Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Is it the Time to Move Towards Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve Guided Percutaneous Coronary Intervention? The Pros and Cons

Author(s): Mohammadbagher Sharifkazemi, Zahra Hooshanginezhad, Arezou Zoroufian and Kamran Shamsa*

Volume 19, Issue 4, 2023

Published on: 22 February, 2023

Article ID: e190123212887 Pages: 10

DOI: 10.2174/1573403X19666230119115228

open access plus

Abstract

Coronary artery disease is the leading cause of mortality worldwide. Diagnosis is conventionally performed by direct visualization of the arteries by invasive coronary angiography (ICA), which has inherent limitations and risks. Measurement of fractional flow reserve (FFR) has been suggested for a more accurate assessment of ischemia in the coronary artery with high accuracy for determining the severity and decision on the necessity of intervention. Nevertheless, invasive coronary angiography-derived fractional flow reserve (ICA-FFR) is currently used in less than one-third of clinical practices because of the invasive nature of ICA and the need for additional equipment and experience, as well as the cost and extra time needed for the procedure. Recent technical advances have moved towards non-invasive high-quality imaging modalities, such as magnetic resonance, single-photon emission computed tomography, and coronary computed tomography (CT) scan; however, none had a definitive modality to confirm hemodynamically significant coronary artery stenosis. Coronary computed tomography angiography (CCTA) can provide accurate anatomic and hemodynamic data about the coronary lesion, especially calculating fractional flow reserve derived from CCTA (CCTA-FFR). Although growing evidence has been published regarding CCTA-FFR results being comparable to ICA-FFR, CCTA-FFR has not yet replaced the invasive conventional angiography, pending additional studies to validate the advantages and disadvantages of each diagnostic method. Furthermore, it has to be identified whether revascularization of a stenotic lesion is plausible based on CCTA-FFR and if the therapeutic plan can be determined safely and accurately without confirmation from invasive methods. Therefore, in the present review, we will outline the pros and cons of using CCTA-FFR vs. ICA-FFR regarding diagnostic accuracy and treatment decision-making.

Keywords: Invasive coronary angiography, fractional flow reserve, myocardial, coronary computed tomography angiography, treatment decision-making, coronary artery disease.

Graphical Abstract
[1]
Dornquast C, Kroll LE, Neuhauser HK, Willich SN, Reinhold T, Busch MA. Regional differences in the prevalence of cardiovascular disease. Dtsch Arztebl Int 2016; 113(42): 704-11.
[http://dx.doi.org/10.3238/arztebl.2016.0704] [PMID: 27866565]
[2]
Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N. The epidemiology of cardiovascular disease in the UK 2014. Heart 2015; 101(15): 1182-9.
[http://dx.doi.org/10.1136/heartjnl-2015-307516] [PMID: 26041770]
[3]
Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am College Cardiol 2019; 74(20): 2529-32.
[http://dx.doi.org/10.1016/j.jacc.2019.10.009]
[4]
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[5]
Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur Heart J 2016; 37(42): 3232-45.
[http://dx.doi.org/10.1093/eurheartj/ehw334] [PMID: 27523477]
[6]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[7]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[8]
Joseph P, Leong D, McKee M, et al. Reducing the global burden of cardiovascular disease, part 1: The epidemiology and risk factors. Circ Res 2017; 121(6): 677-94.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.308903] [PMID: 28860318]
[9]
Ghiasi MM, Zendehboudi S, Mohsenipour AA. Decision tree-based diagnosis of coronary artery disease: CART model. Comput Methods Programs Biomed 2020; 192: 105400.
[http://dx.doi.org/10.1016/j.cmpb.2020.105400] [PMID: 32179311]
[10]
Joloudari JH, Hassannataj Joloudari E, Saadatfar H, et al. Coronary artery disease diagnosis; ranking the significant features using a random trees model. Int J Environ Res Public Health 2020; 17(3): 731.
[http://dx.doi.org/10.3390/ijerph17030731] [PMID: 31979257]
[11]
Bonaca MP, Wiviott SD, Braunwald E, et al. American college of cardiology/American heart association/European society of cardiology/world heart federation universal definition of myocardial infarction classification system and the risk of cardiovascular death: Observations from the triton-timi 38 trial (trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction 38). Circulation 2012; 125(4): 577-83.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.041160] [PMID: 22199016]
[12]
Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007; 115(11): 1464-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.629808] [PMID: 17372188]
[13]
Gao Z, Wang X, Sun S, et al. Learning physical properties in complex visual scenes: An intelligent machine for perceiving blood flow dynamics from static CT angiography imaging. Neural Netw 2020; 123: 82-93.
[http://dx.doi.org/10.1016/j.neunet.2019.11.017] [PMID: 31835156]
[14]
Collet C, Onuma Y, Sonck J, et al. Diagnostic performance of angiography-derived fractional flow reserve: A systematic review and Bayesian meta-analysis. Eur Heart J 2018; 39(35): 3314-21.
[http://dx.doi.org/10.1093/eurheartj/ehy445] [PMID: 30137305]
[15]
Liu X, Wang Y, Zhang H, et al. Evaluation of fractional flow reserve in patients with stable angina: Can CT compete with angiography? Eur Radiol 2019; 29(7): 3669-77.
[http://dx.doi.org/10.1007/s00330-019-06023-z] [PMID: 30887203]
[16]
Ryan TJ. The coronary angiogram and its seminal contributions to cardiovascular medicine over five decades. Circulation 2002; 106(6): 752-6.
[http://dx.doi.org/10.1161/01.CIR.0000024109.12658.D4] [PMID: 12163439]
[17]
Wang KT, Chen CY, Chen YT, et al. Improving success rates of percutaneous coronary intervention for chronic total occlusion at a rural Hospital in East Taiwan. Int J Gerontol 2014; 8(3): 157-61.
[http://dx.doi.org/10.1016/j.ijge.2013.12.004]
[18]
Sondagur AR, Wang H, Cao Y, Lin S, Li X. Success rate and safety of coronary angiography and angioplasty via radial artery approach among a Chinese population. J Invasive Cardiol 2014; 26(6): 273-5.
[PMID: 24907084]
[19]
Nikolakopoulos I, Vemmou E, Karacsonyi J, et al. Latest developments in chronic total occlusion percutaneous coronary intervention. Expert Rev Cardiovasc Ther 2020; 18(7): 415-26.
[http://dx.doi.org/10.1080/14779072.2020.1787153] [PMID: 32594784]
[20]
Khanra D, Mishra V, Jain B, et al. Percutaneous coronary intervention provided better long term results than optimal medical therapy alone in patients with chronic total occlusion: A meta-analysis. Indian Heart J 2020; 72(4): 225-31.
[http://dx.doi.org/10.1016/j.ihj.2020.07.013] [PMID: 32861374]
[21]
Lee SH, Cho JY, Kim JS, et al. A comparison of procedural success rate and long-term clinical outcomes between in-stent restenosis chronic total occlusion and de novo chronic total occlusion using multicenter registry data. Clin Res Cardiol 2020; 109(5): 628-37.
[http://dx.doi.org/10.1007/s00392-019-01550-7] [PMID: 31552494]
[22]
Kosyakovsky LB, Austin PC, Ross HJ, et al. Early invasive coronary angiography and acute ischaemic heart failure outcomes. Eur Heart J 2021; 42(36): 3756-66.
[http://dx.doi.org/10.1093/eurheartj/ehab423] [PMID: 34331056]
[23]
Nerlekar N, Ha FJ, Verma KP, et al. Percutaneous coronary intervention using drug-eluting stents versus coronary artery bypass grafting for unprotected left main coronary artery stenosis: A meta-analysis of randomized trials. Circ Cardiovasc Interv 2016; 9(12): e004729.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.004729] [PMID: 27899408]
[24]
Gao L, Liu Y, Sun Z, Wang Y, Cao F, Chen Y. Percutaneous coronary intervention using drug-eluting stents versus coronary artery bypass graft surgery in left main coronary artery disease an updated meta-analysis of randomized clinical trials. Oncotarget 2017; 8(39): 66449-57.
[http://dx.doi.org/10.18632/oncotarget.20142] [PMID: 29029526]
[25]
Thuijs DJFM, Kappetein AP, Serruys PW, et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019; 394(10206): 1325-34.
[http://dx.doi.org/10.1016/S0140-6736(19)31997-X] [PMID: 31488373]
[26]
Spadaccio C, Benedetto U. Coronary Artery Bypass Grafting (CABG) vs. Percutaneous Coronary Intervention (PCI) in the treatment of multivessel coronary disease: quo vadis—a review of the evidences on coronary artery disease. Ann Cardiothorac Surg 2018; 7(4): 506-15.
[http://dx.doi.org/10.21037/acs.2018.05.17] [PMID: 30094215]
[27]
Baykan AO, Gür M, Acele A, et al. Predictors of successful percutaneous coronary intervention in chronic total coronary occlusions. Postepy Kardiol Interwencyjnej 2016; 1(1): 17-24.
[http://dx.doi.org/10.5114/pwki.2016.56945] [PMID: 26966445]
[28]
Tavakol M, Ashraf S, Brener SJ. Risks and complications of coronary angiography: A comprehensive review. Glob J Health Sci 2012; 4(1): 65-93.
[PMID: 22980117]
[29]
Kočka V. The coronary angiography - An old-timer in great shape. Cor Vasa 2015; 57(6): e419-24.
[http://dx.doi.org/10.1016/j.crvasa.2015.09.007]
[30]
Garg S, Girasis C, Sarno G, et al. The SYNTAX score revisited: A reassessment of the SYNTAX score reproducibility. Catheter Cardiovasc Interv 2010; 75(6): 946-52.
[http://dx.doi.org/10.1002/ccd.22372] [PMID: 20146321]
[31]
Tesche C, De Cecco CN, Albrecht MH, et al. Coronary CT angiography–derived fractional flow reserve. Radiology 2017; 285(1): 17-33.
[http://dx.doi.org/10.1148/radiol.2017162641] [PMID: 28926310]
[32]
Elgendy IY, Conti CR, Bavry AA. Fractional flow reserve: An updated review. Clin Cardiol 2014; 37(6): 371-80.
[http://dx.doi.org/10.1002/clc.22273] [PMID: 24652785]
[33]
Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87(4): 1354-67.
[http://dx.doi.org/10.1161/01.CIR.87.4.1354] [PMID: 8462157]
[34]
De Bruyne B, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR, Pijls NHJ. Transstenotic coronary pressure gradient measurement in humans: In vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 1993; 22(1): 119-26.
[http://dx.doi.org/10.1016/0735-1097(93)90825-L] [PMID: 8509531]
[35]
Nam J, Briggs A, Layland J, et al. Fractional Flow Reserve (FFR) versus angiography in guiding management to optimise outcomes in non-ST segment elevation myocardial infarction (FAMOUS-NSTEMI) developmental trial: cost-effectiveness using a mixed trial- and model-based methods. Cost Eff Resour Alloc 2015; 13(1): 19.
[http://dx.doi.org/10.1186/s12962-015-0045-9] [PMID: 26578850]
[36]
van Nunen LX, Zimmermann FM, Tonino PAL, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 2015; 386(10006): 1853-60.
[http://dx.doi.org/10.1016/S0140-6736(15)00057-4] [PMID: 26333474]
[37]
Zhang D, Lv S, Song X, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: A meta-analysis. Heart 2015; 101(6): 455-62.
[http://dx.doi.org/10.1136/heartjnl-2014-306578] [PMID: 25637372]
[38]
Gong Y, Zheng B, Yi T, et al. Coronary angiography‐derived contrast fractional flow reserve. Catheter Cardiovasc Interv 2021.
[PMID: 33590679]
[39]
Chang CC, Lee YH, Chuang MJ, et al. Agreement between invasive wire-based and angiography-based vessel fractional flow reserve assessment on intermediate coronary stenoses. Front Cardiovasc Med 2021; 8: 707454.
[http://dx.doi.org/10.3389/fcvm.2021.707454] [PMID: 34277745]
[40]
Achenbach S, Rudolph T, Rieber J, et al. Performing and interpreting fractional flow reserve measurements in clinical practice: An expert consensus document. Interv Cardiol 2017; 12(2): 97-109.
[http://dx.doi.org/10.15420/icr.2017:13:2] [PMID: 29588737]
[41]
Faes TJC, Meer R, Heyndrickx GR, Kerkhof PLM. Fractional flow reserve evaluated as metric of coronary stenosis - a mathematical model study. Front Cardiovasc Med 2020; 6: 189.
[http://dx.doi.org/10.3389/fcvm.2019.00189] [PMID: 31993441]
[42]
Huo Y, Svendsen M, Choy JS, Zhang ZD, Kassab GS. A validated predictive model of coronary fractional flow reserve. J R Soc Interface 2012; 9(71): 1325-38.
[http://dx.doi.org/10.1098/rsif.2011.0605] [PMID: 22112650]
[43]
Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360(3): 213-24.
[http://dx.doi.org/10.1056/NEJMoa0807611] [PMID: 19144937]
[44]
Van Belle E, Rioufol G, Pouillot C, et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: Insights from a large French multicenter fractional flow reserve registry. Circulation 2014; 129(2): 173-85.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.006646] [PMID: 24255062]
[45]
Lim WH, Koo BK, Nam CW, et al. Variability of fractional flow reserve according to the methods of hyperemia induction. Catheter Cardiovasc Interv 2015; 85(6): 970-6.
[http://dx.doi.org/10.1002/ccd.25752] [PMID: 25413590]
[46]
Adiputra Y, Chen SL. Clinical relevance of coronary fractional flow reserve: art-of-state. Chin Med J 2015; 128(10): 1399-406.
[http://dx.doi.org/10.4103/0366-6999.156805] [PMID: 25963364]
[47]
Melikian N, De Bondt P, Tonino P, et al. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv 2010; 3(3): 307-14.
[http://dx.doi.org/10.1016/j.jcin.2009.12.010] [PMID: 20298990]
[48]
Petraco R, Sen S, Nijjer S, et al. Fractional flow reserve-guided revascularization: Practical implications of a diagnostic gray zone and measurement variability on clinical decisions. JACC Cardiovasc Interv 2013; 6(3): 222-5.
[http://dx.doi.org/10.1016/j.jcin.2012.10.014] [PMID: 23517831]
[49]
Mohdnazri SR, Keeble TR, Sharp ASP. Fractional flow reserve: Does a cut-off value add value? Interv Cardiol 2016; 11(1): 17-26.
[http://dx.doi.org/10.15420/icr.2016:7:2] [PMID: 29588700]
[50]
Weerts J, Pustjens T, Amin E, et al. Long‐term outcome after deferred revascularization due to negative fractional flow reserve in intermediate coronary lesions. Catheter Cardiovasc Interv 2021; 97(2): 247-56.
[http://dx.doi.org/10.1002/ccd.28753] [PMID: 31999077]
[51]
Jeremias A, Kirtane AJ, Stone GW. A test in context: fractional flow reserve: Accuracy, prognostic implications, and limitations. J Am Coll Cardiol 2017; 69(22): 2748-58.
[http://dx.doi.org/10.1016/j.jacc.2017.04.019] [PMID: 28571641]
[52]
Crystal G, Klein L. Fractional flow reserve: Physiological basis, advantages and limitations, and potential gender differences. Curr Cardiol Rev 2015; 11(3): 209-19.
[http://dx.doi.org/10.2174/1573403X10666141020113318] [PMID: 25329922]
[53]
Lal K, Gosling R, Ghobrial M, et al. Operator-dependent variability of angiography-derived fractional flow reserve and the implications for treatment. Eur Heart J Digit Health 2021; 2(2): 263-70.
[http://dx.doi.org/10.1093/ehjdh/ztab012] [PMCID: PMC8242185]
[54]
Garcia D, Harbaoui B, van de Hoef TP, et al. Relationship between FFR, CFR and coronary microvascular resistance – Practical implications for FFR-guided percutaneous coronary intervention. PLoS One 2019; 14(1): e0208612.
[http://dx.doi.org/10.1371/journal.pone.0208612] [PMID: 30616240]
[55]
Berry C. Fractional flow reserve, coronary flow reserve and the index of microvascular resistance in clinical practice. EuroIntervention 2014; 10: T55-63.
[56]
Morris PD, Ryan D, Morton AC, et al. Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc Interv 2013; 6(2): 149-57.
[http://dx.doi.org/10.1016/j.jcin.2012.08.024] [PMID: 23428006]
[57]
Morris PD, Silva Soto DA, Feher JFA, et al. Fast virtual fractional flow reserve based upon steady-state computational fluid dynamics analysis: Results from the VIRTU-Fast study. JACC Basic Transl Sci 2017; 2(4): 434-46.
[http://dx.doi.org/10.1016/j.jacbts.2017.04.003] [PMID: 28920099]
[58]
Heo R, Nakazato R, Kalra D, Min JK. Noninvasive imaging in coronary artery disease. Semin Nucl Med 2014; 44(5): 398-409.
[http://dx.doi.org/10.1053/j.semnuclmed.2014.05.004] [PMID: 25234083]
[59]
Hecht HS, Narula J, Fearon WF. Fractional flow reserve and coronary computed tomographic angiography. Circ Res 2016; 119(2): 300-16.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307914] [PMID: 27390333]
[60]
Driessen RS, Danad I, Stuijfzand WJ, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol 2019; 73(2): 161-73.
[http://dx.doi.org/10.1016/j.jacc.2018.10.056] [PMID: 30654888]
[61]
Dewey M, Siebes M, Kachelrieß M, et al. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nat Rev Cardiol 2020; 17(7): 427-50.
[http://dx.doi.org/10.1038/s41569-020-0341-8] [PMID: 32094693]
[62]
Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008; 52(21): 1724-32.
[http://dx.doi.org/10.1016/j.jacc.2008.07.031] [PMID: 19007693]
[63]
Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359(22): 2324-36.
[http://dx.doi.org/10.1056/NEJMoa0806576] [PMID: 19038879]
[64]
Meijboom WB, Meijs MFL, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: A prospective, multicenter, multivendor study. J Am Coll Cardiol 2008; 52(25): 2135-44.
[http://dx.doi.org/10.1016/j.jacc.2008.08.058] [PMID: 19095130]
[65]
Chow BJW, Abraham A, Wells GA, et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ Cardiovasc Imaging 2009; 2(1): 16-23.
[http://dx.doi.org/10.1161/CIRCIMAGING.108.792572] [PMID: 19808560]
[66]
Renker M, Schoepf UJ, Wang R, et al. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 2014; 114(9): 1303-8.
[http://dx.doi.org/10.1016/j.amjcard.2014.07.064] [PMID: 25205628]
[67]
Min JK, Shaw LJ, Berman DS. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol 2010; 55(10): 957-65.
[http://dx.doi.org/10.1016/j.jacc.2009.08.087] [PMID: 20202511]
[68]
Xu C, Yi Y, Han Y, et al. Incremental improvement of diagnostic performance of coronary CT angiography for the assessment of coronary stenosis in the presence of calcium using a dual-layer spectral detector CT: Validation by invasive coronary angiography. Int J Cardiovasc Imaging 2021; 37(8): 2561-72.
[http://dx.doi.org/10.1007/s10554-021-02205-3] [PMID: 34176031]
[69]
Varga-Szemes A, Meinel FG, De Cecco CN, Fuller SR, Bayer RR II, Schoepf UJ. CT myocardial perfusion imaging. AJR Am J Roentgenol 2015; 204(3): 487-97.
[http://dx.doi.org/10.2214/AJR.14.13546] [PMID: 25714277]
[70]
Henriksson L, Woisetschläger M, Alfredsson J, et al. The transluminal attenuation gradient does not add diagnostic accuracy to coronary computed tomography. Acta Radiol 2020; 62(7): 867-74.
[PMID: 32722968]
[71]
Kim HY, Lim HS, Doh JH, et al. Physiological severity of coronary artery stenosis depends on the amount of myocardial mass subtended by the coronary artery. JACC Cardiovasc Interv 2016; 9(15): 1548-60.
[http://dx.doi.org/10.1016/j.jcin.2016.04.008] [PMID: 27423225]
[72]
Morgan-Hughes G, Williams MC, Loudon M, et al. Downstream testing after CT coronary angiography: time for a rethink? Open Heart 2021; 8(1): e001597.
[http://dx.doi.org/10.1136/openhrt-2021-001597] [PMID: 33622963]
[73]
Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58(19): 1989-97.
[http://dx.doi.org/10.1016/j.jacc.2011.06.066] [PMID: 22032711]
[74]
Nakazato R, Park HB, Berman DS, et al. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: Results from the DeFACTO study. Circ Cardiovasc Imaging 2013; 6(6): 881-9.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000297] [PMID: 24081777]
[75]
Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 2013; 61(22): 2233-41.
[http://dx.doi.org/10.1016/j.jacc.2012.11.083] [PMID: 23562923]
[76]
Arbia G, Vignon-Clementel IE, Hsia TY, Gerbeau JF. Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics. Eur J Mech BFluids 2016; 60: 175-88.
[http://dx.doi.org/10.1016/j.euromechflu.2016.06.001]
[77]
Itu L, Rapaka S, Passerini T, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 2016; 121(1): 42-52.
[78]
Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in‐procedure angiography‐derived quantitative flow reserve compared to pressure‐derived fractional flow reserve: The favor ii europe‐japan study. J Am Heart Assoc 2018; 7(14): e009603.
[http://dx.doi.org/10.1161/JAHA.118.009603] [PMID: 29980523]
[79]
Budoff MJ, Nakazato R, Mancini GBJ, et al. CT angiography for the prediction of hemodynamic significance in intermediate and severe lesions. JACC Cardiovasc Imaging 2016; 9(5): 559-64.
[http://dx.doi.org/10.1016/j.jcmg.2015.08.021] [PMID: 26897669]
[80]
Pijls NHJ. Fractional flow reserve to guide coronary revascularization. Circ J 2013; 77(3): 561-9.
[http://dx.doi.org/10.1253/circj.CJ-13-0161] [PMID: 23420635]
[81]
Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012; 308(12): 1237-45.
[http://dx.doi.org/10.1001/2012.jama.11274] [PMID: 22922562]
[82]
Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63(12): 1145-55.
[http://dx.doi.org/10.1016/j.jacc.2013.11.043] [PMID: 24486266]
[83]
Kruk M. Wardziak Ł, Demkow M, et al. Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging 2016; 9(6): 690-9.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.019] [PMID: 26897667]
[84]
Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve. Am J Cardiol 2015; 116(9): 1469-78.
[http://dx.doi.org/10.1016/j.amjcard.2015.07.078] [PMID: 26347004]
[85]
Deng SB, Jing XD, Wang J, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in coronary artery disease: A systematic review and meta-analysis. Int J Cardiol 2015; 184: 703-9.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.025] [PMID: 25781722]
[86]
Agasthi P, Kanmanthareddy A, Khalil C, et al. Comparison of computed tomography derived fractional flow reserve to invasive fractional flow reserve in diagnosis of functional coronary stenosis: A meta-analysis. Sci Rep 2018; 8(1): 11535.
[http://dx.doi.org/10.1038/s41598-018-29910-9] [PMID: 30069020]
[87]
Cook CM, Petraco R, Shun-Shin MJ, et al. Diagnostic accuracy of computed tomography–derived fractional flow reserve: A systematic review. JAMA Cardiol 2017; 2(7): 803-10.
[http://dx.doi.org/10.1001/jamacardio.2017.1314] [PMID: 28538960]
[88]
Nørgaard BL, Hjort J, Gaur S, et al. Clinical use of coronary CTA–derived FFR for decision-making in stable CAD. JACC Cardiovasc Imaging 2017; 10(5): 541-50.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.025] [PMID: 27085447]
[89]
Liu X, Mo X, Zhang H, Yang G, Shi C, Hau WK. A 2-year investigation of the impact of the computed tomography–derived fractional flow reserve calculated using a deep learning algorithm on routine decision-making for coronary artery disease management. Eur Radiol 2021; 31(9): 7039-46.
[http://dx.doi.org/10.1007/s00330-021-07771-7] [PMID: 33630159]
[90]
Yang DH, Kim YH, Roh JH, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging 2017; 18(4): 432-40.
[http://dx.doi.org/10.1093/ehjci/jew094] [PMID: 27354345]
[91]
Coenen A, Rossi A, Lubbers MM, et al. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging 2017; 10(7): 760-70.
[http://dx.doi.org/10.1016/j.jcmg.2016.09.028] [PMID: 28109933]
[92]
Cami E, Tagami T, Raff G, et al. Importance of measurement site on assessment of lesion-specific ischemia and diagnostic performance by coronary computed tomography angiography-derived fractional flow reserve. J Cardiovasc Comput Tomogr 2021; 15(2): 114-20.
[http://dx.doi.org/10.1016/j.jcct.2020.08.005] [PMID: 32943356]
[93]
Baumann S, Renker M, Hetjens S, et al. Comparison of coronary computed tomography angiography-derived vs. invasive fractional flow reserve assessment: Meta-analysis with subgroup evaluation of intermediate stenosis. Acad Radiol 2016; 23(11): 1402-11.
[http://dx.doi.org/10.1016/j.acra.2016.07.007] [PMID: 27639627]
[94]
Nørgaard BL, Gaur S, Leipsic J, et al. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: A substudy of the NXT trial. JACC Cardiovasc Imaging 2015; 8(9): 1045-55.
[http://dx.doi.org/10.1016/j.jcmg.2015.06.003] [PMID: 26298072]
[95]
Andreini D, Pontone G, Mushtaq S, et al. Diagnostic accuracy of rapid kilovolt peak–switching dual-energy CT coronary angiography in patients with a high calcium score. JACC Cardiovasc Imaging 2015; 8(6): 746-8.
[http://dx.doi.org/10.1016/j.jcmg.2014.10.013] [PMID: 25797129]
[96]
Jiang W, Pan Y, Hu Y, et al. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve. Biomed Eng Online 2021; 20(1): 77.
[http://dx.doi.org/10.1186/s12938-021-00914-3] [PMID: 34348731]
[97]
Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR derived from coronary CT angiography. JACC Cardiovasc Imaging 2017; 10(11): 1350-8.
[http://dx.doi.org/10.1016/j.jcmg.2016.11.024] [PMID: 28412436]
[98]
Douglas PS, Pontone G, Hlatky MA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR CT: outcome and resource impacts study. Eur Heart J 2015; 36(47): 3359-67.
[http://dx.doi.org/10.1093/eurheartj/ehv444] [PMID: 26330417]
[99]
Rabbat M, Leipsic J, Bax J, et al. Fractional flow reserve derived from coronary computed tomography angiography safely defers invasive coronary angiography in patients with stable coronary artery disease. J Clin Med 2020; 9(2): 604.
[http://dx.doi.org/10.3390/jcm9020604] [PMID: 32102371]
[100]
Curzen NP, Nolan J, Zaman AG, Nørgaard BL, Rajani R. Does the routine availability of CT–derived FFR influence management of patients with stable chest pain compared to CT angiography alone? The FFRCT RIPCORD study. JACC Cardiovasc Imaging 2016; 9(10): 1188-94.
[http://dx.doi.org/10.1016/j.jcmg.2015.12.026] [PMID: 27568119]
[101]
Kim KH, Doh JH, Koo BK, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv 2014; 7(1): 72-8.
[http://dx.doi.org/10.1016/j.jcin.2013.05.024] [PMID: 24332418]
[102]
Curzen N, Nicholas Z, Stuart B, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial. Eur Heart J 2021; 42(37): 3844-52.
[http://dx.doi.org/10.1093/eurheartj/ehab444] [PMID: 34269376]
[103]
Aquino GJ, Abadia AF, Schoepf UJ, et al. Coronary CT fractional flow reserve before transcatheter aortic valve replacement: Clinical outcomes. Radiology 2022; 302(1): 50-8.
[PMID: 34609200]
[104]
Sonck J, Miyazaki Y, Collet C, et al. Feasibility of planning coronary artery bypass grafting based only on coronary computed tomography angiography and CT-derived fractional flow reserve: A pilot survey of the surgeons involved in the randomized SYNTAX III Revolution trial. Interact Cardiovasc Thorac Surg 2019; 29(2): 209-16.
[http://dx.doi.org/10.1093/icvts/ivz046] [PMID: 30887024]
[105]
Collet C, Onuma Y, Andreini D, et al. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J 2018; 39(41): 3689-98.
[http://dx.doi.org/10.1093/eurheartj/ehy581] [PMID: 30312411]
[106]
Andreini D, Modolo R, Katagiri Y, et al. Impact of fractional flow reserve derived from coronary computed tomography angiography on heart team treatment decision-making in patients with multivessel coronary artery disease: Insights from the SYNTAX III REVOLUTION trial. Circ Cardiovasc Interv 2019; 12(12): e007607.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.118.007607] [PMID: 31833413]
[107]
Kawashima H, Pompilio G, Andreini D, et al. Safety and feasibility evaluation of planning and execution of surgical revascularisation solely based on coronary CTA and FFR CT in patients with complex coronary artery disease: Study protocol of the FASTTRACK CABG study. BMJ Open 2020; 10(12): e038152.
[http://dx.doi.org/10.1136/bmjopen-2020-038152] [PMID: 33303435]
[108]
Andreini D, Mushtaq S, Conte E, et al. The usefulness of cardiac CT integrated with FFRCT for planning myocardial revascularization in complex coronary artery disease: A lesson from SYNTAX studies. Cardiovasc Diagn Ther 2020; 10(6): 2036-47.
[http://dx.doi.org/10.21037/cdt.2019.11.07] [PMID: 33381442]
[109]
Douglas PS, De Bruyne B, Pontone G, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: The PLATFORM study. J Am Coll Cardiol 2016; 68(5): 435-45.
[http://dx.doi.org/10.1016/j.jacc.2016.05.057] [PMID: 27470449]
[110]
Hlatky MA, De Bruyne B, Pontone G, et al. Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol 2015; 66(21): 2315-23.
[http://dx.doi.org/10.1016/j.jacc.2015.09.051] [PMID: 26475205]
[111]
Cho I, Elmore K. ó Hartaigh B, et al. Heart-rate dependent improvement in image quality and diagnostic accuracy of coronary computed tomographic angiography by novel intracycle motion correction algorithm. Clin Imaging 2015; 39(3): 421-6.
[http://dx.doi.org/10.1016/j.clinimag.2014.11.020] [PMID: 25649255]

© 2024 Bentham Science Publishers | Privacy Policy