Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Antibiotics in Paediatrics: A Boon or a Bane?

Author(s): Rupinder Kaur, Rajwinder Kaur*, Ashlin Varghese, Nidhi Garg and Sandeep Arora

Volume 21, Issue 2, 2023

Published on: 20 October, 2022

Article ID: e220822207867 Pages: 17

DOI: 10.2174/2211352520666220822145139

Price: $65

Abstract

Antibiotics play an essential role in antimicrobial therapy. Among all the medications in children, the most commonly prescribed therapy is antibiotics and is currently the indispensable means to cure transmissible diseases. Several categories of antibiotics have been introduced into clinical practice to treat microbial infections. Reducing the unnecessary use of antibiotics is a global need and priority. This article aims to provide better knowledge and understanding of the impact of the early use of antibiotics. This article highlights the proper use of antibiotics in children, detailing how early and inappropriate use of antibiotics affect the gut microbiome during normal body development and consequently affect the metabolism due to diabetes mellitus, obesity, and recurrence of infections, such as UTI. Several new antibiotics in their development stage, newly marketed antibiotics, and some recalled and withdrawn from the market are also briefly discussed in this article. This study will help future researchers in exploring the latest information about antibiotics used in paediatrics.

Keywords: Antibiotic, antibiotic resistance, paediatrics, ceftaroline, microbiome, macrolides.

Graphical Abstract
[1]
Rogawski, E.T.; Platts-Mills, J.A.; Seidman, J.C.; John, S.; Mahfuz, M.; Ulak, M.; Shrestha, S.K.; Soofi, S.B.; Yori, P.P.; Mduma, E.; Svensen, E.; Ahmed, T.; Lima, A.A.; Bhutta, Z.A.; Kosek, M.N.; Lang, D.R.; Gottlieb, M.; Zaidi, A.K.; Kang, G.; Bessong, P.O.; Houpt, E.R.; Guerrant, R.L. Use of antibiotics in children younger than two years in eight countries: A prospective cohort study. Bull. World Health Organ., 2017, 95(1), 49-61.
[http://dx.doi.org/10.2471/BLT.16.176123] [PMID: 28053364]
[2]
Shekhar, S.; Petersen, F.C. The dark side of antibiotics: Adverse effects on the infant immune defense against infection. Front Pediatr., 2020, 8, 544460.
[http://dx.doi.org/10.3389/fped.2020.544460] [PMID: 33178650]
[3]
Schulfer, A.; Blaser, M.J. Risks of antibiotic exposures early in life on the developing microbiome. PLoS Pathog., 2015, 11(7), e1004903.
[http://dx.doi.org/10.1371/journal.ppat.1004903] [PMID: 26135581]
[4]
Dierikx, T.H.; Visser, D.H.; Benninga, M.A.; van Kaam, A.H.L.C.; de Boer, N.K.H.; de Vries, R.; van Limbergen, J.; de Meij, T.G.J. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J. Infect., 2020, 81(2), 190-204.
[http://dx.doi.org/10.1016/j.jinf.2020.05.002] [PMID: 32389786]
[5]
Long, S.S. Optimizing antimicrobial therapy in children. J. Infect., 2016, 72(Suppl.), S91-S97.
[http://dx.doi.org/10.1016/j.jinf.2016.04.028] [PMID: 27263076]
[6]
Medernach, R.L.; Logan, L.K. The growing threat of antibiotic resistance in children. Infect. Dis. Clin. North Am., 2018, 32(1), 1-17.
[http://dx.doi.org/10.1016/j.idc.2017.11.001] [PMID: 29406971]
[7]
Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol., 2020, 10, 572912.
[http://dx.doi.org/10.3389/fcimb.2020.572912] [PMID: 33330122]
[8]
Blumenthal, K.G.; Peter, J.G.; Trubiano, J.A.; Phillips, E.J. Antibiotic allergy. Lancet, 2019, 393(10167), 183-198.
[http://dx.doi.org/10.1016/S0140-6736(18)32218-9] [PMID: 30558872]
[9]
Wikipedia. List of withdrawn drugs. Available from: https://en.wikipedia.org/wiki/List_of_withdrawn_drugs (Assessed July 2021).
[10]
U.S. Food & Drug Administration. Drug Recalls. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/drug-recalls (Assessed July 2021).
[11]
The Pharma Lett. Lilly Recalls Antibiotics. Available from: https://www.thepharmaletter.com/article/lilly-recalls-antibiotics (Assessed July 2021).
[12]
Bisgaard, H.; Li, N.; Bonnelykke, K. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol., 2011, 128(3), 646-652.
[13]
Kronman, M.P.; Zaoutis, T.E.; Haynes, K.; Feng, R.; Coffin, S.E. Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatrics, 2012, 130(4), e794-e803.
[http://dx.doi.org/10.1542/peds.2011-3886] [PMID: 23008454]
[14]
Gibson, M.K.; Wang, B.; Ahmadi, S.; Burnham, C.A.; Tarr, P.I.; Warner, B.B.; Dantas, G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol., 2016, 1(4), 16024.
[http://dx.doi.org/10.1038/nmicrobiol.2016.24] [PMID: 27572443]
[15]
Bailey, L.C.; Forrest, C.B.; Zhang, P.; Richards, T.M.; Livshits, A.; DeRusso, P.A. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr., 2014, 168(11), 1063-1069.
[http://dx.doi.org/10.1001/jamapediatrics.2014.1539] [PMID: 25265089]
[16]
Saari, A.; Virta, L.J.; Sankilampi, U.; Dunkel, L.; Saxen, H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics, 2015, 135(4), 617-626.
[http://dx.doi.org/10.1542/peds.2014-3407] [PMID: 25825533]
[17]
Penders, J.; Kummeling, I.; Thijs, C. Infant antibiotic use and wheeze and asthma risk: A systematic review and meta-analysis. Eur. Respir. J., 2011, 38(2), 295-302.
[http://dx.doi.org/10.1183/09031936.00105010] [PMID: 21233272]
[18]
Ubeda, C.; Pamer, E.G. Antibiotics, microbiota, and immune defense. Trends Immunol., 2012, 33(9), 459-466.
[http://dx.doi.org/10.1016/j.it.2012.05.003] [PMID: 22677185]
[19]
Korpela, K.; Salonen, A.; Virta, L.J.; Kekkonen, R.A.; Forslund, K.; Bork, P.; de Vos, W.M. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun., 2016, 7(1), 10410.
[http://dx.doi.org/10.1038/ncomms10410] [PMID: 26811868]
[20]
Hong, W.; Si, S.; Zhen, Y.; Xiu, Y.; Guo, Z. Impact of early-life antibiotic use on gut microbiota of infants. J. Microb. Biochem. Technol., 2017, 9(5), 227-231.
[21]
Cully, M. Antibiotics alter the gut microbiome and host health. Nat. Resour., 2019, 15, S19.
[22]
Neuman, H.; Forsythe, P.; Uzan, A.; Avni, O.; Koren, O. Antibiotics in early life: Dysbiosis and the damage done. FEMS Microbiol. Rev., 2018, 42(4), 489-499.
[http://dx.doi.org/10.1093/femsre/fuy018] [PMID: 29945240]
[23]
Ficara, M.; Pietrella, E.; Spada, C.; Della Casa Muttini, E.; Lucaccioni, L.; Iughetti, L.; Berardi, A. Changes of intestinal microbiota in early life. J. Matern. Fetal Neonatal Med., 2020, 33(6), 1036-1043.
[http://dx.doi.org/10.1080/14767058.2018.1506760] [PMID: 30058404]
[24]
Azad, M.B.; Bridgman, S.L.; Becker, A.B.; Kozyrskyj, A.L. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int. J. Obes., 2014, 38(10), 1290-1298.
[http://dx.doi.org/10.1038/ijo.2014.119] [PMID: 25012772]
[25]
Cox, L.M.; Blaser, M.J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol., 2015, 11(3), 182-190.
[http://dx.doi.org/10.1038/nrendo.2014.210] [PMID: 25488483]
[26]
Nobel, Y.R.; Cox, L.M.; Kirigin, F.F.; Bokulich, N.A.; Yamanishi, S.; Teitler, I.; Chung, J.; Sohn, J.; Barber, C.M.; Goldfarb, D.S.; Raju, K.; Abubucker, S.; Zhou, Y.; Ruiz, V.E.; Li, H.; Mitreva, M.; Alekseyenko, A.V.; Weinstock, G.M.; Sodergren, E.; Blaser, M.J. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat. Commun., 2015, 6(1), 7486.
[http://dx.doi.org/10.1038/ncomms8486] [PMID: 26123276]
[27]
Scheithauer, T.P.; Dallinga-Thie, G.M.; de Vos, W.M.; Nieuwdorp, M.; van Raalte, D.H. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol. Metab., 2016, 5(9), 759-770.
[http://dx.doi.org/10.1016/j.molmet.2016.06.002] [PMID: 27617199]
[28]
Cunningham, S.A.; Kramer, M.R.; Narayan, K.M. Incidence of childhood obesity in the United States. N. Engl. J. Med., 2014, 370(5), 403-411.
[http://dx.doi.org/10.1056/NEJMoa1309753] [PMID: 24476431]
[29]
Block, J.P.; Bailey, L.C.; Gillman, M.W.; Lunsford, D.; Daley, M.F.; Eneli, I.; Finkelstein, J.; Heerman, W.; Horgan, C.E.; Hsia, D.S.; Jay, M.; Rao, G.; Reynolds, J.S.; Rifas-Shiman, S.L.; Sturtevant, J.L.; Toh, S.; Trasande, L.; Young, J.; Forrest, C.B. Early antibiotic exposure and weight outcomes in young children. Pediatrics, 2018, 142(6), e20180290.
[http://dx.doi.org/10.1542/peds.2018-0290] [PMID: 30381474]
[30]
Raita, Y.; Toivonen, L.; Schuez-Havupalo, L.; Karppinen, S.; Waris, M.; Hoffman, K.L.; Camargo, C.A., Jr; Peltola, V.; Hasegawa, K. Maturation of nasal microbiota and antibiotic exposures during early childhood: A population-based cohort study. Clin. Microbiol. Infect., 2021, 27(2), 283.e1-283.e7.
[http://dx.doi.org/10.1016/j.cmi.2020.05.033] [PMID: 32505584]
[31]
Monasta, L.; Batty, G.D.; Cattaneo, A.; Lutje, V.; Ronfani, L.; Van Lenthe, F.J.; Brug, J. Early-life determinants of overweight and obesity: A review of systematic reviews. Obes. Rev., 2010, 11(10), 695-708.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00735.x] [PMID: 20331509]
[32]
Yallapragada, S.G.; Nash, C.B.; Robinson, D.T. Early-life exposure to antibiotics, alterations in the intestinal microbiome, and risk of metabolic disease in children and adults. Pediatr. Ann., 2015, 44(11), e265-e269.
[http://dx.doi.org/10.3928/00904481-20151112-09] [PMID: 26587819]
[33]
Sanz, Y.; Olivares, M.; Moya-Pérez, Á.; Agostoni, C. Understanding the role of gut microbiome in metabolic disease risk. Pediatr. Res., 2015, 77(1-2), 236-244.
[http://dx.doi.org/10.1038/pr.2014.170] [PMID: 25314581]
[34]
Lin, Y.C.; Chen, Y.C.; Kuo, C.H.; Chang, Y.H.; Huang, H.Y.; Yeh, W.J.; Wu, T.Y.; Huang, M.Y.; Hung, C.H. Antibiotic exposure and asthma development in children with allergic rhinitis. J. Microbiol. Immunol. Infect., 2020, 53(5), 803-811.
[http://dx.doi.org/10.1016/j.jmii.2019.02.003] [PMID: 31296483]
[35]
Gibson, M.K.; Crofts, T.S.; Dantas, G. Antibiotics and the developing infant gut microbiota and resistome. Curr. Opin. Microbiol., 2015, 27, 51-56.
[http://dx.doi.org/10.1016/j.mib.2015.07.007] [PMID: 26241507]
[36]
Gao, Y.; Nanan, R.; Macia, L.; Tan, J.; Sominsky, L.; Quinn, T.P.; O’Hely, M.; Ponsonby, A.L.; Tang, M.L.K.; Collier, F.; Strickland, D.H.; Dhar, P.; Brix, S.; Phipps, S.; Sly, P.D.; Ranganathan, S.; Stokholm, J.; Kristiansen, K.; Gray, L.E.K.; Vuillermin, P. The maternal gut microbiome during pregnancy and offspring allergy and asthma. J. Allergy Clin. Immunol., 2021, 148(3), 669-678.
[http://dx.doi.org/10.1016/j.jaci.2021.07.011] [PMID: 34310928]
[37]
Josyabhatla, R.; Imseis, E.M. Pediatric intestinal failure and the microbiome. In: Seminars in Perinatology; , 2021.
[http://dx.doi.org/10.1016/j.semperi.2021.151453]
[38]
Logan, L.K.; Braykov, N.P.; Weinstein, R.A.; Laxminarayan, R. Extended-spectrum β-lactamase-producing and third-generation cephalosporin-resistant Enterobacteriaceae in children: Trends in the United States, 1999-2011. J. Pediatric Infect. Dis. Soc., 2014, 3(4), 320-328.
[http://dx.doi.org/10.1093/jpids/piu010] [PMID: 26625452]
[39]
Zervos, M.J.; Hershberger, E.; Nicolau, D.P.; Ritchie, D.J.; Blackner, L.K.; Coyle, E.A.; Donnelly, A.J.; Eckel, S.F.; Eng, R.H.; Hiltz, A.; Kuyumjian, A.G.; Krebs, W.; McDaniel, A.; Hogan, P.; Lubowski, T.J. Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in 10 United States teaching hospitals, 1991-2000. Clin. Infect. Dis., 2003, 37(12), 1643-1648.
[http://dx.doi.org/10.1086/379709] [PMID: 14689346]
[40]
CDC. Available from: www.cdc.gov/drugresistance/biggest_threats (Accessed July 2021).
[41]
Bryce, A.; Hay, A.D.; Lane, I.F.; Thornton, H.V.; Wootton, M.; Costelloe, C. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: Systematic review and meta-analysis. BMJ, 2016, 352, i939.
[http://dx.doi.org/10.1136/bmj.i939] [PMID: 26980184]
[42]
Jackson, M.A.; Schutze, G.E.; Byington, C.L.; Maldonado, Y.A.; Barnett, E.D.; Campbell, J.D.; Davies, H.D.; Lynfield, R.; Munoz, F.M.; Nolt, D.; Nyquist, A-C.; O’Leary, S.; Rathore, M.H.; Sawyer, M.H.; Steinbach, W.J.; Tan, T.Q.; Zaoutis, T.E. The use of systemic and topical fluoroquinolones. Pediatrics, 2016, 138(5), e20162706.
[http://dx.doi.org/10.1542/peds.2016-2706] [PMID: 27940800]
[43]
Bradley, J.S.; Jackson, M.A. The use of systemic and topical fluoroquinolones. Pediatrics, 2011, 128(4), e1034-e1045.
[http://dx.doi.org/10.1542/peds.2011-1496] [PMID: 21949152]
[44]
Purohit, M.R.; Lindahl, L.F.; Diwan, V.; Marrone, G.; Lundborg, C.S. High levels of drug resistance in commensal E. coli in a cohort of children from rural central India. Sci. Rep., 2019, 9(1), 6682.
[http://dx.doi.org/10.1038/s41598-019-43227-1] [PMID: 31040380]
[45]
Vazouras, K.; Velali, K.; Tassiou, I.; Anastasiou-Katsiardani, A.; Athanasopoulou, K.; Barbouni, A.; Jackson, C.; Folgori, L.; Zaoutis, T.; Basmaci, R.; Hsia, Y. Antibiotic treatment and antimicrobial resistance in children with urinary tract infections. J. Glob. Antimicrob. Resist., 2020, 20, 4-10.
[http://dx.doi.org/10.1016/j.jgar.2019.06.016] [PMID: 31252156]
[46]
Okubo, Y.; Horimukai, K.; Michihata, N.; Morita, K.; Matsui, H.; Fushimi, K.; Yasunaga, H. Association between early antibiotic treatment and clinical outcomes in children hospitalized for asthma exacerbation. J. Allergy Clin. Immunol., 2021, 147(1), 114-122.e14.
[http://dx.doi.org/10.1016/j.jaci.2020.05.030] [PMID: 32504615]
[47]
Youngster, I.; Avorn, J.; Belleudi, V.; Cantarutti, A.; Díez-Domingo, J.; Kirchmayer, U.; Park, B.J.; Peiró, S.; Sanfélix-Gimeno, G.; Schröder, H.; Schüssel, K.; Shin, J.Y.; Shin, S.M.; Simonsen, G.S.; Blix, H.S.; Tong, A.; Trifirò, G.; Ziv-Baran, T.; Kim, S.C. Antibiotic use in children–a cross-national analysis of 6 countries. J. Pediatr., 2017, 182, 239-244.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.11.027] [PMID: 28012694]
[48]
Vagedes, J.; Martin, D.; Müller, V.; Helmert, E.; Huber, B.M.; Andrasik, F.; von Schoen-Angerer, T. Restrictive antibiotic use in children hospitalized for pneumonia: A retrospective inpatient study. Eur. J. Integr. Med., 2020, 34, 101068.
[http://dx.doi.org/10.1016/j.eujim.2020.101068]
[49]
Halboup, A.; Abdi, A.; Ahmed, M.; Al-Qadasi, F.; Othman, G.Q. Access to antibiotics without prescription in community pharmacies in Yemen during the political conflict. Public Health, 2020, 183, 30-35.
[http://dx.doi.org/10.1016/j.puhe.2020.03.003] [PMID: 32416475]
[50]
Auta, A.; Hadi, M.A.; Oga, E.; Adewuyi, E.O.; Abdu-Aguye, S.N.; Adeloye, D.; Strickland-Hodge, B.; Morgan, D.J. Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis. J. Infect., 2019, 78(1), 8-18.
[http://dx.doi.org/10.1016/j.jinf.2018.07.001] [PMID: 29981773]
[51]
Chaudhary, P.; Bahl, A.; Kumar, A. Trends of prescribing and utilisation of antibiotics in the paediatric out-patient population of a secondary care hospital in Gurgaon, India. Indian J. Med. Spec., 2014, 5(2), 93-96.
[http://dx.doi.org/10.7713/ijms.2014.0004]
[52]
van de Maat, J.; van de Voort, E.; Mintegi, S.; Gervaix, A.; Nieboer, D.; Moll, H.; Oostenbrink, R.; Moll, H.A.; Oostenbrink, R.; van Veen, M.; Noordzij, J.G.; Smit, F.; van Wermeskerken, A-M.; Angoulvant, F.; Dubos, F.; Gras-Leguen, C.; Desmarest, M.; Aurel, M.; Gajdos, V.; Joffre, C.; Mintegi, S.; Acedo, Y.; Herrero Garcia, L.; Medina, I.; Cózar, J.A.; Fernandez Arribas, J.L.; Pinto, S.; Sá, G.; Mação, P.; Silva, D.; Zarcos, M.; Seiler, M.; Gervaix, A.; Maconochie, I.; Olesen, H.; Bønnelykke, C.; Parri, N.; Fichera, V.; Arrhigini, A.; Bressan, S.; Da Dalt, L.; Moldovan, D.; Dreghiciu, D-M.; Bognar, Z.; Yilmaz, H.L.; Sari Gökay, S. Antibiotic prescription for febrile children in European emergency departments: A cross-sectional, observational study. Lancet Infect. Dis., 2019, 19(4), 382-391.
[http://dx.doi.org/10.1016/S1473-3099(18)30672-8] [PMID: 30827808]
[53]
Jian, C.; Carpén, N.; Helve, O.; de Vos, W.M.; Korpela, K.; Salonen, A. Early-life gut microbiota and its connection to metabolic health in children: Perspective on ecological drivers and need for quantitative approach. EBioMedicine, 2021, 69, 103475.
[http://dx.doi.org/10.1016/j.ebiom.2021.103475] [PMID: 34256346]
[54]
Aversa, Z.; Atkinson, E.J.; Schafer, M.J.; Theiler, R.N.; Rocca, W.A.; Blaser, M.J.; LeBrasseur, N.K. Association of infant antibiotic exposure with childhood health outcomes. Mayo Clin. Proc., 2021, 96(1), 66-77.
[http://dx.doi.org/10.1016/j.mayocp.2020.07.019] [PMID: 33208243]
[55]
Li, X.; Stokholm, J.; Brejnrod, A.; Vestergaard, G.A.; Russel, J.; Trivedi, U.; Thorsen, J.; Gupta, S.; Hjelmsø, M.H.; Shah, S.A.; Rasmussen, M.A.; Bisgaard, H.; Sørensen, S.J. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe, 2021, 29(6), 975-987.e4.
[http://dx.doi.org/10.1016/j.chom.2021.03.017] [PMID: 33887206]
[56]
Yonts, A.B.; Kronman, M.P.; Hamdy, R.F. The burden and impact of antibiotic prescribing in ambulatory pediatrics. Curr. Probl. Pediatr. Adolesc. Health Care, 2018, 48(11), 272-288.
[http://dx.doi.org/10.1016/j.cppeds.2018.09.002] [PMID: 30337150]
[57]
Le, J.; Bradley, J.S. Optimizing antibiotic drug therapy in pediatrics: Current state and future needs. J. Clin. Pharmacol., 2018, 58(S10)(Suppl. 10), S108-S122.
[http://dx.doi.org/10.1002/jcph.1128] [PMID: 30248202]
[58]
Unni, J.C.; Joseph, R.B. Newer antibiotics-use in pediatric practice. Indian J. Pract. Pediatr., 2019, 21(2), 108-110.
[59]
Rashed, A.N.; Jackson, C.; Gastine, S.; Hsia, Y.; Bielicki, J.; Standing, J.F.; Tomlin, S.; Sharland, M. Pediatric pharmacokinetics of the antibiotics in the access and watch groups of the 2019 WHO model list of essential medicines for children: A systematic review. Expert Rev. Clin. Pharmacol., 2019, 12(12), 1099-1106.
[http://dx.doi.org/10.1080/17512433.2019.1693257] [PMID: 31760892]
[60]
Zerbaxa (ceftozolane/tazobactam) prescribing information. 2014. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206829lbl.pdf (Accessed July 2021).
[61]
Antibiotics currently in global clinical development. 2014. Available from: http://www.pewtrusts.org/en/multimedia/data-visualizations/2014/antibiotics (Accessed July 2021).
[62]
Centerwatch FDA approved drugs for infections and infectious disease. Available from: https://www.centerwatch.com/drug-information/fda-approved-drugs/therapeutic- area/25/infections-and-infectious-diseases (Accessed July 2021).
[63]
Andrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova), 2019, 7(4), e102.
[http://dx.doi.org/10.15190/d.2019.15] [PMID: 32309620]
[64]
Wright, H.R.; Turner, A.; Taylor, H.R. Trachoma. Lancet, 2008, 371(9628), 1945-1954.
[http://dx.doi.org/10.1016/S0140-6736(08)60836-3] [PMID: 18539226]
[65]
Jelić D.; Antolović R. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics (Basel), 2016, 5(3), 29.
[http://dx.doi.org/10.3390/antibiotics5030029] [PMID: 27598215]
[66]
Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[67]
Skalet, A.H.; Cevallos, V.; Ayele, B.; Gebre, T.; Zhou, Z.; Jorgensen, J.H.; Zerihun, M.; Habte, D.; Assefa, Y.; Emerson, P.M.; Gaynor, B.D.; Porco, T.C.; Lietman, T.M.; Keenan, J.D. Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: A cluster-randomized clinical trial. PLoS Med., 2010, 7(12), e1000377.
[http://dx.doi.org/10.1371/journal.pmed.1000377] [PMID: 21179434]
[68]
O’Brien, K.S.; Emerson, P.; Hooper, P.J.; Reingold, A.L.; Dennis, E.G.; Keenan, J.D.; Lietman, T.M.; Oldenburg, C.E. Antimicrobial resistance following mass azithromycin distribution for trachoma: A systematic review. Lancet Infect. Dis., 2019, 19(1), e14-e25.
[http://dx.doi.org/10.1016/S1473-3099(18)30444-4] [PMID: 30292480]
[69]
Vennila, V.; Madhu, V.; Rajesh, R.; Ealla, K.K.; Velidandla, S.R.; Santoshi, S. Tetracycline-induced discoloration of deciduous teeth: Case series. J. Int. Oral Health, 2014, 6(3), 115-119.
[PMID: 25083046]
[70]
Romandini, A.; Pani, A.; Schenardi, P.A.; Pattarino, G.A.C.; De Giacomo, C.; Scaglione, F. Antibiotic resistance in pediatric infections: Global emerging threats, predicting the near future. Antibiotics (Basel), 2021, 10(4), 393.
[http://dx.doi.org/10.3390/antibiotics10040393] [PMID: 33917430]
[71]
Lozzi, F.; Di Raimondo, C.; Lanna, C.; Diluvio, L.; Mazzilli, S.; Garofalo, V.; Dika, E.; Dellambra, E.; Coniglione, F.; Bianchi, L.; Campione, E. Latest evidence regarding the effects of photosensitive drugs on the skin: Pathogenetic mechanisms and clinical manifestations. Pharmaceutics, 2020, 12(11), 1104.
[http://dx.doi.org/10.3390/pharmaceutics12111104] [PMID: 33213076]
[72]
Grossman, E.R.; Walchek, A.; Freedman, H.; Flanagan, C. Tetracyclines and permanent teeth: The relation between dose and tooth color. Pediatrics, 1971, 47(3), 567-570.
[http://dx.doi.org/10.1542/peds.47.3.567] [PMID: 4993997]
[73]
Lehrnbecher, T.; Phillips, R.; Alexander, S.; Alvaro, F.; Carlesse, F.; Fisher, B.; Hakim, H.; Santolaya, M.; Castagnola, E.; Davis, B.L.; Dupuis, L.L.; Gibson, F.; Groll, A.H.; Gaur, A.; Gupta, A.; Kebudi, R.; Petrilli, S.; Steinbach, W.J.; Villarroel, M.; Zaoutis, T.; Sung, L. Guideline for the management of fever and neutropenia in children with cancer and/or undergoing hematopoietic stem-cell transplantation. J. Clin. Oncol., 2012, 30(35), 4427-4438.
[http://dx.doi.org/10.1200/JCO.2012.42.7161] [PMID: 22987086]
[74]
Tamma, P.D.; Turnbull, A.E.; Harris, A.D.; Milstone, A.M.; Hsu, A.J.; Cosgrove, S.E. Less is more: Combination antibiotic therapy for the treatment of gram-negative bacteremia in pediatric patients. JAMA Pediatr., 2013, 167(10), 903-910.
[http://dx.doi.org/10.1001/jamapediatrics.2013.196] [PMID: 23921724]
[75]
Haeusler, G.M.; Thursky, K.A.; Slavin, M.A.; Babl, F.E.; De Abreu Lourenco, R.; Allaway, Z.; Mechinaud, F.; Phillips, R. Risk stratification in children with cancer and febrile neutropenia: A national, prospective, multicentre validation of nine clinical decision rules. EClinicalMedicine, 2020, 18, 100220.
[http://dx.doi.org/10.1016/j.eclinm.2019.11.013] [PMID: 31993576]
[76]
McMullan, B.J.; Haeusler, G.M.; Hall, L.; Cooley, L.; Stewardson, A.J.; Blyth, C.C.; Jones, C.A.; Konecny, P.; Babl, F.E.; Mechinaud, F.; Thursky, K. Aminoglycoside use in paediatric febrile neutropenia - Outcomes from a nationwide prospective cohort study. PLoS One, 2020, 15(9), e0238787.
[http://dx.doi.org/10.1371/journal.pone.0238787] [PMID: 32936822]
[77]
Dancer, S.J. The problem with cephalosporins. J. Antimicrob. Chemother., 2001, 48(4), 463-478.
[http://dx.doi.org/10.1093/jac/48.4.463] [PMID: 11581224]
[78]
Riaz, B.; Khatoon, H. Evaluation of the use of cephalosporin antibiotics in pediatrics. J. Appl. Pharm., 2013, 3(4), 63.
[79]
O’Neill, E.; Humphreys, H.; Phillips, J.; Smyth, E.G. Third-generation cephalosporin resistance among Gram-negative bacilli causing meningitis in neurosurgical patients: Significant challenges in ensuring effective antibiotic therapy. J. Antimicrob. Chemother., 2006, 57(2), 356-359.
[http://dx.doi.org/10.1093/jac/dki462] [PMID: 16368699]
[80]
Poddighe, D. Macrolide resistance and longer-term assessment of azithromycin in MORDOR I. N. Engl. J. Med., 2019, 381(22), 2184-2185.
[http://dx.doi.org/10.1056/NEJMc1910014] [PMID: 31774978]
[81]
Doan, T.; Arzika, A.M.; Hinterwirth, A.; Maliki, R.; Zhong, L.; Cummings, S.; Sarkar, S.; Chen, C.; Porco, T.C.; Keenan, J.D.; Lietman, T.M. Macrolide resistance in MORDOR I—a cluster-randomized trial in Niger. N. Engl. J. Med., 2019, 380(23), 2271-2273.
[http://dx.doi.org/10.1056/NEJMc1901535] [PMID: 31167060]
[82]
Hart, J.D.; Samikwa, L.; Meleke, H.; Burr, S.E.; Cornick, J.; Kalua, K.; Bailey, R.L. Prevalence of nasopharyngeal Streptococcus pneumoniae carriage and resistance to macrolides in the setting of azithromycin mass drug administration: Analysis from a cluster-randomised controlled trial in Malawi, 2015-17. Lancet Microbe, 2022, 3(2), e142-e150.
[http://dx.doi.org/10.1016/S2666-5247(21)00279-2] [PMID: 35156069]
[83]
Pickering, H.; Hart, J.D.; Burr, S.; Stabler, R.; Maleta, K.; Kalua, K.; Bailey, R.L.; Holland, M.J. Impact of azithromycin mass drug administration on the antibiotic-resistant gut microbiome in children: A randomized, controlled trial. Gut Pathog., 2022, 14(1), 5.
[http://dx.doi.org/10.1186/s13099-021-00478-6] [PMID: 34991704]
[84]
Bloch, E.M.; Coles, C.L.; Kasubi, M.; Weaver, J.; Mrango, Z.; Munoz, B.; Lietman, T.M.; West, S.K. Biannual treatment of preschool children with single dose azithromycin to reduce mortality: Impact on azithromycin resistance in the MORDOR trial in Tanzania. Am. J. Trop. Med., 2020, 103(3), 1301-1307.
[http://dx.doi.org/10.4269/ajtmh.19-0086] [PMID: 32067633]
[85]
Leach, A.J.; Shelby-James, T.M.; Mayo, M.; Gratten, M.; Laming, A.C.; Currie, B.J.; Mathews, J.D. A prospective study of the impact of community-based azithromycin treatment of trachoma on carriage and resistance of Streptococcus pneumoniae. Clin. Infect. Dis., 1997, 24(3), 356-362.
[http://dx.doi.org/10.1093/clinids/24.3.356] [PMID: 9114185]
[86]
John, L.N.; Beiras, C.G.; Houinei, W. A trial of three rounds of mass drug administration with azithromycin for Yaws. N. Engl. J. Med., 2022, 386(1), 47.
[http://dx.doi.org/10.1056/NEJMoa2109449] [PMID: 34986286]
[87]
Parisi, G.F.; Indolfi, C.; Decimo, F.; Leonardi, S.; Miraglia Del Giudice, M. COVID-19 pneumonia in children: From etiology to management. Front Pediatr., 2020, 8, 616622.
[http://dx.doi.org/10.3389/fped.2020.616622] [PMID: 33381482]
[88]
Venturini, E.; Montagnani, C.; Garazzino, S.; Donà, D.; Pierantoni, L.; Lo Vecchio, A.; Nicolini, G.; Bianchini, S.; Krzysztofiak, A.; Galli, L.; Villani, A.; Castelli-Gattinara, G. Treatment of children with COVID-19: Position paper of the Italian Society of Pediatric Infectious Disease. Ital. J. Pediatr., 2020, 46(1), 139.
[http://dx.doi.org/10.1186/s13052-020-00900-w] [PMID: 32972435]
[89]
Ludvigsson, J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr., 2020, 109(6), 1088-1095.
[http://dx.doi.org/10.1111/apa.15270] [PMID: 32202343]
[90]
Wang, J.; Tang, Y.; Ma, Y.; Zhou, Q.; Li, W.; Baskota, M.; Yang, Y.; Wang, X.; Li, Q.; Luo, X.; Fukuoka, T.; Ahn, H.S.; Lee, M.S.; Luo, Z.; Liu, E.; Chen, Y. Efficacy and safety of antibiotic agents in children with COVID-19: A rapid review. Ann. Transl. Med., 2020, 8(10), 619.
[http://dx.doi.org/10.21037/atm-20-3300] [PMID: 32566556]
[91]
Sun, D.; Li, H.; Lu, X.X.; Xiao, H.; Ren, J.; Zhang, F.R.; Liu, Z.S. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study. World J. Pediatr., 2020, 16(3), 251-259.
[http://dx.doi.org/10.1007/s12519-020-00354-4] [PMID: 32193831]
[92]
Chen, Z.M.; Fu, J.F.; Shu, Q.; Chen, Y.H.; Hua, C.Z.; Li, F.B.; Lin, R.; Tang, L.F.; Wang, T.L.; Wang, W.; Wang, Y.S.; Xu, W.Z.; Yang, Z.H.; Ye, S.; Yuan, T.M.; Zhang, C.M.; Zhang, Y.Y. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J. Pediatr., 2020, 16(3), 240-246.
[http://dx.doi.org/10.1007/s12519-020-00345-5] [PMID: 32026148]
[93]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[94]
Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; Blog, D.S.; Hutton, B.; Holtgrave, D.R.; Zucker, H.A. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA, 2020, 323(24), 2493-2502.
[http://dx.doi.org/10.1001/jama.2020.8630] [PMID: 32392282]
[95]
Katz, S.E.; Spencer, H.; Zhang, M.; Banerjee, R. Impact of the COVID-19 pandemic on infectious diagnoses and antibiotic use in pediatric ambulatory practices. J. Pediatric Infect. Dis. Soc., 2021, 10(1), 62-64.
[http://dx.doi.org/10.1093/jpids/piaa124] [PMID: 33064837]
[96]
Gérard, A.; Romani, S.; Fresse, A.; Viard, D.; Parassol, N.; Granvuillemin, A.; Chouchana, L.; Rocher, F.; Drici, M.D. “Off-label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: A survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centers. Therapies., 2020, 75(4), 371-379.
[http://dx.doi.org/10.1016/j.therap.2020.05.002] [PMID: 32418730]
[97]
Shen, K.; Yang, Y.; Wang, T.; Zhao, D.; Jiang, Y.; Jin, R.; Zheng, Y.; Xu, B.; Xie, Z.; Lin, L.; Shang, Y.; Lu, X.; Shu, S.; Bai, Y.; Deng, J.; Lu, M.; Ye, L.; Wang, X.; Wang, Y.; Gao, L. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: Experts’ consensus statement. World J. Clin. Pediatr., 2020, 16(3), 223-231.
[http://dx.doi.org/10.1007/s12519-020-00343-7] [PMID: 32034659]
[98]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[99]
Paula, HS; Santiago, SB; Araújo, LA An overview on the current available treatment for COVID-19 and the impact of antibiotic administration during the pandemic. Braz. J. Med. 2021, 55.
[100]
Wang, D.; Ju, X.L.; Xie, F.; Lu, Y.; Li, F.Y.; Huang, H.H.; Fang, X.L.; Li, Y.J.; Wang, J.Y.; Yi, B.; Yue, J.X.; Wang, J.; Wang, L.X.; Li, B.; Wang, Y.; Qiu, B.P.; Zhou, Z.Y.; Li, K.L.; Sun, J.H.; Liu, X.G.; Li, G.D.; Wang, Y.J.; Cao, A.H.; Chen, Y.N. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China Zhonghua Er Ke Za Zhi, 2020, 58(4), 269-274.
[PMID: 32118389]
[101]
Chen, F.; Liu, Z.S.; Zhang, F.R.; Xiong, R.H.; Chen, Y.; Cheng, X.F.; Wang, W.Y.; Ren, J. First case of severe childhood novel coronavirus pneumonia in China Zhonghua Er Ke Za Zhi, 2020, 58(3), 179-182.
[PMID: 32135586]
[102]
Jiehao, C.; Jin, X.; Daojiong, L.; Zhi, Y.; Lei, X.; Zhenghai, Q.; Yuehua, Z.; Hua, Z.; Ran, J.; Pengcheng, L.; Xiangshi, W.; Yanling, G.; Aimei, X.; He, T.; Hailing, C.; Chuning, W.; Jingjing, L.; Jianshe, W.; Mei, Z. A Case Series of children with 2019 novel coronavirus infection: Clinical and epidemiological features. Clin. Infect. Dis., 2020, 71(6), 1547-1551.
[http://dx.doi.org/10.1093/cid/ciaa198] [PMID: 32112072]
[103]
Poddighe, D.; Aljofan, M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antivir. Chem. Chemother., 2020, 28, 2040206620961712.
[http://dx.doi.org/10.1177/2040206620961712] [PMID: 32972196]
[104]
Indari, O.; Jakhmola, S.; Manivannan, E.; Jha, H.C. An update on antiviral therapy against SARS-CoV-2: How far have we come? Front. Pharmacol., 2021, 12, 632677.
[http://dx.doi.org/10.3389/fphar.2021.632677] [PMID: 33762954]
[105]
Doan, T.; Lee Wordan, L.; Hinterwirth, A. Selection of macrolide and non-macrolide resistance with mass aziyhromycin distribution: A community-randomized trial. N. Engl. J. Med., 2020, 383(20), 1941-1950.
[http://dx.doi.org/10.1056/NEJMoa2002606] [PMID: 33176084]
[106]
Roberts, M.C.; Soge, O.O.; No, D.B. Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. J. Antimicrob. Chemother., 2011, 66(1), 100-104.
[http://dx.doi.org/10.1093/jac/dkq425] [PMID: 21081549]
[107]
Jiang, F.C.; Wang, R.F.; Chen, P.; Dong, L.Y.; Wang, X.; Song, Q.; Wan, Y.Q.; Song, Q.Q.; Song, J.; Wang, Y.H.; Xia, Z.Q.; Xia, D.; Han, J. Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019. J. Glob. Antimicrob. Resist., 2021, 27, 273-278.
[http://dx.doi.org/10.1016/j.jgar.2021.10.003] [PMID: 34687926]
[108]
Chen, Y.C.; Hsu, W.Y.; Chang, T.H. Macrolide-resistant Mycoplasma pneumoniae infections in pediatric community-acquired pneumonia. Emerg. Infect. Dis., 2020, 26(7), 1382-1391.
[http://dx.doi.org/10.3201/eid2607.200017] [PMID: 32568052]
[109]
Blyth, C.C.; Gerber, J.S. Macrolides in children with community-acquired pneumonia: Panacea or placebo? J. Pediatric Infect. Dis. Soc., 2018, 7(1), 71-77.
[http://dx.doi.org/10.1093/jpids/pix083] [PMID: 29096010]
[110]
Gomes, C.; Ruiz-Roldán, L.; Mateu, J.; Ochoa, T.J.; Ruiz, J. Azithromycin resistance levels and mechanisms in Escherichia coli. Sci. Rep., 2019, 9(1), 6089.
[http://dx.doi.org/10.1038/s41598-019-42423-3] [PMID: 30988366]
[111]
Matsuda, K.; Narita, M.; Sera, N.; Maeda, E.; Yoshitomi, H.; Ohya, H.; Araki, Y.; Kakuma, T.; Fukuoh, A.; Matsumoto, K. Gene and cytokine profile analysis of macrolide-resistant Mycoplasma pneumoniae infection in Fukuoka, Japan. BMC Infect. Dis., 2013, 13(1), 591.
[http://dx.doi.org/10.1186/1471-2334-13-591] [PMID: 24330612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy