Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Exploring Molecular Approaches in Amyotrophic Lateral Sclerosis: Drug Targets from Clinical and Pre-Clinical Findings

Author(s): Mamtaj Alam, Rajeshwar K. Yadav, Elizabeth Minj, Aarti Tiwari and Sidharth Mehan*

Volume 14, Issue 3, 2021

Published on: 27 April, 2020

Page: [263 - 280] Pages: 18

DOI: 10.2174/1566524020666200427214356

Price: $65

conference banner
Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) characterized by the death of upper and lower motor neurons (corticospinal tract) in the motor cortex, basal ganglia, brain stem, and spinal cord. The patient experiences the sign and symptoms between 55 to 75 years of age, which include impaired motor movement, difficulty in speaking and swallowing, grip loss, muscle atrophy, spasticity, and sometimes associated with memory and cognitive impairments. Median survival is 3 to 5 years after diagnosis and 5 to 10% of the patients live for more than 10 years. The limited intervention of pharmacologically active compounds, that are used clinically, is majorly associated with the narrow therapeutic index. Pre-clinically established experimental models, where neurotoxin methyl mercury mimics the ALS like behavioural and neurochemical alterations in rodents associated with neuronal mitochondrial dysfunctions and downregulation of adenyl cyclase mediated cAMP/CREB, is the main pathological hallmark for the progression of ALS in central as well in the peripheral nervous system. Despite the considerable investigation into neuroprotection, it still constrains treatment choices to strong care and organization of ALS complications. Therefore, this current review specially targeted the investigation of clinical and pre-clinical features available for ALS to understand the pathogenic mechanisms and to explore the pharmacological interventions associated with the up-regulation of intracellular adenyl cyclase/cAMP/ CREB and activation of mitochondrial-ETC coenzyme-Q10 as a future drug target in the amelioration of ALS mediated motor neuronal dysfunctions.

Keywords: Amyotrophic lateral sclerosis, adenyl cyclase, motor neuron degeneration, cognitive impairments, mitochondrial coenzyme Q10, methyl mercury, riluzole.

Graphical Abstract
[1]
Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet, 2011, 377(9769), 942-955.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[2]
Daude, A. A review of cases of motor neuron disease seen at Groote Schuur Hospital from 2005 to 2010. Doctoral dissertation, University of Cape Town, 2014.
[3]
Orrell, R.W.; Habgood, J.J.; de Belleroche, J.S.; Lane, R.J. The relationship of spinal muscular atrophy to motor neuron disease: investigation of SMN and NAIP gene deletions in sporadic and familial ALS. J. Neurol. Sci., 1997, 145(1), 55-61.
[http://dx.doi.org/10.1016/S0022-510X(96)00240-7] [PMID: 9073029]
[4]
He, J. Genetics of amyotrophic lateral sclerosis in the Han Chinese, 2015.
[http://dx.doi.org/10.14264/uql.2015.812]
[5]
Mitchell, J.D.; Borasio, G.D. Amyotrophic lateral sclerosis. Lancet, 2007, 369(9578), 2031-2041.
[http://dx.doi.org/10.1016/S0140-6736(07)60944-1] [PMID: 17574095]
[6]
Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chio’, A.; Couratier, P.; Mitchell, J.D.; Swingler, R.J.; Beghi, E. Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J. Neurol. Neurosurg. Psychiatry, 2008, 79(1), 6-11.
[http://dx.doi.org/10.1136/jnnp.2006.104828] [PMID: 18079297]
[7]
de Carvalho, M.; Matias, T.; Coelho, F.; Evangelista, T.; Pinto, A.; Luís, M.L. Motor neuron disease presenting with respiratory failure. J. Neurol. Sci., 1996, 139(Suppl.), 117-122.
[http://dx.doi.org/10.1016/0022-510X(96)00089-5] [PMID: 8899670]
[8]
Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13780-13785.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[9]
McGeer, E.G.; McGeer, P.L. Pharmacologic approaches to the treatment of amyotrophic lateral sclerosis. BioDrugs, 2005, 19(1), 31-37.
[http://dx.doi.org/10.2165/00063030-200519010-00004] [PMID: 15691215]
[10]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[11]
Forbes, R.B.; Colville, S.; Swingler, R.J. The epidemiology of amyotrophic lateral sclerosis (ALS/MND) in people aged 80 or over. Age Ageing, 2004, 33(2), 131-134.
[http://dx.doi.org/10.1093/ageing/afh013] [PMID: 14960427]
[12]
Gorban, R. An Internet support group for family caregivers of amyotrophic lateral sclerosis [ALS] patients: A grant proposal; California State University: Long Beach, 2009.
[13]
Amyotrophic Lateral Sclerosis. Available at: http://www.rarediseasesindia.org/als (Accessed on October 1, 2019).
[14]
Petrov, D.; Mansfield, C.; Moussy, A.; Hermine, O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front. Aging Neurosci., 2017, 9, 68.
[http://dx.doi.org/10.3389/fnagi.2017.00068] [PMID: 28382000]
[15]
Wijesekera, L.C.; Leigh, P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4(1), 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[16]
Green, C.L. Environmental Tauopathies. Doctoral dissertation, University of Zagreb School of Medicine, 2016.
[17]
Horner, R.D.; Kamins, K.G.; Feussner, J.R.; Grambow, S.C.; Hoff-Lindquist, J.; Harati, Y.; Mitsumoto, H.; Pascuzzi, R.; Spencer, P.S.; Tim, R.; Howard, D.; Smith, T.C.; Ryan, M.A.; Coffman, C.J.; Kasarskis, E.J. Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology, 2003, 61(6), 742-749.
[http://dx.doi.org/10.1212/01.WNL.0000069922.32557.CA] [PMID: 14504315]
[18]
Harwood, C.A.; McDermott, C.J.; Shaw, P.J. Clinical aspects of motor neuron disease. Medicine (Baltimore), 2012, 40(10), 540-545.
[http://dx.doi.org/10.1016/j.mpmed.2012.07.003]
[19]
Young, C.A.; Ellis, C.; Johnson, J.; Sathasivam, S.; Pih, N. Treatment for sialorrhea (excessive saliva) in people with motor neuron disease/amyotrophic lateral sclerosis. Cochrane Database Syst. Rev., 2011. (5), CD006981. [5].
[20]
Haringer, V.C.; Gibson, S.B. Amyotrophic lateral sclerosis: Clinical perspectives. Orphan Drugs. Res. Rev., 2015, 5, 19-31.
[http://dx.doi.org/10.2147/ODRR.S63585]
[21]
Corcia, P.; Meininger, V. Management of amyotrophic lateral sclerosis. Drugs, 2008, 68(8), 1037-1048.
[http://dx.doi.org/10.2165/00003495-200868080-00003] [PMID: 18484797]
[22]
Derry, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Nortriptyline for neuropathic pain in adults. Cochrane Database Syst. Rev., 2015, 1(1)CD011209
[http://dx.doi.org/10.1002/14651858.CD011209.pub2] [PMID: 25569864]
[23]
Forshew, D.A.; Bromberg, M.B. A survey of clinicians’ practice in the symptomatic treatment of ALS. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2003, 4(4), 258-263.
[http://dx.doi.org/10.1080/14660820310017344] [PMID: 14753660]
[24]
Banfi, P.; Ticozzi, N.; Lax, A.; Guidugli, G.A.; Nicolini, A.; Silani, V. A review of options for treating sialorrhea in amyotrophic lateral sclerosis. Respir. Care, 2015, 60(3), 446-454.
[http://dx.doi.org/10.4187/respcare.02856] [PMID: 25228780]
[25]
Morise, B.T.; Chagas, A.L.D.; Barros, N.R.; Miranda, M.C.R.; Borges, F.A.; Gemeinder, J.L.P.; Silva, R.G.; Paulino, C.G.; Herculano, R.D.; Norberto, A.M.Q. Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment. Int. J. Polymeric Mater. Polymeric Biomater., 2018, 68(13), 788-795.
[http://dx.doi.org/10.1080/00914037.2018.1506984]
[26]
Jackson, C.E.; McVey, A.L.; Rudnicki, S.; Dimachkie, M.M.; Barohn, R.J. Symptom management and end-of-life care in amyotrophic lateral sclerosis. Neurol. Clin., 2015, 33(4), 889-908.
[http://dx.doi.org/10.1016/j.ncl.2015.07.010] [PMID: 26515628]
[27]
Christidi, F.; Karavasilis, E.; Rentzos, M.; Kelekis, N. Evdokimidis, Iand Bede, P. Clinical and radiological markers of extra-motor deficits in amyotrophic lateral sclerosis. Front. Neurol., 2018, 9.
[28]
Girotra, T.; Lowe, F.; Feng, W. Pseudobulbar affect after stroke: a narrative review. Top. Stroke Rehabil., 2018, 25(8), 1-7.
[http://dx.doi.org/10.1080/10749357.2018.1499300] [PMID: 30213256]
[29]
Chuquilin, M.; Wymer, J. Caring for Patients With ALS: A Brief Review. Amyotroph. Lateral Scler., 2018.
[30]
McDonnell, M.N.; Zipser, C.; Darmani, G.; Ziemann, U. MA1/4ller-Dahlhaus, F. The effects of a single dose of fluoxetine on practice-dependent plasticity. Clin. Neurophysiol., 2018, 129(7), 1349-1356; Wu, X.; Zhang, H.; Miah, M.K.; Caritis, S.N.; Venkataramanan R. Physiologically based pharmacokinetic approach can successfully predict pharmacokinetics of citalopram in different patient populations. J. Clin. Pharmacol., 2020, 60(4), 477-488.
[PMID: 31750550]
[31]
Rudnicki, S.; McVey, A.L.; Jackson, C.E.; Dimachkie, M. Mand Barohn, RJ. Symptom Management and End of Life Care. Neurol. Clin., 2015, 33(4), 889.
[http://dx.doi.org/10.1016/j.ncl.2015.07.010] [PMID: 26515628]
[32]
Szczudlik, A.; Słowik, A.; Tomik, B. [The effect of amitriptyline on the pathological crying and other pseudobulbar signs]. Neurol. Neurochir. Pol., 1995, 29(5), 663-674. [The effect of amitriptyline on the pathological crying and other pseudobulbar signs].
[PMID: 8584093]
[33]
Anttila, S.A.; Leinonen, E.V. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev., 2001, 7(3), 249-264.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00198.x] [PMID: 11607047]
[34]
Saade, Y.M.; Nicol, G.; Lenze, E.J.; Miller, J.P.; Yingling, M.; Wetherell, J.L.; Reynolds, C.F., III; Mulsant, B.H. Comorbid anxiety in late-life depression: Relationship with remission and suicidal ideation on venlafaxine treatment. Depress. Anxiety, 2019, 36(12), 1125-1134.
[http://dx.doi.org/10.1002/da.22964] [PMID: 31682328]
[35]
Nyce, J.; Nyce Jonathan, W. Composition & use as analgesic, anti-inflammatory, wound healing agent, for treatment of heart conditions, assessment of heart function & tissue & cell protection & healing & reperfusion, mood disorders & symptoms & sequelae of menopause & for inducing unconsciousness, sleep & anesthesia U.S. Patent Application 10/349,219, 2003.
[36]
Gregory, S.A. Evaluation and management of respiratory muscle dysfunction in ALS. NeuroRehabilitation, 2007, 22(6), 435-443.
[http://dx.doi.org/10.3233/NRE-2007-22606] [PMID: 18198429]
[37]
Czaplinski, A.; Yen, A.A.; Appel, S.H. Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J. Neurol. Neurosurg. Psychiatry, 2006, 77(3), 390-392.
[http://dx.doi.org/10.1136/jnnp.2005.072660] [PMID: 16484652]
[38]
Boentert, M. Sleep disturbances in patients with amyotrophic lateral sclerosis: current perspectives. Nat. Sci. Sleep, 2019, 11, 97-111.
[http://dx.doi.org/10.2147/NSS.S183504] [PMID: 31496852]
[39]
Jackson, C.E.; Rosenfeld, J.; Moore, D.H.; Bryan, W.W.; Barohn, R.J.; Wrench, M.; Myers, D.; Heberlin, L.; King, R.; Smith, J.; Gelinas, D.; Miller, R.G. A preliminary evaluation of a prospective study of pulmonary function studies and symptoms of hypoventilation in ALS/MND patients. J. Neurol. Sci., 2001, 191(1-2), 75-78.
[http://dx.doi.org/10.1016/S0022-510X(01)00617-7] [PMID: 11676995]
[40]
Pizzimenti, A.; Aragona, M.; Onesti, E.; Inghilleri, M. Depression, pain and quality of life in patients with amyotrophic lateral sclerosis: a cross-sectional study. Funct. Neurol., 2013, 28(2), 115-119.
[PMID: 24125561]
[41]
Chiò, A.; Canosa, A.; Gallo, S.; Moglia, C.; Ilardi, A.; Cammarosano, S.; Papurello, D.; Calvo, A. Pain in amyotrophic lateral sclerosis: a population-based controlled study. Eur. J. Neurol., 2012, 19(4), 551-555.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03540.x] [PMID: 21972798]
[42]
Newrick, P.G.; Langton-Hewer, R. Pain in motor neuron disease. J. Neurol. Neurosurg. Psychiatry, 1985, 48(8), 838-840.
[http://dx.doi.org/10.1136/jnnp.48.8.838] [PMID: 4031936]
[43]
McElhiney, M.C.; Rabkin, J.G.; Gordon, P.H.; Goetz, R.; Mitsumoto, H. Prevalence of fatigue and depression in ALS patients and change over time. J. Neurol. Neurosurg. Psychiatry, 2009, 80(10), 1146-1149.
[http://dx.doi.org/10.1136/jnnp.2008.163246] [PMID: 19762902]
[44]
Lou, J.S.; Reeves, A.; Benice, T.; Sexton, G. Fatigue and depression are associated with poor quality of life in ALS. Neurology, 2003, 60(1), 122-123.
[http://dx.doi.org/10.1212/01.WNL.0000042781.22278.0A] [PMID: 12525733]
[45]
Chang, E.; Ghosh, N.; Yanni, D.; Lee, S.; Alexandru, D.; Mozaffar, T. A review of spasticity treatments: Pharmacological and interventional approaches. Crit. Rev. Phys. Rehabil. Med., 2013, 25(1-2), 11-22.
[http://dx.doi.org/10.1615/CritRevPhysRehabilMed.2013007945] [PMID: 25750484]
[46]
Davidson, J.R.; Moroz, G. Pivotal studies of clonazepam in panic disorder. Psychopharmacol. Bull., 1998, 34(2), 169-174.
[PMID: 9640996]
[47]
LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. Available at: https://www.ncbi.nlm.nih.gov/books/NBK548030/ (Accessed October 1, 2019).
[48]
Andreasen, S.R.; Lundbye, C.J.; Christensen, T.B.; Thielsen, K.D.; Schmitt-John, T.; Holm, M.M. Excitatory-inhibitory imbalance in the brain of the wobbler mouse model of amyotrophic lateral sclerosis substantiated by riluzole and diazepam. Neurosci. Lett., 2017, 658, 85-90.
[http://dx.doi.org/10.1016/j.neulet.2017.08.033] [PMID: 28823891]
[49]
Kurt, A.; Nijboer, F.; Matuz, T. KA1/4bler, A. Depression and anxiety in individuals with amyotrophic lateral sclerosis. CNS Drugs, 2007, 21(4), 279-291.
[http://dx.doi.org/10.2165/00023210-200721040-00003] [PMID: 17381183]
[50]
Jose, S.P. Venlafaxine-induced severe sleep bruxism in a patient with generalized anxiety disorder. Indian J. Psychol. Med., 2015, 37(2), 249-250.
[http://dx.doi.org/10.4103/0253-7176.155679] [PMID: 25969621]
[51]
Forsyth, P.A.; Dalmau, J.; Graus, F.; Cwik, V.; Rosenblum, M.K.; Posner, J.B. Motor neuron syndromes in cancer patients. Ann. Neurol., 1997, 41(6), 722-730.
[http://dx.doi.org/10.1002/ana.410410608] [PMID: 9189033]
[52]
Frost, J.; Okun, S.; Vaughan, T.; Heywood, J.; Wicks, P. Patient-reported outcomes as a source of evidence in off-label prescribing: analysis of data from PatientsLikeMe. J. Med. Internet Res., 2011, 13(1)e6
[http://dx.doi.org/10.2196/jmir.1643] [PMID: 21252034]
[53]
Borasio, G.D.; Miller, R.G. Clinical characteristics and management of ALS. Semin. Neurol., 2001, 21(2), 155-166.
[http://dx.doi.org/10.1055/s-2001-15268] [PMID: 11442324]
[54]
Tiwari, A.; Naruganahalli, K.S. Current and emerging investigational medical therapies for the treatment of overactive bladder. Expert Opin. Investig. Drugs, 2006, 15(9), 1017-1037.
[http://dx.doi.org/10.1517/13543784.15.9.1017] [PMID: 16916270]
[55]
Katz, I.R.; Sands, L.P.; Bilker, W.; DiFilippo, S.; Boyce, A.; D’Angelo, K. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J. Am. Geriatr. Soc., 1998, 46(1), 8-13.
[http://dx.doi.org/10.1111/j.1532-5415.1998.tb01006.x] [PMID: 9434659]
[56]
Foote, J.; Glavind, K.; Kralidis, G.; Wyndaele, J.J. Treatment of overactive bladder in the older patient: pooled analysis of three phase III studies of darifenacin, an M3 selective receptor antagonist. Eur. Urol., 2005, 48(3), 471-477.
[http://dx.doi.org/10.1016/j.eururo.2005.05.009] [PMID: 15990219]
[57]
Basra, R.; Kelleher, C. A review of solifenacin in the treatment of urinary incontinence. Ther. Clin. Risk Manag., 2008, 4(1), 117-128.
[PMID: 18728701]
[58]
Rabkin, J.G.; Goetz, R.; Factor-Litvak, P.; Hupf, J.; McElhiney, M.; Singleton, J.; Mitsumoto, H. Depression and wish to die in a multicenter cohort of ALS patients. Amyotroph. Lateral Scler. Frontotemporal Degener., 2015, 16(3-4), 265-273.
[http://dx.doi.org/10.3109/21678421.2014.980428] [PMID: 25482273]
[59]
Kurt, A.; Nijboer, F.; Matuz, T.; Kübler, A. Depression and anxiety in individuals with amyotrophic lateral sclerosis: epidemiology and management. CNS Drugs, 2007, 21(4), 279-291.
[http://dx.doi.org/10.2165/00023210-200721040-00003] [PMID: 17381183]
[60]
Hur, J.; Stockbridge, M.D.; Fox, A.S.; Shackman, A.J. Dispositional negativity, cognition, and anxiety disorders: An integrative translational neuroscience framework. Prog. Brain Res., 2019, 247, 375-436.
[http://dx.doi.org/10.1016/bs.pbr.2019.03.012] [PMID: 31196442]
[61]
Zamir, E.; Alster, T.; Farah, R. The Syndrome of Inappropriate Antidiuretic Syndrome [SIADH] in association with Riluzole and SSRI treatment in an ALS patient. Med. Case Rep. Rev., 2019, 2 Available at: https://www.oatext.com/the-syndrome-of-inappropriate-antidiuretic-syndrome-siadh-in-association-with-riluzole-and-ssri-treatment-in-an-als-patient.php#Article_Info (Accessed on October 1, 2019).
[http://dx.doi.org/10.15761/MCRR.1000123]
[62]
Moscovitch, A.; Blashko, C.A.; Eagles, J.M.; Darcourt, G.; Thompson, C.; Kasper, S.; Lane, R.M. A placebo-controlled study of sertraline in the treatment of outpatients with seasonal affective disorder. Psychopharmacology (Berl.), 2004, 171(4), 390-397.
[http://dx.doi.org/10.1007/s00213-003-1594-8] [PMID: 14504682]
[63]
Everitt, H.; Baldwin, D.S.; Stuart, B.; Lipinska, G.; Mayers, A.; Malizia, A.L.; Manson, C.C.; Wilson, S. Antidepressants for insomnia in adults. Cochrane Database Syst. Rev., 2018, 5CD010753
[http://dx.doi.org/10.1002/14651858.CD010753.pub2] [PMID: 29761479]
[64]
Menza, M.; Marin, H.; Kaufman, K.; Mark, M.; Lauritano, M. Citalopram treatment of depression in Parkinson’s disease: the impact on anxiety, disability, and cognition. J. Neuropsychiatry Clin. Neurosci., 2004, 16(3), 315-319.
[http://dx.doi.org/10.1176/jnp.16.3.315] [PMID: 15377738]
[65]
Baldwin, D.S.; Reines, E.H.; Guiton, C.; Weiller, E. Escitalopram therapy for major depression and anxiety disorders. Ann. Pharmacother., 2007, 41(10), 1583-1592.
[http://dx.doi.org/10.1345/aph.1K089] [PMID: 17848424]
[66]
Bobo, W.V.; Warner, C.H.; Warner, C.M. The management of post traumatic stress disorder (PTSD) in the primary care setting. South. Med. J., 2007, 100(8), 797-802.
[http://dx.doi.org/10.1097/SMJ.0b013e31812f6ee5] [PMID: 17713306]
[67]
Pomara, N.; Shao, B.; Choi, S.J.; Tun, H.; Suckow, R.F. Sex-related differences in nortriptyline-induced side-effects among depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(5), 1035-1048.
[http://dx.doi.org/10.1016/S0278-5846(01)00175-0] [PMID: 11444676]
[68]
Krishnan., K.R. With Anxiety Disorder. Difficult-to-Treat Psychiatric Patient. 2002, pp. 115.
[69]
Singh, T.; Rajput, M.I. Alprazolam as a monotherapy for anxiety and depression. Psychiatry (Edgmont Pa.), 2005, 2(11), 32.
[PMID: 21120094]
[70]
Coup, C.; Gordon, P. Amyotrophic lateral sclerosis-clinical features, pathophysiology and management. Eur. Neurol. Rev., 2013, 8, 38-44.
[http://dx.doi.org/10.17925/ENR.2013.08.01.38]
[71]
Walbert, T.; Phillips, J. Palliative care in end-stage neurological disease. In: Hospice and Palliative Medicine and Supportive Care Flashcards; , 2016; p. 419.
[http://dx.doi.org/10.1093/med/9780190633066.003.0036]
[72]
Gordon, P.H. Amyotrophic lateral sclerosis and dementia. Diet and Nutrition in Dementia and Cognitive Decline; Academic Press, 2015, pp. 23-34.
[http://dx.doi.org/10.1016/B978-0-12-407824-6.00003-3]
[73]
Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.F.; Pagani, W.; Lodin, D. Orozco, Gand Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6.
[74]
Seals, R.M.; Kioumourtzoglou, M.A.; Gredal, O.; Hansen, J.; Weisskopf, M.G. Occupational formaldehyde and amyotrophic lateral sclerosis. Eur. J. Epidemiol., 2017, 32(10), 893-899.
[http://dx.doi.org/10.1007/s10654-017-0249-8] [PMID: 28585120]
[75]
Couratier, P.; Corcia, P.; Lautrette, G.; Nicol, M.; Preux, P.M.; Marin, B. Epidemiology of amyotrophic lateral sclerosis: A review of literature. Rev. Neurol. (Paris), 2016, 172(1), 37-45.
[http://dx.doi.org/10.1016/j.neurol.2015.11.002] [PMID: 26727307]
[76]
Verde, F.; Ticozzi, N. Amyotrophic lateral sclerosis: Epidemiology and risk factors. Acquired neuromuscular disorders; Springer: Cham, 2016, pp. 219-230.
[77]
Bozzoni, V.; Pansarasa, O.; Diamanti, L.; Nosari, G.; Cereda, C.; Ceroni, M. Amyotrophic lateral sclerosis and environmental factors. Funct. Neurol., 2016, 31(1), 7-19.
[PMID: 27027889]
[78]
Kamel, F.; Umbach, D.M.; Bedlack, R.S.; Richards, M.; Watson, M.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Schmidt, S.; Sandler, D.P. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology, 2012, 33(3), 457-462.
[http://dx.doi.org/10.1016/j.neuro.2012.04.001] [PMID: 22521219]
[79]
Chen, Y. Organophosphate-induced brain damage: mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicology, 2012, 33(3), 391-400.
[http://dx.doi.org/10.1016/j.neuro.2012.03.011] [PMID: 22498093]
[80]
Cox, P.A.; Banack, S.A. A nonprotein amino acid and neurodegeneration. Science, 2006, 314(5803), 1242-1242.
[http://dx.doi.org/10.1126/science.314.5803.1242a] [PMID: 17124306]
[81]
Banack, S.A.; Cox, P.A. Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology, 2003, 61(3), 387-389.
[http://dx.doi.org/10.1212/01.WNL.0000078320.18564.9F] [PMID: 12913204]
[82]
Karlsson, O.; Berg, A.L.; Lindström, A.K.; Hanrieder, J.; Arnerup, G.; Roman, E.; Bergquist, J.; Lindquist, N.G.; Brittebo, E.B.; Andersson, M. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol. Sci., 2012, 130(2), 391-404.
[http://dx.doi.org/10.1093/toxsci/kfs241] [PMID: 22872059]
[83]
Carrasco, L.; Benejam, L.; Benito, J.; Bayona, J.M.; Díez, S. Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir. Environ. Int., 2011, 37(7), 1213-1218.
[http://dx.doi.org/10.1016/j.envint.2011.05.004] [PMID: 21658770]
[84]
Adams, C.R.; Ziegler, D.K.; Lin, J.T. Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA, 1983, 250(5), 642-643.
[http://dx.doi.org/10.1001/jama.1983.03340050054029] [PMID: 6864963]
[85]
Gresham, L.S.; Molgaard, C.A.; Golbeck, A.L.; Smith, R. Amyotrophic lateral sclerosis and occupational heavy metal exposure: a case-control study. Neuroepidemiology, 1986, 5(1), 29-38.
[http://dx.doi.org/10.1159/000110810] [PMID: 3748267]
[86]
Bassett, T.; Bach, P.; Chan, H.M. Effects of methylmercury on the secretion of pro-inflammatory cytokines from primary microglial cells and astrocytes. Neurotoxicology, 2012, 33(2), 229-234.
[http://dx.doi.org/10.1016/j.neuro.2011.10.003] [PMID: 22037494]
[87]
Kilness, A.W.; Hichberg, F.H. Amyotrophic lateral sclerosis in a high selenium environment. JAMA, 1977, 237(26), 2843-2844.
[http://dx.doi.org/10.1001/jama.1977.03270530051023] [PMID: 577250]
[88]
Bendotti, C.; Carrì, M.T. Amyotrophic lateral sclerosis: mechanisms and countermeasures. Antioxid. Redox Signal., 2009, 11(7), 1519-1522.
[http://dx.doi.org/10.1089/ars.2009.2620] [PMID: 19358631]
[89]
Rao, S.D.; Weiss, J.H. Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci., 2004, 27(1), 17-23.
[http://dx.doi.org/10.1016/j.tins.2003.11.001] [PMID: 14698606]
[90]
Prasad, A.S. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(6), 646-652.
[http://dx.doi.org/10.1097/MCO.0b013e3283312956] [PMID: 19710611]
[91]
Cloutier, F.; Marrero, A.; O’Connell, C.; Morin, P., Jr MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J. Mol. Neurosci., 2015, 56(1), 102-112.
[http://dx.doi.org/10.1007/s12031-014-0471-8] [PMID: 25433762]
[92]
Di Matteo, V.; Esposito, E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord., 2003, 2(2), 95-107.
[http://dx.doi.org/10.2174/1568007033482959] [PMID: 12769802]
[93]
Tafuri, F.; Ronchi, D.; Magri, F.; Comi, G.P.; Corti, S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front. Cell. Neurosci., 2015, 9, 336.
[http://dx.doi.org/10.3389/fncel.2015.00336] [PMID: 26379505]
[94]
Siddique, T.; Deng, H.X. Genetics of amyotrophic lateral sclerosis. Hum. Mol. Genet., 1996, 5(Spec No), 1465-1470.
[http://dx.doi.org/10.1093/hmg/5.Supplement_1.1465] [PMID: 8875253]
[95]
Fonnum, F. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem., 1984, 42(1), 1-11.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb09689.x] [PMID: 6139418]
[96]
Hasegawa, J.; Obara, T.; Tanaka, K.; Tachibana, M. High-density presynaptic transporters are required for glutamate removal from the first visual synapse. Neuron, 2006, 50(1), 63-74.
[http://dx.doi.org/10.1016/j.neuron.2006.02.022] [PMID: 16600856]
[97]
Randall, R.D.; Thayer, S.A. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci., 1992, 12(5), 1882-1895.
[http://dx.doi.org/10.1523/JNEUROSCI.12-05-01882.1992] [PMID: 1349638]
[98]
ZA1/4ndorf, G; Reiser, G Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & redox signaling., 2011 1Apr;14(7), 1275-1288.
[http://dx.doi.org/10.1089/ars.2010.3359]
[99]
Yoon, W.J.; Won, S.J.; Ryu, B.R.; Gwag, B.J. Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency. J. Neurochem., 2003, 85(2), 525-533.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01724.x] [PMID: 12675929]
[100]
Foran, E.; Trotti, D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2009, 11(7), 1587-1602.
[http://dx.doi.org/10.1089/ars.2009.2444] [PMID: 19413484]
[101]
Xu, B.; Xu, Z.; Deng, Y.; Liu, W.; Yang, H.; Wei, Y.G. MK-801 protects against intracellular Ca(2+) overloading and improves N-methyl-D-aspartate receptor expression in cerebral cortex of methylmercury-poisoned rats. J. Mol. Neurosci., 2013, 49(1), 162-171.
[http://dx.doi.org/10.1007/s12031-012-9926-y] [PMID: 23203154]
[102]
Farina, M.; Aschner, M. Methylmercury-induced neurotoxicity: focus on pro-oxidative events and related consequences. Neurotoxicity of Metals; Springer: Cham, 2017, pp. 267-286.
[103]
Magrané, J.; Manfredi, G. Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2009, 11(7), 1615-1626.
[http://dx.doi.org/10.1089/ars.2009.2604] [PMID: 19344253]
[104]
Stoica, R.; De Vos, K.J.; Paillusson, S.; Mueller, S.; Sancho, R.M.; Lau, K.F.; Vizcay-Barrena, G.; Lin, W.L.; Xu, Y.F.; Lewis, J.; Dickson, D.W.; Petrucelli, L.; Mitchell, J.C.; Shaw, C.E.; Miller, C.C. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun., 2014, 5, 3996.
[http://dx.doi.org/10.1038/ncomms4996] [PMID: 24893131]
[105]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[106]
Matic, I.; Strobbe, D.; Frison, M.; Campanella, M. Controlled and impaired mitochondrial quality in neurons: molecular physiology and prospective pharmacology. Pharmacol. Res., 2015, 99, 410-424.
[http://dx.doi.org/10.1016/j.phrs.2015.03.021] [PMID: 25917207]
[107]
Tadic, V.; Prell, T.; Lautenschlaeger, J.; Grosskreutz, J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 147.
[http://dx.doi.org/10.3389/fncel.2014.00147] [PMID: 24910594]
[108]
Zheng, Y.R.; Zhang, X.N.; Chen, Z. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci. Ther., 2019, 25(7), 876-886.
[http://dx.doi.org/10.1111/cns.13122] [PMID: 30900394]
[109]
Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ahmadiani, A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci. Ther., 2017, 23(1), 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[110]
Kaus, A.; Sareen, D. Kaus, A and Sareen, D. ALS patient stem cells for unveiling disease signatures of motoneuron susceptibility: perspectives on the deadly mitochondria, ER stress and calcium triad. Front. Cell. Neurosci., 2015, 9, 448.
[http://dx.doi.org/10.3389/fncel.2015.00448] [PMID: 26635528]
[111]
Hand, C.K.; Rouleau, G.A. Familial amyotrophic lateral sclerosis. Muscle Nerve, 2002, 25(2), 135-159.
[http://dx.doi.org/10.1002/mus.10001] [PMID: 11870681]
[112]
Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2017.
[PMID: 28669745]
[113]
Magrané, J.; Sahawneh, M.A.; Przedborski, S.; Estévez, Á.G.; Manfredi, G. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J. Neurosci., 2012, 32(1), 229-242.
[http://dx.doi.org/10.1523/JNEUROSCI.1233-11.2012] [PMID: 22219285]
[114]
Martin, L.J.; Liu, Z.; Chen, K.; Price, A.C.; Pan, Y.; Swaby, J.A.; Golden, W.C. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J. Comp. Neurol., 2007, 500(1), 20-46.
[http://dx.doi.org/10.1002/cne.21160] [PMID: 17099894]
[115]
Patel, B.P.; Safdar, A.; Raha, S.; Tarnopolsky, M.A.; Hamadeh, M.J. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One, 2010, 5(2)e9386
[http://dx.doi.org/10.1371/journal.pone.0009386] [PMID: 20195368]
[116]
Martin, K.R.; Barrett, J.C. Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum. Exp. Toxicol., 2002, 21(2), 71-75.
[http://dx.doi.org/10.1191/0960327102ht213oa] [PMID: 12102499]
[117]
Klein, J.A.; Ackerman, S.L. Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest., 2003, 111(6), 785-793.
[http://dx.doi.org/10.1172/JCI200318182] [PMID: 12639981]
[118]
Rao, A.V.; Balachandran, B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci., 2002, 5(5), 291-309.
[http://dx.doi.org/10.1080/1028415021000033767] [PMID: 12385592]
[119]
Süssmuth, S.D.; Brettschneider, J.; Ludolph, A.C.; Tumani, H. Biochemical markers in CSF of ALS patients. Curr. Med. Chem., 2008, 15(18), 1788-1801.
[http://dx.doi.org/10.2174/092986708785133031] [PMID: 18691039]
[120]
Du, Y. Regulation of the p62 promoter by oxidative damage in neurodegenerative disease and aging. Doctoral dissertation, 2009.
[121]
Mancuso, C.; Scapagini, G.; Currò, D.; Giuffrida Stella, A.M.; De Marco, C.; Butterfield, D.A.; Calabrese, V. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci., 2007, 12(1), 1107-1123.
[http://dx.doi.org/10.2741/2130] [PMID: 17127365]
[122]
Enns, G.M. The contribution of mitochondria to common disorders. Mol. Genet. Metab., 2003, 80(1-2), 11-26.
[http://dx.doi.org/10.1016/j.ymgme.2003.08.009] [PMID: 14567954]
[123]
Rotunno, M.S.; Bosco, D.A. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front. Cell. Neurosci., 2013, 7, 253.
[http://dx.doi.org/10.3389/fncel.2013.00253] [PMID: 24379756]
[124]
Menzies, F.M.; Ince, P.G.; Shaw, P.J. Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem. Int., 2002, 40(6), 543-551.
[http://dx.doi.org/10.1016/S0197-0186(01)00125-5] [PMID: 11850111]
[125]
Johri, A.; Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther., 2012, 342(3), 619-630.
[http://dx.doi.org/10.1124/jpet.112.192138] [PMID: 22700435]
[126]
Joyce, P.I.; Fratta, P.; Fisher, E.M.; Acevedo-Arozena, A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm. Genome, 2011, 22(7-8), 420-448.
[http://dx.doi.org/10.1007/s00335-011-9339-1] [PMID: 21706386]
[127]
Payen, V.L.; Zampieri, L.X.; Porporato, P.E.; Sonveaux, P. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev., 2019, 38(1-2), 189-203.
[http://dx.doi.org/10.1007/s10555-019-09789-2] [PMID: 30820778]
[128]
Palomo, V.; Tosat-Bitrian, C.; Nozal, V.; Nagaraj, S. Martin-Requero, Aand MartA-nez, A. TDP-43: A Key Therapeutic Target beyond Amyotrophic Lateral Sclerosis. ACS Chem. Neurosci., 2019.
[http://dx.doi.org/10.1021/acschemneuro.9b00026]
[129]
MacPherson, D.J.; Mills, C.L.; Ondrechen, M.J.; Hardy, J.A. Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis. J. Biol. Chem., 2019, 294(1), 71-88.
[http://dx.doi.org/10.1074/jbc.RA118.005914] [PMID: 30420425]
[130]
McAvoy, K.J. Non-cell autonomous toxicity in motor neuron disease. Evidence and mechanisms of astrocyte-driven neurotoxicity in FUS-ALS. Doctoral dissertation, Thomas Jefferson University, 2019.
[131]
Tan, W.; Naniche, N.; Bogush, A.; Pedrini, S.; Trotti, D.; Pasinelli, P. Small peptides against the mutant SOD1/Bcl-2 toxic mitochondrial complex restore mitochondrial function and cell viability in mutant SOD1-mediated ALS. J. Neurosci., 2013, 33(28), 11588-11598.
[http://dx.doi.org/10.1523/JNEUROSCI.5385-12.2013] [PMID: 23843527]
[132]
Ziegenfuss, J.S. Eaters of the dead: How glial cells respond to and engulf degenerating axons in the CNS: A dissertation, 2012.
[133]
Lyon, M.S.; Wosiski-Kuhn, M.; Gillespie, R.; Caress, J.; Milligan, C. Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve, 2019, 59(1), 10-22.
[http://dx.doi.org/10.1002/mus.26289] [PMID: 29979464]
[134]
Arcuri, C.; Mecca, C.; Bianchi, R.; Giambanco, I.; Donato, R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci., 2017, 10, 191.
[http://dx.doi.org/10.3389/fnmol.2017.00191] [PMID: 28674485]
[135]
Cady, J.; Koval, E.D.; Benitez, B.A.; Zaidman, C.; Jockel-Balsarotti, J.; Allred, P.; Baloh, R.H.; Ravits, J.; Simpson, E.; Appel, S.H.; Pestronk, A.; Goate, A.M.; Miller, T.M.; Cruchaga, C.; Harms, M.B. TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol., 2014, 71(4), 449-453.
[http://dx.doi.org/10.1001/jamaneurol.2013.6237] [PMID: 24535663]
[136]
Konishi, H.; Kiyama, H. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front. Cell. Neurosci., 2018, 12, 206.
[http://dx.doi.org/10.3389/fncel.2018.00206] [PMID: 30127720]
[137]
Thau, N. Transcriptional regulators and neurotrophic factors in the pathogenesis of Amyotrophic Lateral Sclerosis [ALS]. Histopathological and biochemical studies in the G93A ALS mouse model and in ALS post mortem tissue. Doctoral dissertation, Bibliothek der Tier rztlichen Hochschule Hannover, 2012.
[138]
Karamyan, V.T.; Speth, R.C. Animal models of BMAA neurotoxicity: a critical review. Life Sci., 2008, 82(5-6), 233-246.
[http://dx.doi.org/10.1016/j.lfs.2007.11.020] [PMID: 18191417]
[139]
Koshal, P.; Kumar, M. Jamwal; Sand Bansal, PK. Animal Model of Amyotrophic Lateral Sclerosis. Animal Models of Neurological Disorders; Springer: Singapore, 2017, pp. 277-289.
[http://dx.doi.org/10.1007/978-981-10-5981-0_18]
[140]
Storm, D.R.; Gunsalus, R.P. Methylmercury is a potent inhibitor of membrane adenyl cyclase. Nature, 1974, 250(5469), 778-779.
[http://dx.doi.org/10.1038/250778a0] [PMID: 4414664]
[141]
Mori, N.; Yasutake, A.; Marumoto, M.; Hirayama, K. Methylmercury inhibits electron transport chain activity and induces cytochrome c release in cerebellum mitochondria. J. Toxicol. Sci., 2011, 36(3), 253-259.
[http://dx.doi.org/10.2131/jts.36.253] [PMID: 21628953]
[142]
Bisen-Hersh, E.B.; Farina, M.; Barbosa, F., Jr; Rocha, J.B.T.; Aschner, M. Behavioral effects of developmental methylmercury drinking water exposure in rodents. J. Trace Elem. Med. Biol., 2014, 28(2), 117-124.
[http://dx.doi.org/10.1016/j.jtemb.2013.09.008] [PMID: 24210169]
[143]
Ghizoni, H.; Ventura, M.; Colle, D.; Gonçalves, C.L.; de Souza, V.; Hartwig, J.M.; Santos, D.B.; Naime, A.A.; Cristina de Oliveira Souza, V.; Lopes, M.W.; Barbosa, F., Jr; Brocardo, P.S.; Farina, M. Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food Chem. Toxicol., 2018, 120, 603-615.
[http://dx.doi.org/10.1016/j.fct.2018.08.004] [PMID: 30086348]
[144]
Cariccio, V.L.; Samà, A.; Bramanti, P.; Mazzon, E. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol. Trace Elem. Res., 2019, 187(2), 341-356.
[http://dx.doi.org/10.1007/s12011-018-1380-4] [PMID: 29777524]
[145]
Roegge, C.S.; Wang, V.C.; Powers, B.E.; Klintsova, A.Y.; Villareal, S.; Greenough, W.T.; Schantz, S.L. Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicol. Sci., 2004, 77(2), 315-324.
[http://dx.doi.org/10.1093/toxsci/kfg252] [PMID: 14600290]
[146]
Macedo-Júnior, S.J.; Luiz-Cerutti, M.; Nascimento, D.B.; Farina, M.; Soares Santos, A.R.; de Azevedo Maia, A.H. Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum. J. Toxicol. Environ. Health A, 2017, 80(19-21), 1145-1155.
[http://dx.doi.org/10.1080/15287394.2017.1357324] [PMID: 28850017]
[147]
Abdel Moneim, A.E. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab. Brain Dis., 2015, 30(4), 935-942.
[http://dx.doi.org/10.1007/s11011-015-9652-6] [PMID: 25600690]
[148]
Bellum, S.; Thuett, K.A.; Grajeda, R.; Abbott, L.C. Coordination deficits induced in young adult mice treated with methylmercury. Int. J. Toxicol., 2007, 26(2), 115-121.
[http://dx.doi.org/10.1080/10915810701225190] [PMID: 17454251]
[149]
Mahboob, M.; Shireen, K.F.; Atkinson, A.; Khan, A.T. Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. J. Environ. Sci. Health B, 2001, 36(5), 687-697.
[http://dx.doi.org/10.1081/PFC-100106195] [PMID: 11599730]
[150]
Sumathi, T.; Jacob, S.; Gopalakrishnan, R. Methylmercury exposure develops atherosclerotic risk factors in the aorta and programmed cell death in the cerebellum: ameliorative action of Celastrus paniculatus ethanolic extract in male Wistar rats. Environ. Sci. Pollut. Res. Int., 2018, 25(30), 30212-30223.
[http://dx.doi.org/10.1007/s11356-018-3031-x] [PMID: 30155631]
[151]
Owoeye, O.; Arinola, G.O.G.O.A. Vegetable, Launaeataraxacifolia, Mitigated mercuric chloride alteration of the microanatomy of rat brain. J. Diet. Suppl., 2017, 14(6), 613-625.
[http://dx.doi.org/10.1080/19390211.2017.1288194] [PMID: 28471730]
[152]
Christinal, J.; Sumathi, T. Effect of Bacopa monniera extract on methylmercury-induced behavioral and histopathological changes in rats. Biol. Trace Elem. Res., 2013, 155(1), 56-64.
[http://dx.doi.org/10.1007/s12011-013-9756-y] [PMID: 23872736]
[153]
Feng, S.; Xu, Z.; Liu, W.; Li, Y.; Deng, Y.; Xu, B. Preventive effects of dextromethorphan on methylmercury-induced glutamate dyshomeostasis and oxidative damage in rat cerebral cortex. Biol. Trace Elem. Res., 2014, 159(1-3), 332-345.
[http://dx.doi.org/10.1007/s12011-014-9977-8] [PMID: 24819089]
[154]
Teixeira, F.B.; Fernandes, R.M.; Farias-Junior, P.M.; Costa, N.M.; Fernandes, L.M.; Santana, L.N.; Silva-Junior, A.F.; Silva, M.C.; Maia, C.S.; Lima, R.R. Evaluation of the effects of chronic intoxication with inorganic mercury on memory and motor control in rats. Int. J. Environ. Res. Public Health, 2014, 11(9), 9171-9185.
[http://dx.doi.org/10.3390/ijerph110909171] [PMID: 25198682]
[155]
Sumathi, T.; Christinal, J. Neuroprotective effect of Portulacaoleraceae ethanolic extract ameliorates methylmercury induced cognitive dysfunction and oxidative stress in cerebellum and cortex of rat brain. Biol. Trace Elem. Res., 2016, 172(1), 155-165.
[http://dx.doi.org/10.1007/s12011-015-0546-6] [PMID: 26563420]
[156]
Hussain, S.; Rodgers, D.A.; Duhart, H.M.; Ali, S.F. Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain. J. Environ. Sci. Health B, 1997, 32(3), 395-409.
[http://dx.doi.org/10.1080/03601239709373094] [PMID: 9177012]
[157]
Waxman, S.G. Ions, energy and axonal injury: towards a molecular neurology of multiple sclerosis. Trends Mol. Med., 2006, 12(5), 192-195.
[http://dx.doi.org/10.1016/j.molmed.2006.03.001] [PMID: 16574486]
[158]
Lu, F.; Selak, M.; O’Connor, J.; Croul, S.; Lorenzana, C.; Butunoi, C.; Kalman, B. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J. Neurol. Sci., 2000, 177(2), 95-103.
[http://dx.doi.org/10.1016/S0022-510X(00)00343-9] [PMID: 10980305]
[159]
Zhou, Z.; Ikegaya, Y.; Koyama, R. The Astrocytic cAMP Pathway in Health and Disease. Int. J. Mol. Sci., 2019, 20(3), 779.
[http://dx.doi.org/10.3390/ijms20030779] [PMID: 30759771]
[160]
Sharma, M.; Flood, P.M. Adrenergic Receptors as Pharmacological Targets for Neuroinflammation and Neurodegeneration in Parkinson's Disease. In: Neuroprotection; IntechOpen, 2018.
[161]
Jia, M.; Travaglia, A.; Pollonini, G.; Fedele, G.; Alberini, C.M. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat medial prefrontal cortex. Learn. Mem., 2018, 25(10), 533-543.
[http://dx.doi.org/10.1101/lm.047753.118] [PMID: 30224556]
[162]
Nagib, M.M.; Tadros, M.G.; Rahmo, R.M.; Sabri, N.A.; Khalifa, A.E.; Masoud, S.I. Ameliorative effects of I -Tocopherol and/or coenzyme Q10 on phenytoin-induced cognitive impairment in rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox. Res., 2019, 35(2), 451-462.
[http://dx.doi.org/10.1007/s12640-018-9971-6] [PMID: 30374909]
[163]
Sassone-Corsi, P. The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(12)011148
[http://dx.doi.org/10.1101/cshperspect.a011148] [PMID: 23209152]
[164]
Josselyn, S.A.; Kida, S.; Silva, A.J. Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol. Learn. Mem., 2004, 82(2), 159-163.
[http://dx.doi.org/10.1016/j.nlm.2004.05.008] [PMID: 15341801]
[165]
Lemche, E. Early Life Stress and Epigenetics in Late-onset Alzheimer’s Dementia: A Systematic Review. Curr. Genomics, 2018, 19(7), 522-602.
[http://dx.doi.org/10.2174/1389202919666171229145156] [PMID: 30386171]
[166]
Musheshe, N.; Schmidt, M.; Zaccolo, M. cAMP: From long-range second messenger to nanodomain signalling. Trends Pharmacol. Sci., 2018, 39(2), 209-222.
[http://dx.doi.org/10.1016/j.tips.2017.11.006] [PMID: 29289379]
[167]
Mattson, M.P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev. Neurosci., 2018, 19(2), 63-80.
[http://dx.doi.org/10.1038/nrn.2017.156] [PMID: 29321682]
[168]
Yulug, B.; Hanoglu, L.; Khanmammadov, E.; Duz, O.A.; Polat, B.; Hanoglu, T.; Gunal, M.Y.; Kilic, E. Beyond The Therapeutic Effect of rTMS in Alzheimer’s Disease: A Possible Neuroprotective Role of Hippocampal BDNF?: A Minireview. Mini Rev. Med. Chem., 2018, 18(17), 1479-1485.
[http://dx.doi.org/10.2174/1389557517666170927162537] [PMID: 28971775]
[169]
Farooqui, A.A.; Farooqui, T. Importance of fruit and vegetable-derived flavonoids in the mediterranean diet: Molecular and pathological aspects. In: Role of the Mediterranean Diet in the Brain and Neurodegenerative Diseases; , 2018; pp. 412-427.
[170]
Shih, P.H.; Chan, Y.C.; Liao, J.W.; Wang, M.F.; Yen, G.C. Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J. Nutr. Biochem., 2010, 21(7), 598-605.
[http://dx.doi.org/10.1016/j.jnutbio.2009.03.008] [PMID: 19443193]
[171]
Van Bulck, M.; Sierra-Magro, A.; Alarcon-Gil, J.; Perez-Castillo, A.; Morales-Garcia, J.A. Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(3), 719.
[http://dx.doi.org/10.3390/ijms20030719] [PMID: 30743990]
[172]
Zuccato, C.F.; Asad, A.S.; Nicola Candia, A.J.; Gottardo, M.F.; Moreno Ayala, M.A.; Theas, M.S.; Seilicovich, A.; Candolfi, M. Mitochondrial-derived peptide humanin as therapeutic target in cancer and degenerative diseases. Expert Opin. Ther. Targets, 2019, 23(2), 117-126.
[http://dx.doi.org/10.1080/14728222.2019.1559300] [PMID: 30582721]
[173]
Fieber, L.A. Neurotransmitters and Neuropeptides of Invertebrates. The OxfordHandbook of Invertebrate Neurobiology; Oxford University Press, 2019, p. 285.
[174]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[175]
Bacurau, A.V.; Cunha, T.F.; Souza, R.W.; Voltarelli, V.A.; Gabriel-Costa, D.; Brum, P.C. Aerobic exercise and pharmacological therapies for skeletal myopathy in heart failure: similarities and differences. Oxid. Med. Cell. Longev., 2016, 20164374671
[http://dx.doi.org/10.1155/2016/4374671] [PMID: 26904163]
[176]
Tarai, S.; Mukherjee, R.; Gupta, S.; Rizvanov, A.A. PalotA s, A.; Pammi, V. Cand Bit, A. Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cogn. Neurodynamics, 2019, 1-19.
[177]
Wang, X.; Zheng, W. Ca2+ homeostasis dysregulation in Alzheimer’s disease: a focus on plasma membrane and cell organelles. FASEB J., 2019, 33(6), 6697-6712.
[http://dx.doi.org/10.1096/fj.201801751R] [PMID: 30848934]
[178]
Green, T.A.; Alibhai, I.N.; Unterberg, S.; Neve, R.L.; Ghose, S.; Tamminga, C.A.; Nestler, E.J. Induction of activating transcription factors (ATFs) ATF2, ATF3, and ATF4 in the nucleus accumbens and their regulation of emotional behavior. J. Neurosci., 2008, 28(9), 2025-2032.
[http://dx.doi.org/10.1523/JNEUROSCI.5273-07.2008] [PMID: 18305237]
[179]
Pradhan, J.; Noakes, P.G.; Bellingham, M.C. The role of altered BDNF/TrkB signalling in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2019, 13, 368.
[http://dx.doi.org/10.3389/fncel.2019.00368] [PMID: 31456666]
[180]
Kim, J.H.; Roberts, D.S.; Hu, Y.; Lau, G.C.; Brooks-Kayal, A.R.; Farb, D.H.; Russek, S.J. Brain-derived neurotrophic factor uses CREB and Egr3 to regulate NMDA receptor levels in cortical neurons. J. Neurochem., 2012, 120(2), 210-219.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07555.x] [PMID: 22035109]
[181]
Linden, J.; Koch-Nolte, F.; Dahl, G. Purine release, metabolism, and signaling in the inflammatory response. Annu. Rev. Immunol., 2019, 37, 325-347.
[182]
Lobingier, B.T.; von Zastrow, M. When trafficking and signaling mix: How subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic, 2019, 20(2), 130-136.
[http://dx.doi.org/10.1111/tra.12634] [PMID: 30578610]
[183]
Park, A. The temporal expression patterns of CREB governing long-term memory formation. Doctoral dissertation, University of Toronto [Canada], 2018.
[184]
Kipanyula, M.J.; Kimaro, W.H.; Seke Etet, P.F. Seke Etet. P.F. The emerging roles of the calcineurin-nuclear factor of activated t-lymphocytes pathway in nervous system functions and diseases. J. Aging Res., 2016, 20165081021
[http://dx.doi.org/10.1155/2016/5081021] [PMID: 27597899]
[185]
Santos, G.C.D.; Antunes, L.M.G.; Santos, A.C.D.; Bianchi, M.D.L.P. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases. Braz. J. Pharm. Sci., 2009, 45(4), 607-618.
[http://dx.doi.org/10.1590/S1984-82502009000400002]
[186]
Villalba, J.M.; Parrado, C.; Santos-Gonzalez, M.; Alcain, F.J. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin. Investig. Drugs, 2010, 19(4), 535-554.
[http://dx.doi.org/10.1517/13543781003727495] [PMID: 20367194]
[187]
Saini, R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied Sci., 2011, 3(3), 466-467.
[http://dx.doi.org/10.4103/0975-7406.84471] [PMID: 21966175]
[188]
Ferrante, R.J.; Andreassen, O.A.; Dedeoglu, A.; Ferrante, K.L.; Jenkins, B.G.; Hersch, S.M.; Beal, M.F. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci., 2002, 22(5), 1592-1599.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01592.2002] [PMID: 11880489]
[189]
Sándor, P.S.; Di Clemente, L.; Coppola, G.; Saenger, U.; Fumal, A.; Magis, D.; Seidel, L.; Agosti, R.M.; Schoenen, J. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology, 2005, 64(4), 713-715.
[http://dx.doi.org/10.1212/01.WNL.0000151975.03598.ED] [PMID: 15728298]
[190]
Mehan, S.; Monga, V.; Rani, M.; Dudi, R.; Ghimire, K. Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington’s disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian J. Pharmacol., 2018, 50(6), 309-319.
[http://dx.doi.org/10.4103/ijp.IJP_11_18] [PMID: 30783323]
[191]
Sharma, R.; Rahi, S.; Mehan, S. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol. Rep., 2019, 6, 1164-1175.
[http://dx.doi.org/10.1016/j.toxrep.2019.10.019] [PMID: 31763180]
[192]
Matthews, R.T.; Yang, L.; Browne, S.; Baik, M.; Beal, M.F. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA, 1998, 95(15), 8892-8897.
[http://dx.doi.org/10.1073/pnas.95.15.8892] [PMID: 9671775]
[193]
Shults, C.W.; Flint Beal, M.; Song, D.; Fontaine, D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp. Neurol., 2004, 188(2), 491-494.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.003] [PMID: 15246848]
[194]
Barcelos, I.P.D.; Haas, R.H. CoQ10 and Aging. Biology (Basel), 2019, 8(2), 28.
[http://dx.doi.org/10.3390/biology8020028] [PMID: 31083534]
[195]
LA3pez-Lluch, G.; Del Pozo-Cruz, J.; SA nchez-Cuesta, A.; CortA(c)s-RodrA-guez, A.B.; Navas, P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition, 2019, 57, 133-140.
[http://dx.doi.org/10.1016/j.nut.2018.05.020]
[196]
Lee, D.; Shim, M.S.; Kim, K.Y.; Noh, Y.H.; Kim, H.; Kim, S.Y.; Weinreb, R.N.; Ju, W.K. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest. Ophthalmol. Vis. Sci., 2014, 55(2), 993-1005.
[http://dx.doi.org/10.1167/iovs.13-12564] [PMID: 24458150]
[197]
Rose, J.; Brian, C.; Woods, J.; Pappa, A.; Panayiotidis, M.I.; Powers, R.; Franco, R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology, 2017, 391, 109-115.
[http://dx.doi.org/10.1016/j.tox.2017.06.011] [PMID: 28655545]
[198]
Hawking, H.Z. Alzheimer's disease: The role of mitochondrial dysfunction and potential new therapies. Biosci. Horizons: Int. J. Student Res., 2016, 9, hzw014.
[http://dx.doi.org/10.1093/biohorizons/hzw014]
[199]
Campanari, M.L.; García-Ayllón, M.S.; Ciura, S.; Sáez-Valero, J.; Kabashi, E. Neuromuscular junction impairment in amyotrophic lateral sclerosis: reassessing the role of acetylcholinesterase. Front. Mol. Neurosci., 2016, 9, 160.
[http://dx.doi.org/10.3389/fnmol.2016.00160] [PMID: 28082868]
[200]
Beal, M.F. Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Radic. Res., 2002, 36(4), 455-460.
[http://dx.doi.org/10.1080/10715760290021315] [PMID: 12069110]
[201]
Zhang, X.; Hong, Y.L.; Xu, D.S.; Feng, Y.; Zhao, L.J.; Ruan, K.F.; Yang, X.J. A review of experimental research on herbal compounds in amyotrophic lateral sclerosis. Phytother. Res., 2014, 28(1), 9-21.
[http://dx.doi.org/10.1002/ptr.4960] [PMID: 23519768]
[202]
Kwon, B.K.; Tetzlaff, W.; Grauer, J.N.; Beiner, J.; Vaccaro, A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J., 2004, 4(4), 451-464.
[http://dx.doi.org/10.1016/j.spinee.2003.07.007] [PMID: 15246307]
[203]
Dennys, C.N.; Armstrong, J.; Levy, M.; Byun, Y.J.; Ramdial, K.R.; Bott, M.; Rossi, F.H.; Fernández-Valle, C.; Franco, M.C.; Estevez, A.G. Chronic inhibitory effect of riluzole on trophic factor production. Exp. Neurol., 2015, 271, 301-307.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.016] [PMID: 26071088]
[204]
Cozzolino, M.; Carrì, M.T. Mitochondrial dysfunction in ALS. Prog. Neurobiol., 2012, 97(2), 54-66.
[http://dx.doi.org/10.1016/j.pneurobio.2011.06.003] [PMID: 21827820]
[205]
Liu, W.M.; Wu, J.Y.; Li, F.C.; Chen, Q.X. Ion channel blockers and spinal cord injury. J. Neurosci. Res., 2011, 89(6), 791-801.
[http://dx.doi.org/10.1002/jnr.22602] [PMID: 21394757]
[206]
Pittenger, C.; Coric, V.; Banasr, M.; Bloch, M.; Krystal, J.H.; Sanacora, G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs, 2008, 22(9), 761-786.
[http://dx.doi.org/10.2165/00023210-200822090-00004] [PMID: 18698875]
[207]
Perlman, S.; Boltshauser, E. Drug treatment. Handb. Clin. Neurol., 2018, 155, 371-377.
[http://dx.doi.org/10.1016/B978-0-444-64189-2.00024-X] [PMID: 29891072]
[208]
Yamamoto, Y. Plasma marker of tissue oxidative damage and edaravone as a scavenger drug against peroxyl radicals and peroxynitrite. J. Clin. Biochem. Nutr., 2017, 60(1), 49-54.
[http://dx.doi.org/10.3164/jcbn.16-63] [PMID: 28163382]
[209]
Kuźma-Kozakiewicz, M. Edaravone in the treatment of amyotrophic lateral sclerosis. Neurol. Neurochir. Pol., 2018, 52(2), 124-128.
[http://dx.doi.org/10.1016/j.pjnns.2018.03.004] [PMID: 29571701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy