Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Case Report

The Dopamine Gene Receptors (DRD1-5) Expression Alteration in Psoriasis Patients

Author(s): Malihe Mohamadian, Hossein Mortazavi, Mina Makvand, Fatemeh Ahangari and Ghasem Ahangari*

Volume 16, Issue 2, 2022

Published on: 19 September, 2022

Page: [116 - 122] Pages: 7

DOI: 10.2174/2772270816666220629112414

Price: $65

Abstract

Background: Psoriasis is a chronic inflammatory autoimmune disease that is considered linked to genetic and environmental factors such as stress. Since the neurotransmitter dopamine has a close association with stress configuration, it can be a candidate for relieving psoriasis representation. In addition to the CNS, immune cells can play a decisive role in regulating immune functions through dopamine synthesis and the expression of its receptors. Altered response of immune cells to dopamine as well as a distorted expression of dopamine receptors (DRs) in immune cells have been reported in some chronic inflammatory conditions.

Objective: This study aims the evaluation of dopamine receptor (DR1-DR5) gene expression in mononuclear blood cells of psoriatic patients in comparison with normal individuals.

Methods: We isolated peripheral mononuclear cells (PBMCs) from blood samples followed by total RNA extraction, cDNA synthesis, and real-time PCR using specific primer pairs.

Results: We found that all types of DRs are expressed in the PBMCs of normal and psoriatic individuals. We also concluded that compared to controls, DR2 and DR4 were overexpressed in psoriasis patients while DR3 was low-expressed.

Conclusion: Increased expression of DR2 and DR4 along with decreased expression of DR3 in PBMCs of psoriasis patients not only provide new insight into the pathogenesis of psoriasis but may also be effective in designing future therapeutic strategies attributable to psoriasis.

Keywords: Psoriasis, dopamine receptors, gene expression profile, peripheral blood lymphocytes, real-time- polymerase chain reaction, mononuclear blood cells.

[1]
Uppala R, Tsoi LC, Harms PW, et al. “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell Mol Immunol 2021; 18(2): 307-17.
[http://dx.doi.org/10.1038/s41423-020-0519-3] [PMID: 32814870]
[2]
Burshtein J, Strunk A, Garg A. Incidence of psoriasis among adults in the United States: A sex- and age-adjusted population analysis. J Am Acad Dermatol 2021; 84(4): 1023-9.
[http://dx.doi.org/10.1016/j.jaad.2020.11.039] [PMID: 33253841]
[3]
Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: A comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 377-89.
[http://dx.doi.org/10.1007/s12016-016-8535-x] [PMID: 27025861]
[4]
Garzorz-Stark N, Eyerich K. Psoriasis pathogenesis: Keratinocytes are back in the spotlight. J Invest Dermatol 2019; 139(5): 995-6.
[http://dx.doi.org/10.1016/j.jid.2019.01.026] [PMID: 31010530]
[5]
Jadali Z, Eslami MB. T cell immune responses in psoriasis. Iran J Allergy Asthma Immunol 2014; 13(4): 220-30.
[6]
Vičić M, Kaštelan M, Brajac I, Sotošek V, Massari LP. Current concepts of psoriasis immunopathogenesis. Int J Mol Sci 2021; 22(21): 11574.
[http://dx.doi.org/10.3390/ijms222111574] [PMID: 34769005]
[7]
Tripathi P, Bhardwaj P. Psoriasis: An autoimmune disorder. J Drug Deliv Ther 2020; 10(5): 316-24.
[http://dx.doi.org/10.22270/jddt.v10i5.4327]
[8]
Roszkiewicz M, Dopytalska K. Szymańska E, Jakimiuk A, Walecka I. Environmental risk factors and epigenetic alternations in psoriasis. Ann Agric Environ Med 2020; 27(3): 335-42.
[http://dx.doi.org/10.26444/aaem/112107] [PMID: 32955211]
[9]
Russell TJ, Schultes LM, Kuban DJ. Histocompatibility (HL-A) antigens associated with psoriasis. N Engl J Med 1972; 287(15): 738-40.
[http://dx.doi.org/10.1056/NEJM197210122871503] [PMID: 5056734]
[10]
White SH, Newcomer VD, Mickey MR, Terasaki PI. Disturbance of HL-A antigen frequency in Psoriasis. N Engl J Med 1972; 287(15): 740-3.
[http://dx.doi.org/10.1056/NEJM197210122871504] [PMID: 5056735]
[11]
Ramoz N, Rueda LA, Bouadjar B, Favre M, Orth G. A susceptibility locus for epidermodysplasia verruciformis, an abnormal predisposition to infection with the oncogenic human papillomavirus type 5, maps to chromosome 17qter in a region containing a psoriasis locus. J Invest Dermatol 1999; 112(3): 259-63.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00536.x] [PMID: 10084299]
[12]
Hardas BD, Zhao X, Zhang J, Longqing X, Stoll S, Elder JT. Assignment of psoriasin to human chromosomal band 1q21: Coordinate overexpression of clustered genes in psoriasis. J Invest Dermatol 1996; 106(4): 753-8.
[http://dx.doi.org/10.1111/1523-1747.ep12345807] [PMID: 8618016]
[13]
Trembath RC, Clough RL, Rosbotham JL, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 1997; 6(5): 813-20.
[http://dx.doi.org/10.1093/hmg/6.5.813] [PMID: 9158158]
[14]
Behra A, et al. Association of Human Leukocyte Antigen-Cw6 (HLA-Cw6) in psoriasis patients with disease severity and morphological patterns: A cross-sectional study in a tertiary care referral centre in Eastern India. J Clin Diagn Res 2021; 15(8)
[15]
Yang H, Zheng J. Influence of stress on the development of psoriasis. Clin Exp Dermatol 2020; 45(3): 284-8.
[http://dx.doi.org/10.1111/ced.14105] [PMID: 31592542]
[16]
Barishpolets VV, Fedotova IuO, Sapronov NS. Structural and functional organization of the cerebral dopaminergic system. Eksp Klin Farmakol 2009; 72(3): 44-9.
[PMID: 19642593]
[17]
Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it?: Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol 2020; 15(1): 114-64.
[http://dx.doi.org/10.1007/s11481-019-09851-4] [PMID: 31077015]
[18]
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 2019; 39(1): 31-59.
[http://dx.doi.org/10.1007/s10571-018-0632-3] [PMID: 30446950]
[19]
Alexander SPH, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 2019; 176 (Suppl. 1): S21-S141.
[http://dx.doi.org/10.1111/bph.14748] [PMID: 31710717]
[20]
Ostadali MR, Ahangari G, Eslami MB, et al. The detection of dopamine gene receptors (DRD1-DRD5) expression on human peripheral blood lymphocytes by real time PCR. Iran J Allergy Asthma Immunol 2004; 3(4): 169-74.
[PMID: 17301410]
[21]
Gopinath A, Doty A, Mackie PM, et al. A novel approach to study markers of dopamine signaling in peripheral immune cells. J Immunol Methods 2020; 476: 112686.
[http://dx.doi.org/10.1016/j.jim.2019.112686] [PMID: 31634479]
[22]
Vieira ÉLM, da Silva MCM, Gonçalves AP, et al. Serotonin and dopamine receptors profile on peripheral immune cells from patients with temporal lobe epilepsy. J Neuroimmunol 2021; 354: 577534.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577534] [PMID: 33713941]
[23]
Sandoval-Talamantes AK. Gَmez-Gonzلlez BA, Uriarte-Mayorga DF, Martيnez-Guzman MA, Wheber-Hidalgo KA, Alvarado-Navarro A. Neurotransmitters, neuropeptides and their receptors interact with immune response in healthy and psoriatic skin. Neuropeptides 2020; 79: 102004.
[http://dx.doi.org/10.1016/j.npep.2019.102004] [PMID: 31902596]
[24]
Zanganeh F, Fazeli A. The significance of stress hormones in psoriasis 2008.
[25]
Bain KA, Milling S. T cell addiction: Can pathogenic] T cells be controlled using dopamine receptors? Immunology 2019; 158(3): 151-2. [Available from]
[http://dx.doi.org/10.1111/imm.13127]
[26]
Keren A, Gilhar A, Ullmann Y, et al. Instantaneous depolarization of T cells via dopamine receptors, and inhibition of activated T cells of Psoriasis patients and inflamed human skin, by D1-like receptor agonist: Fenoldopam. Immunology 2019; 158(3): 171-93.
[http://dx.doi.org/10.1111/imm.13109] [PMID: 31424569]
[27]
Penedo MA, Rivera-Baltanلs T, Pérez-Rodrيguez D, et al. The role of dopamine receptors in lymphocytes and] their changes in schizophrenia. Brain Behav Immun Health 2021; 12(100199): 100199.
[http://dx.doi.org/10.1016/j.bbih.2021.100199]
[28]
Pacheco R, Contreras F, Zouali M. The dopaminergic system in autoimmune diseases. Front Immunol 2014; 5: 117.
[http://dx.doi.org/10.3389/fimmu.2014.00117] [PMID: 24711809]
[29]
Jafari M, Ahangari G, Saberi M, Samangoui S, Torabi R, Zouali M. Distorted expression of dopamine receptor genes in systemic lupus erythematosus. Immunobiology 2013; 218(7): 979-83.
[http://dx.doi.org/10.1016/j.imbio.2012.11.002] [PMID: 23266246]
[30]
Parrado AC, Canellada A, Gentile T. Rey-Roldلn EB. Dopamine agonists upregulate IL-6 and IL-8 production in human keratinocytes. Neuroimmunomodulation 2012; 19(6): 359-66.
[http://dx.doi.org/10.1159/000342140] [PMID: 23051896]
[31]
Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol 2021; 184(1): 14-24.
[http://dx.doi.org/10.1111/bjd.19380] [PMID: 32628773]
[32]
Chen H, Liu H, Lu C, et al. PSORI-CM02 formula increases CD4+ Foxp3+ regulatory T cell frequency and ameliorates imiquimod-induced psoriasis in mice. Front Immunol 2018; 8: 1767.
[http://dx.doi.org/10.3389/fimmu.2017.01767] [PMID: 29358932]
[33]
Wardhana M, Windari M, Puspasari N, Suryawati N. Role of serotonin and dopamine in psoriasis: A case-control study. Open Access Maced J Med Sci 2019; 7(7): 1138-42.
[http://dx.doi.org/10.3889/oamjms.2019.267] [PMID: 31049096]
[34]
Kustrimovic N, Rasini E, Legnaro M, Marino F, Cosentino M. Expression of dopaminergic receptors on human CD4+ T lymphocytes: Flow cytometric analysis of naive and memory subsets and relevance for the neuroimmunology of neurodegenerative disease. J Neuroimmune Pharmacol 2014; 9(3): 302-12.
[http://dx.doi.org/10.1007/s11481-014-9541-5] [PMID: 24682738]
[35]
Mori T, Kabashima K, Fukamachi S, et al. D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J Dermatol Sci 2013; 71(1): 37-44.
[http://dx.doi.org/10.1016/j.jdermsci.2013.03.008] [PMID: 23639699]
[36]
Cosentino M, Fietta AM, Ferrari M, et al. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 2007; 109(2): 632-42.
[http://dx.doi.org/10.1182/blood-2006-01-028423] [PMID: 16985181]
[37]
Besser MJ, Ganor Y, Levite M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 2005; 169(1-2): 161-71.
[http://dx.doi.org/10.1016/j.jneuroim.2005.07.013] [PMID: 16150496]
[38]
Hsu P, Santner-Nanan B, Hu M, et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J Immunol 2015; 195(8): 3665-74.
[http://dx.doi.org/10.4049/jimmunol.1402898] [PMID: 26363058]
[39]
Quaglino P, Bergallo M, Ponti R, et al. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: Modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology 2011; 223(1): 57-67.
[http://dx.doi.org/10.1159/000330330] [PMID: 21865674]
[40]
Furuhashi T, Saito C, Torii K, Nishida E, Yamazaki S, Morita A. Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLoS One 2013; 8(1): e54895.
[http://dx.doi.org/10.1371/journal.pone.0054895] [PMID: 23365685]
[41]
Zhang L, Li Y, Yang X, et al. Characterization of Th17 and FoxP3(+) Treg Cells in Paediatric Psoriasis Patients. Scand J Immunol 2016; 83(3): 174-80.
[http://dx.doi.org/10.1111/sji.12404] [PMID: 26679087]
[42]
Vidal PM, Pacheco R. Targeting the dopaminergic system in autoimmunity. J Neuroimmune Pharmacol 2020; 15(1): 57-73.
[http://dx.doi.org/10.1007/s11481-019-09834-5] [PMID: 30661214]
[43]
Ilani T, Strous RD, Fuchs S. Dopaminergic regulation of immune cells via D3 dopamine receptor: A pathway mediated by activated T cells. FASEB J 2004; 18(13): 1600-2.
[http://dx.doi.org/10.1096/fj.04-1652fje] [PMID: 15319371]
[44]
Franco R, Reyes-Resina I, Navarro G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines 2021; 9: 109.
[45]
Sarkar C, Das S, Chakroborty D, et al. Cutting Edge: Stimulation of dopamine D4 receptors induce T cell quiescence by up-regulating Kruppel-like factor-2 expression through inhibition of ERK1/ERK2 phosphorylation. J Immunol 2006; 177(11): 7525-9.
[http://dx.doi.org/10.4049/jimmunol.177.11.7525] [PMID: 17114421]
[46]
Wang W, Cohen JA, Wallrapp A, et al. Age-related dopaminergic innervation augments T helper 2-type allergic inflammation in the postnatal lung. Immunity 2019; 51(6): 1102-1118.e7. [Available from:]
[http://dx.doi.org/10.1016/j.immuni.2019.10.002]
[47]
Huang Y, Chen CC, Wang TT, Qiu YH, Peng YP. Dopamine receptors modulate T lymphocytes via inhibition of cAMP-CREB signaling pathway. Neuroendocrinol Lett 2016; 37(7): 491-500.
[PMID: 28326743]
[48]
Allec SI, Sun Y, Sun J, Chang CA, Wong BM. Heterogeneous CPU+ GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J Chem Theory Comput 2019; 15(5): 2807-15.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[49]
Yoshikawa T, Komoto N, Nishimura Y, Nakai H. GPU-accelerated large-scale excited-state simulation based on divide-and-conquer time-dependent density-functional tight-binding. J Comput Chem 2019; 40(31): 2778-86.
[http://dx.doi.org/10.1002/jcc.26053] [PMID: 31441083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy