(16), 5215-5223.
[http://dx.doi.org/10.1021/jm050292k] [PMID: 16078840]
[66]
Vaidya, A. Discovery of novel 1,2,4-oxadiazole derivatives as potent caspase-3 activator for cancer treatment. Chemistry, 2021, 3(1), 373-381.
[http://dx.doi.org/10.3390/chemistry3010027]
[67]
Vaidya, A.; Jain, A.K.; Prashantha Kumar, B.R.; Sastry, G.N.; Kashaw, S.K.; Agrawal, R.K. CoMFA, CoMSIA, kNN MFA and docking studies of 1,2,4-oxadiazole derivatives as potent caspase-3 activators. Arab. J. Chem., 2017, 10(2), S3936-S3946.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.034]
[68]
Buckley, C.D.; Pilling, D.; Henriquez, N.V.; Parsonage, G.; Threlfall, K.; Scheel-Toellner, D.; Simmons, D.L.; Akbar, A.N.; Lord, J.M.; Salmon, M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature, 1999, 397(6719), 534-539.
[http://dx.doi.org/10.1038/17409] [PMID: 10028971]
[69]
Anuradha, C.D.; Kanno, S.; Hirano, S. RGD peptide-induced apoptosis in human leukemia HL-60 cells requires caspase-3 activation. Cell Biol. Toxicol., 2000, 16(5), 275-283.
[http://dx.doi.org/10.1023/A:1026758429238] [PMID: 11201051]
[70]
Morak-Młodawska, B.; Pluta, K.; Latocha, M.; Jeleń M.; Kuśmierz, D.; Suwińska, K.; Shkurenko, A.; Czuba, Z.; Jurzak, M. 10 H -1,9-diazaphenothiazine and its 10-derivatives: Synthesis, characterisation and biological evaluation as potential anticancer agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1298-1306.
[http://dx.doi.org/10.1080/14756366.2019.1639695] [PMID: 31307242]
[71]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, M.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2(10), 543-550.
[http://dx.doi.org/10.1038/nchembio814] [PMID: 16936720]
[72]
Wang, F.; Liu, Y.; Wang, L.; Yang, J.; Zhao, Y.; Wang, N.; Cao, Q.; Gong, P.; Wu, C. Targeting procaspase‐3 with WF ‐208, a novel PAC ‐1 derivative, causes selective cancer cell apoptosis. J. Cell. Mol. Med., 2015, 19(8), 1916-1928.
[http://dx.doi.org/10.1111/jcmm.12566] [PMID: 25754465]
[73]
ElNaggar, A.C.; Saini, U.; Naidu, S.; Wanner, R.; Sudhakar, M.; Fowler, J.; Nagane, M.; Kuppusamy, P.; Cohn, D.E.; Selvendiran, K. Anticancer potential of diarylidenyl piperidone derivatives, HO-4200 and H-4318, in cisplatin resistant primary ovarian cancer. Cancer Biol. Ther., 2016, 17(10), 1107-1115.
[http://dx.doi.org/10.1080/15384047.2016.1210733] [PMID: 27415751]
[74]
Elmeligie, S.; Aboul-Magd, A.M.; Lasheen, D.S.; Ibrahim, T.M.; Abdelghany, T.M.; Khojah, S.M.; Abouzid, K.A.M. Design and synthesis of phthalazine-based compounds as potent anticancer agents with potential antiangiogenic activity via VEGFR-2 inhibition. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1347-1367.
[http://dx.doi.org/10.1080/14756366.2019.1642883] [PMID: 31322015]
[75]
Nagahara, Y.; Nagahara, K. Relationship between structure and antiproliferative activity novel 5-amino-4-cyanopyrazole-1-formal-dehydehydrazono derivatives on HL-60RG human leukemia cells. Anticancer Res., 2017, 37(11), 6329-6333.
[PMID: 29061816]
[76]
Özdemir, A. Altıntop, M.D.; Kaplancıklı Z.A.; Turan-Zitouni, G.; Çiftçi, G.A.; Yıldırım, Ş.U. Synthesis of 1-acetyl-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and evaluation of their anticancer activity. J. Enzyme Inhib. Med. Chem., 2012, 28(6), 1-7.
[http://dx.doi.org/10.3109/14756366.2012.724682] [PMID: 23020635]
[77]
Jiang, X.; Kim, H.E.; Shu, H.; Zhao, Y.; Zhang, H.; Kofron, J.; Donnelly, J.; Burns, D.; Ng, S.; Rosenberg, S.; Wang, X. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science, 2003, 299(5604), 223-226.
[http://dx.doi.org/10.1126/science.1076807] [PMID: 12522243]
[78]
Cai, S.X.; Nguyen, B.; Jia, S.; Herich, J.; Guastella, J.; Reddy, S.; Tseng, B.; Drewe, J.; Kasibhatla, S. Discovery of substituted N-phenyl nicotinamides as potent inducers of apoptosis using a cell- and caspase-based high throughput screening assay. J. Med. Chem., 2003, 46(12), 2474-2481.
[http://dx.doi.org/10.1021/jm0205200] [PMID: 12773051]
[79]
El-Naggar, M.; Almahli, H.; Ibrahim, H.; Eldehna, W.; Abdel-Aziz, H. Pyridine-ureas as potential anticancer agents: Synthesis and in vitro biological evaluation. Molecules, 2018, 23(6), 1459.
[http://dx.doi.org/10.3390/molecules23061459] [PMID: 29914120]
[80]
Eldehna, W.M.; Hassan, G.S.; Al-Rashood, S.T.; Al-Warhi, T.; Altyar, A.E.; Alkahtani, H.M.; Almehizia, A.A.; Abdel-Aziz, H.A. Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 322-332.
[http://dx.doi.org/10.1080/14756366.2018.1547286] [PMID: 30722708]
[81]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo[3,4- d]pyrimidines: Design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046] [PMID: 30688116]
[82]
El-Dydamony, N.M.; Abdelnaby, R.M.; Abdelhady, R.; Ali, O.; Fahmy, M.I. R Fakhr Eldeen, R.; Helwa, A.A. Pyrimidine-5-carbonitrile based potential anticancer agents as apoptosis inducers through PI3K/AKT axis inhibition in leukaemia K562. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 895-911.
[http://dx.doi.org/10.1080/14756366.2022.2051022] [PMID: 35345960]
[83]
Qin, J.; Liu, J.; Wu, C.; Xu, J.; Tang, B.; Guo, K.; Chen, X.; Liu, W.; Wu, T.; Zhou, H.; Fang, M.; Wu, Z. Synthesis and biological evaluation of (3/4-(pyrimidin-2-ylamino)benzoyl)-based hydrazine-1-carboxamide/carbothioamide derivatives as novel RXRα antagonists. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 880-896.
[http://dx.doi.org/10.1080/14756366.2020.1740692] [PMID: 32223461]
[84]
Ahmed, N.M.; Youns, M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1110-1120.
[http://dx.doi.org/10.1080/14756366.2019.1612889] [PMID: 31117890]
[85]
Sirisoma, N.; Kasibhatla, S.; Nguyen, B.; Pervin, A.; Wang, Y.; Claassen, G.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of substituted 4-anilino-2-(2-pyridyl)pyrimidines as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. Part 1: Structure–activity relationships of the 4-anilino group. Bioorg. Med. Chem., 2006, 14(23), 7761-7773.
[http://dx.doi.org/10.1016/j.bmc.2006.08.002] [PMID: 16919962]
[86]
Sirisoma, N.; Pervin, A.; Nguyen, B.; Crogan-Grundy, C.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of substituted 4-anilino-2-arylpyrimidines as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 2. Structure–activity relationships of the 2-aryl group. Bioorg. Med. Chem. Lett., 2009, 19(8), 2305-2309.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.074] [PMID: 19285392]
[87]
Kemnitzer, W.; Sirisoma, N.; May, C.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Bioorg. Med. Chem. Lett., 2009, 19(13), 3536-3540.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.145] [PMID: 19464890]
[88]
Watabe, M.; Machida, K.; Osada, H. MT-21 is a synthetic apoptosis inducer that directly induces cytochrome c release from mitochondria. Cancer Res., 2000, 60(18), 5214-5222.
[PMID: 11016650]
[89]
Belal, A. Pyrrolizines as potential anticancer agents: Design synthesis, caspase-3 activation and Micronucleus induction. Anticancer. Agents Med. Chem., 2018, 18(15), 2124-2130.
[http://dx.doi.org/10.2174/1871520618666180409155520]
[90]
Sirisoma, N.; Kasibhatla, S.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J.A.; Anderson, M.B.; Baichwal, V.; Mather, G.G.; Jessing, K.; Hussain, R.; Hoang, K.; Pleiman, C.M.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity. J. Med. Chem., 2008, 51(15), 4771-4779.
[http://dx.doi.org/10.1021/jm8003653] [PMID: 18651728]
[91]
Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J.A.; Anderson, M.B.; Mather, G.; Pleiman, C.M.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of N-(4-methoxyphenyl)-N,2-dimethylquinazolin-4-amine, a potent apoptosis inducer and efficacious anticancer agent with high blood brain barrier penetration. J. Med. Chem., 2009, 52(8), 2341-2351.
[http://dx.doi.org/10.1021/jm801315b] [PMID: 19296653]
[92]
Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Adam Willardsen, J.; Anderson, M.B.; Mather, G.; Pleiman, C.M.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of N-methyl-4-(4-methoxy-anilino)quinazolines as potent apoptosis inducers. Structure–activity relationship of the quinazoline ring. Bioorg. Med. Chem. Lett., 2010, 20(7), 2330-2334.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.155] [PMID: 20188546]
[93]
Zhang, H.Z.; Crogan-Grundy, C.; May, C.; Drewe, J.; Tseng, B.; Cai, S.X. Discovery and structure–activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers. Bioorg. Med. Chem., 2009, 17(7), 2852-2858.
[http://dx.doi.org/10.1016/j.bmc.2009.02.029] [PMID: 19282188]
[94]
Bhunia, S.; Singh, S.; Saxena, S.; Saxena, A. Pharmacophore modeling, docking and molecular dynamics studies on caspase-3 activators binding at β-tubulin site. Curr. Computeraided Drug Des., 2015, 11(1), 72-83.
[http://dx.doi.org/10.2174/1573409911666150701103342] [PMID: 26126610]
[95]
Solyanik, G.I. Quinazoline compounds for antitumor treatment. Exp. Oncol., 2019, 41(1), 3-6.
[http://dx.doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-1.12414] [PMID: 30932417]
[96]
Faraj, F.L.; Zahedifard, M.; Paydar, M.; Looi, C.Y.; Abdul Majid, N.; Ali, H.M.; Ahmad, N.; Gwaram, N.S.; Abdulla, M.A. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells. Sci. World J., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/212096] [PMID: 25548779]
[97]
Nowar, R.M.A.; Osman, E.E.; Abou-Seri, S.M.; El Moghazy, S.M.; Abou El Ella, D.A. Design, synthesis and biological evaluation of some novel quinazolinone derivatives as potent apoptotic inducers. Future Med. Chem., 2018, 10(10), 1191-1205.
[http://dx.doi.org/10.4155/fmc-2017-0284] [PMID: 29749767]
[98]
Mrozek-Wilczkiewicz, A.; Spaczynska, E.; Malarz, K.; Cieslik, W.; Rams-Baron, M.; Kryštof, V.; Musiol, R. Design, Synthesis and in vitro activity of anticancer styrylquinolines, the p53 independent mechanism of action. PLoS One, 2015, 10(11), e0142678.
[http://dx.doi.org/10.1371/journal.pone.0142678] [PMID: 26599982]
[99]
Jin, X.Y.; Chen, H.; Li, D.D.; Li, A.L.; Wang, W.Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 955-972.
[http://dx.doi.org/10.1080/14756366.2019.1605364] [PMID: 31072147]
[100]
Vyas, V.K.; Qureshi, G.; Dayani, H.; Jha, A.; Ghate, M. Pharmacophore-based identification and in vitro validation of apoptosis inducers as anticancer agents. SAR QSAR Environ. Res., 2020, 31(11), 869-881.
[http://dx.doi.org/10.1080/1062936X.2020.1827030] [PMID: 33100034]
[101]
Mehndiratta, S.; Chen, M.C.; Chao, Y.H.; Lee, C.H.; Liou, J.P.; Lai, M.J.; Lee, H.Y. Effect of 3-subsitution of quinolinehydroxamic acids on selectivity of histone deacetylase isoforms. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 74-84.
[http://dx.doi.org/10.1080/14756366.2020.1839446] [PMID: 33161799]
[102]
Liu, R.; Liu, L.; Yang, X.; Fang, H. Discovery and development of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as Bcl-2/Mcl-1 inhibitors. Bioorg. Chem., 2019, 88, 102938.
[http://dx.doi.org/10.1016/j.bioorg.2019.102938] [PMID: 31028992]
[103]
Hanashalshahaby, E.H.A.; Ünaleroğlu, C.; Ak Can, A.; Özgün, A.; Garı̇pcan, B. Design, synthesis, and antitumor evaluation of novel methylene moiety-tetheredtetrahydroquinoline derivatives. Turk. J. Chem., 2019, 43(6), 1552-1569.
[http://dx.doi.org/10.3906/kim-1907-71]
[104]
Kassab, A.E.; Gedawy, E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur. J. Med. Chem., 2018, 150, 403-418.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.026] [PMID: 29547830]
[105]
Wang, W.; Rayburn, E.R.; Velu, S.E.; Nadkarni, D.H.; Murugesan, S.; Zhang, R. In vitro and in vivo anticancer activity of novel synthetic makaluvamine analogues. Clin. Cancer Res., 2009, 15(10), 3511-3518.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2689] [PMID: 19451594]
[106]
Saibu, M.; Sagar, S.; Green, I.; Ameer, F.; Meyer, M. Evaluating the cytotoxic effects of novel quinone compounds. Anticancer Res., 2014, 34(8), 4077-4086.
[PMID: 25075032]
[107]
Sagar, S.; Esau, L.; Moosa, B.; Khashab, N.; Bajic, V.; Kaur, M. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells. Anticancer. Agents Med. Chem., 2014, 14(1), 170-180.
[http://dx.doi.org/10.2174/18715206113136660369] [PMID: 24164046]
[108]
Dubey, N.; Peng, B.Y.; Lin, C.M.; Wang, P.; Wang, J.; Chan, C.H.; Wei, H.J.; Deng, W.P. NSC 95397 suppresses proliferation and induces apoptosis in colon cancer cells through MKP-1 and the ERK1/2 pathway. Int. J. Mol. Sci., 2018, 19(6), 1625.
[http://dx.doi.org/10.3390/ijms19061625] [PMID: 29857489]
[109]
Alsaif, N.A.; Taghour, M.S.; Alanazi, M.M.; Obaidullah, A.J.; Al-Mehizia, A.A.; Alanazi, M.M.; Aldawas, S.; Elwan, A.; Elkady, H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3′4′- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1093-1114.
[http://dx.doi.org/10.1080/14756366.2021.1915303] [PMID: 34056992]
[110]
Alanazi, M.M.; Eissa, I.H.; Alsaif, N.A.; Obaidullah, A.J.; Alanazi, W.A.; Alasmari, A.F.; Albassam, H.; Elkady, H.; Elwan, A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1760-1782.
[http://dx.doi.org/10.1080/14756366.2021.1956488] [PMID: 34340610]
[111]
Alanazi, M.M.; Elwan, A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Taghour, M.S.; Eissa, I.H. Discovery of new 3-methylquinoxalines as potential anti-cancer agents and apoptosis inducers targeting VEGFR-2: Design, synthesis, and in silico studies. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1732-1750.
[http://dx.doi.org/10.1080/14756366.2021.1945591] [PMID: 34325596]
[112]
Li, T.; Dong, Z-R.; Guo, Z-Y.; Wang, C-H.; Tang, Z-Y.; Qu, S-F.; Chen, Z-T.; Li, X-W.; Zhi, X-T. Aspirin enhances IFN-α-induced growth inhibition and apoptosis of hepatocellular carcinoma via JAK1/STAT1 pathway. Cancer Gene Ther., 2013, 20(6), 366-374.
[http://dx.doi.org/10.1038/cgt.2013.29] [PMID: 23703473]
[113]
Selvendiran, K.; Bratasz, A.; Tong, L.; Ignarro, L.J.; Kuppusamy, P. NCX-4016, a nitro-derivative of aspirin, inhibits EGFR and STAT3 signaling and mdulates Bcl-2 proteins in cisplatin-resistant human ovarian cancer cells and xenografts. Cell Cycle, 2008, 7(1), 81-88.
[http://dx.doi.org/10.4161/cc.7.1.5103] [PMID: 18196976]
[114]
Jäntti, M.H.; Talman, V.; Räsänen, K.; Tarvainen, I.; Koistinen, H.; Tuominen, R.K. Anticancer activity of the protein kinase C modulator HMI ‐1a3 in 2D and 3D cell culture models of androgen‐responsive and androgen‐unresponsive prostate cancer. FEBS Open Bio, 2018, 8(5), 817-828.
[http://dx.doi.org/10.1002/2211-5463.12419] [PMID: 29744295]
[115]
Uddin, N.R.; Ali, S.; Tirmizi, S.A.; Ahmad, I.; Zaib, S.; Zubir, M.; Diaconescu, P.L.; Tahir, M.M.; Iqbal, J.; Haider, A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn., 2019.
[http://dx.doi.org/10.1080/07391102.2019.1654924] [PMID: 31411114]
[116]
Amewu, R.K.; Chadwick, J.; Hussain, A.; Panda, S.; Rinki, R.; Janneh, O.; Ward, S.A.; Miguel, C.; Burrell-Saward, H.; Vivas, L.; O’Neill, P.M. Synthesis and evaluation of the antimalarial, anticancer, and caspase 3 activities of tetraoxane dimers. Bioorg. Med. Chem., 2013, 21(23), 7392-7397.
[http://dx.doi.org/10.1016/j.bmc.2013.09.047] [PMID: 24148834]
[117]
Marriott, J.B.; Clarke, I.A.; Czajka, A.; Dredge, K.; Childs, K.; Man, H.W.; Schafer, P.; Govinda, S.; Muller, G.W.; Stirling, D.I.; Dalgleish, A.G. A novel subclass of thalidomide analogue with anti-solid tumor activity in which caspase-dependent apoptosis is associated with altered expression of bcl-2 family proteins. Cancer Res., 2003, 63(3), 593-599.
[PMID: 12566301]
[118]
Drewe, J.; Kasibhatla, S.; Tseng, B.; Shelton, E.; Sperandio, D.; Yee, R.M.; Litvak, J.; Sendzik, M.; Spencer, J.R.; Cai, S.X. Discovery of 5-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7-phenyl-(E)-2,3,6,7-tetrahydro-1,4-thiazepines as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Bioorg. Med. Chem. Lett., 2007, 17(17), 4987-4990.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.098] [PMID: 17562361]
[119]
Yurttaş, L.; Özkay, Y.; Akalın-Çiftçi, G.; Ulusoylar-Yıldırım, Ş. Synthesis and anticancer activity evaluation of N-[4-(2-methylthiazol-4-yl)phenyl]acetamide derivatives containing (benz)azole moiety. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 175-184.
[http://dx.doi.org/10.3109/14756366.2013.763253] [PMID: 23391122]
[120]
Konrad, A.; Danylo, V.K.; Marcin, L.L.; Anna, P.; Kryshchyshyn, R.B.; Lesyk, J.T. MaciejWnuk, T.P.; Tadeusz, P.; Gmiński, J. Anticancer properties of 5Z-(4- fuorobenzylidene)-2-(4- hydroxyphenylamino)-thiazol-4-one. Sci. Rep., 2019, 9, 10609.
[http://dx.doi.org/10.1038/s41598-019-47177-6]
[121]
Ma, J.; Zhang, G.; Han, X.; Bao, G.; Wang, L.; Zhai, X.; Gong, P. Synthesis and biological evaluation of benzothiazole derivatives bearing the ortho-hydroxy-N-acylhydrazone moiety as potent antitumor agents. Arch. Pharm., 2014, 347(12), 936-949.
[http://dx.doi.org/10.1002/ardp.201400230] [PMID: 25230149]
[122]
Kumbhare, R.M.; Vijay, K.K.; Janaki, R.M.; Dadmal, T.; Pushpavalli, S.N.C.V.L.; Mukhopadhyay, D.; Divya, B.; Anjana, D.T.; Kosurkar, U.; Pal-Bhadra, M. Synthesis and biological evaluation of novel Mannich bases of 2-arylimidazo[2,1-b]benzothiazoles as potential anti-cancer agents. Eur. J. Med. Chem., 2011, 46(9), 4258-4266.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.031] [PMID: 21775028]
[123]
Kamal, A.; Sultana, F.; Ramaiah, M.J.; Srikanth, Y.V.V.; Viswanath, A.; Kishor, C.; Sharma, P.; Pushpavalli, S.N.C.V.L.; Addlagatta, A.; Pal-Bhadra, M. 3-substituted 2-phenylimidazo[2,1-b]benzothiazoles: Synthesis, anticancer activity, and inhibition of tubulin polymerization. Chem. Med. Chem, 2012, 7(2), 292-300.
[http://dx.doi.org/10.1002/cmdc.201100511] [PMID: 22241597]
[124]
Zhu, T.; Shen, S.; Lu, Q.; Ye, X.; Ding, W.; Chen, R.; Xie, J.; Zhu, W.; Xu, J.; Jia, L.; Wu, W.; Ma, T. Design and synthesis of novel N(4)-substituted thiosemicarbazones bearing a pyrrole unit as potential anticancer agents. Oncol. Lett., 2017, 13(6), 4493-4500.
[http://dx.doi.org/10.3892/ol.2017.5995] [PMID: 28599449]
[125]
Jia, B.; Xue, Y.; Yan, X.; Li, J.; Wu, Y.; Guo, R.; Zhang, J.; Zhang, L.; Li, Y.; Liu, Y.; Sun, L. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol. Lett., 2018, 16(3), 3509-3516.
[http://dx.doi.org/10.3892/ol.2018.9131] [PMID: 30127955]
[126]
Singh, M.; Chaudhry, P.; Fabi, F.; Asselin, E. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: A potential mechanism of chemoresistance. BMC Cancer, 2013, 13(1), 233.
[http://dx.doi.org/10.1186/1471-2407-13-233] [PMID: 23663432]
[127]
Calviño, E.; Estañ, M.C.; Simón, G.P.; Sancho, P.; Boyano-Adánez, M.C.; de Blas, E.; Bréard, J.; Aller, P. Increased apoptotic efficacy of lonidamine plus arsenic trioxide combination in human leukemia cells. Reactive oxygen species generation and defensive protein kinase (MEK/ERK, Akt/mTOR) modulation. Biochem. Pharmacol., 2011, 82(11), 1619-1629.
[http://dx.doi.org/10.1016/j.bcp.2011.08.017] [PMID: 21889928]
[128]
Chuang, H.Y.; Chang, Y.F.; Hwang, J.J. Antitumor effect of orlistat, a fatty acid synthase inhibitor, is via activation of caspase-3 on human colorectal carcinoma-bearing animal. Biomed. Pharmacother., 2011, 65(4), 286-292.
[http://dx.doi.org/10.1016/j.biopha.2011.02.016] [PMID: 21723078]
[129]
Mandlekar, S.; Yu, R.; Tan, T.H.; Kong, A.N. Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells. Cancer Res., 2000, 60(21), 5995-6000.
[PMID: 11085519]
[130]
Yan, L.; Liu, Y.; Ma, X.; Hou, D.; Zhang, Y.; Sun, Y.; Shi, S.; Forouzanfar, T.; Lin, H.; Fan, J.; Wu, G. Triclabendazole induces pyroptosis by activating Caspase-3 to cleave GSDME in breast cancer cells. Front. Pharmacol., 2021, 12, 670081.
[http://dx.doi.org/10.3389/fphar.2021.670081] [PMID: 34305590]
[131]
Chen, Y.; Zhuang, Z.; Wang, Q.; Zhang, K. Synthesis, crystal structures, and antiglioma activity evaluation of two novel Ho(III) metal-organic complexes. J. Coord. Chem., 2019, 72(4), 716-726.
[http://dx.doi.org/10.1080/00958972.2019.1575964]
[132]
González-Bártulos, M.; Aceves-Luquero, C.; Qualai, J.; Cussó, O.; Martínez, M.A.; Fernández de Mattos, S.; Menéndez, J.A.; Villalonga, P.; Costas, M.; Ribas, X.; Massaguer, A. PLoS One, 2015, 10.
[133]
Qin, J.L.; Shen, W.Y.; Chen, Z.F.; Zhao, L.F.; Qin, Q.P.; Yu, Y.C.; Liang, H. Oxoaporphine metal complexes (CoII, NiII, ZnII) with high antitumor activity by inducing mitochondria-mediated apoptosis and S-phase arrest in HepG2. Sci. Rep., 2017, 7(1), 46056.
[http://dx.doi.org/10.1038/srep46056] [PMID: 28436418]
[134]
Cao, W.; Zheng, W.; Chen, T. Ruthenium polypyridyl complex inhibits growth and metastasis of breast cancer cells by suppressing FAK signaling with enhancement of TRAIL-induced apoptosis. Sci. Rep., 2015, 5(1), 9157.
[http://dx.doi.org/10.1038/srep09157] [PMID: 25778692]
[135]
Khan, M.S.S.; Salam, M.A.; Haque, R.S.M.A.; Abdul Majid, A.M.S.; Abdul Majid, A.S.B.; Asif, M.; Basheer, M.K.A.; Tabana, Y.M. Synthesis, cytotoxicity, and long-term single dose anti-cancer pharmacological evaluation of dimethyltin(IV) complex of N (4)-methylthiosemicarbazone (having ONS donor ligand). Cogent Biol., 2016, 2(1), 1154282.
[http://dx.doi.org/10.1080/23312025.2016.1154282]
[136]
Bannon, J.H.; Fichtner, I.; O’Neill, A.; Pampillón, C.; Sweeney, N.J.; Strohfeldt, K.; Watson, R.W.; Tacke, M.; Mc Gee, M.M. Substituted titanocenes induce caspase-dependent apoptosis in human epidermoid carcinoma cells in vitro and exhibit antitumour activity in vivo. Br. J. Cancer, 2007, 97(9), 1234-1241.
[http://dx.doi.org/10.1038/sj.bjc.6604021] [PMID: 17923871]
[137]
Caglar, S. Altay, A.; Harurluoglu, B.; Yeniceri, E.K.K.; Caglar, B.; Şahin, O. Synthesis, structural characterization and evaluation of anticancer activity of polymeric silver(I) complexes based on niflumic acid/naproxen and picoline derivatives. J. Coord. Chem., 2022, 75(1-2), 178-196.
[http://dx.doi.org/10.1080/00958972.2022.2045586]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy