Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Editorial

GDF15 in Vascular and Liver Metabolic Disorders: A Novel Therapeutic Target

Author(s): Stefano Fiorucci* and Ginevra Urbani

Volume 16, Issue 2, 2022

Published on: 21 December, 2022

Page: [55 - 59] Pages: 5

DOI: 10.2174/277227081602221221113442

[1]
Mourouzis K. Association of growth differentiation factor 15 with arterial stiffness and endothelial function in subpopulations of patients with coronary artery disease: A proof-of-concept study. Recent Adv Inflamm Allergy Drug Discov 2023; 17.
[http://dx.doi.org/10.2174/2772270817666221104120923]
[2]
Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling TE. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 2001; 59(4): 901-8.
[http://dx.doi.org/10.1124/mol.59.4.901] [PMID: 11259636]
[3]
Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci USA 1997; 94(21): 11514-9.
[http://dx.doi.org/10.1073/pnas.94.21.11514] [PMID: 9326641]
[4]
Paralkar VM, Vail AL, Grasser WA, et al. Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J Biol Chem 1998; 273(22): 13760-7.
[http://dx.doi.org/10.1074/jbc.273.22.13760] [PMID: 9593718]
[5]
Hsiao EC, Koniaris LG, Zimmers-Koniaris T, Sebald SM, Huynh TV, Lee SJ. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol 2000; 20(10): 3742-51.
[http://dx.doi.org/10.1128/MCB.20.10.3742-3751.2000] [PMID: 10779363]
[6]
Johann K, Kleinert M, Klaus S. The role of GDF15 as a myomitokine. Cells 2021; 10(11): 2990.
[http://dx.doi.org/10.3390/cells10112990] [PMID: 34831213]
[7]
Hsu JY, Crawley S, Chen M, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 2017; 550(7675): 255-9.
[http://dx.doi.org/10.1038/nature24042] [PMID: 28953886]
[8]
Fielder GC, Yang TWS, Razdan M, et al. The GDNF family: A role in cancer? Neoplasia 2018; 20(1): 99-117.
[http://dx.doi.org/10.1016/j.neo.2017.10.010] [PMID: 29245123]
[9]
Li JJ, Liu J, Lupino K, Liu X, Zhang L, Pei L. Growth differentiation factor 15 maturation requires proteolytic cleavage by PCSK3, 5, and 6. Mol Cell Biol 2018; 38(21): e00249-18.
[http://dx.doi.org/10.1128/MCB.00249-18] [PMID: 30104250]
[10]
Li S, Wang Y, Cao B, et al. Maturation of growth differentiation factor 15 in human placental trophoblast cells depends on the interaction with Matrix Metalloproteinase-26. J Clin Endocrinol Metab 2014; 99(11): E2277-87.
[http://dx.doi.org/10.1210/jc.2014-1598] [PMID: 25093616]
[11]
Wang X, Baek SJ, Eling TE. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol 2013; 85(5): 597-606.
[http://dx.doi.org/10.1016/j.bcp.2012.11.025] [PMID: 23220538]
[12]
Campderrós L, Moure R, Cairó M, et al. Brown adipocytes secrete GDF15 in response to thermogenic activation. Obesity 2019; 27(10): 1606-16.
[http://dx.doi.org/10.1002/oby.22584] [PMID: 31411815]
[13]
Laurens C, Parmar A, Murphy E, et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 2020; 5(6): e131870.
[http://dx.doi.org/10.1172/jci.insight.131870] [PMID: 32106110]
[14]
Chung HK, Kim JT, Kim HW, et al. GDF15 deficiency exacerbates chronic alcohol and carbon tetrachloride-induced liver injury. Sci Rep 2017; 7(1): 17238.
[http://dx.doi.org/10.1038/s41598-017-17574-w] [PMID: 29222479]
[15]
Sugulle M. Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus. Hypertens 2009; 54(1): 106-12.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.130583]
[16]
Liu J, Kumar S, Heinzel A, et al. Renoprotective and immunomodulatory effects of GDF15 following AKI invoked by ischemia-reperfusion injury. J Am Soc Nephrol 2020; 31(4): 701-15.
[http://dx.doi.org/10.1681/ASN.2019090876] [PMID: 32034106]
[17]
Wang T, Liu J, McDonald C, et al. GDF 15 is a heart‐derived hormone that regulates body growth. EMBO Mol Med 2017; 9(8): 1150-64.
[http://dx.doi.org/10.15252/emmm.201707604] [PMID: 28572090]
[18]
Wischhusen J, Melero I, Fridman WH. Growth/differentiation factor-15 (GDF-15): From biomarker to novel targetable immune checkpoint. Front Immunol 2020; 11: 951.
[http://dx.doi.org/10.3389/fimmu.2020.00951] [PMID: 32508832]
[19]
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, et al. The potential role of growth differentiation factor 15 in COVID-19: A corollary subjective effect or not? Diagnostics 2022; 12(9): 2051.
[http://dx.doi.org/10.3390/diagnostics12092051] [PMID: 36140453]
[20]
Osada M, Park HL, Park MJ, et al. A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun 2007; 354(4): 913-8.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.089] [PMID: 17276395]
[21]
Jin Y, Jung SN, Lim MA, et al. Transcriptional regulation of GDF15 by EGR1 promotes head and neck cancer progression through a positive feedback loop. Int J Mol Sci 2021; 22(20): 11151.
[http://dx.doi.org/10.3390/ijms222011151] [PMID: 34681812]
[22]
Townsend LK, Weber AJ, Day EA, et al. AMPK mediates energetic stress‐induced liver GDF15. FASEB J 2021; 35(1): e21218.
[http://dx.doi.org/10.1096/fj.202000954R] [PMID: 33337559]
[23]
Tsai VWW, Manandhar R, Jørgensen SB, et al. The anorectic actions of the TGFβ cytokine MIC-1/GDF15 require an intact brainstem area postrema and nucleus of the solitary tract. PLoS One 2014; 9(6): e100370.
[http://dx.doi.org/10.1371/journal.pone.0100370] [PMID: 24971956]
[24]
Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 2017; 23(10): 1150-7.
[http://dx.doi.org/10.1038/nm.4392] [PMID: 28846097]
[25]
Johnen H, Lin S, Kuffner T, et al. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat Med 2007; 13(11): 1333-40.
[http://dx.doi.org/10.1038/nm1677] [PMID: 17982462]
[26]
Cimino I, Coll AP. The role of GDF15 in food intake and appetitive behaviour. Curr Opin Endocr Metab Res 2022; 22: 100299.
[http://dx.doi.org/10.1016/j.coemr.2021.100299]
[27]
Tsai VWW, Zhang HP, Manandhar R, et al. GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS. Int J Obes 2019; 43(12): 2370-80.
[http://dx.doi.org/10.1038/s41366-019-0365-5] [PMID: 31152154]
[28]
Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 2017; 23(10): 1215-9.
[http://dx.doi.org/10.1038/nm.4393] [PMID: 28846098]
[29]
Zhang H, Mey J, Champagne C, Kirwan J. Growth differentiation factor 15 is linked to reduced preference for fatty foods in adults with overweight or obesity. Curr Dev Nutr 2020; 4(2): 1708.
[http://dx.doi.org/10.1093/cdn/nzaa063_106]
[30]
Xiong Y, Walker K, Min X, et al. Long-acting MIC-1/GDF15 molecules to treat obesity: Evidence from mice to monkeys. Sci Transl Med 2017; 9(412): eaan8732.
[http://dx.doi.org/10.1126/scitranslmed.aan8732] [PMID: 29046435]
[31]
Borner T, Shaulson ED, Ghidewon MY, et al. GDF15 induces anorexia through nausea and emesis. Cell Metab 2020; 31(2): 351-362.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.12.004] [PMID: 31928886]
[32]
Altena R, Fehrmann RSN, Boer H, de Vries EGE, Meijer C, Gietema JA. Growth differentiation factor 15 (GDF-15) plasma levels increase during bleomycin and cisplatin-based treatment of testicular cancer patients and relate to endothelial damage. PLoS One 2015; 10(1): e0115372.
[http://dx.doi.org/10.1371/journal.pone.0115372] [PMID: 25590623]
[33]
Molfino A, Amabile MI, Imbimbo G, et al. Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients. Cancers 2020; 13(1): 99.
[http://dx.doi.org/10.3390/cancers13010099] [PMID: 33396237]
[34]
Siddiqui JA, Pothuraju R, Khan P, et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2022; 64: 71-83.
[http://dx.doi.org/10.1016/j.cytogfr.2021.11.002] [PMID: 34836750]
[35]
Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes 2014; 38(12): 1555-64.
[http://dx.doi.org/10.1038/ijo.2014.27] [PMID: 24531647]
[36]
Tsai VW, Zhang HP, Manandhar R, et al. Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity. Int J Obes 2018; 42(3): 561-71.
[http://dx.doi.org/10.1038/ijo.2017.258] [PMID: 29026214]
[37]
Wang X, Chrysovergis K, Kosak J, Eling TE. Lower NLRP3 inflammasome activity in NAG-1 transgenic mice is linked to a resistance to obesity and increased insulin sensitivity. Obesity 2014; 22(5): 1256-63.
[http://dx.doi.org/10.1002/oby.20638] [PMID: 24124102]
[38]
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: Emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021; 17(10): 592-607.
[http://dx.doi.org/10.1038/s41574-021-00529-7] [PMID: 34381196]
[39]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[40]
Edelman SV. Type II diabetes mellitus. Adv Intern Med 1998; 43: 449-500.
[PMID: 9506190]
[41]
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1(1): 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[42]
Macia L, Tsai VWW, Nguyen AD, et al. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One 2012; 7(4): e34868.
[http://dx.doi.org/10.1371/journal.pone.0034868] [PMID: 22514681]
[43]
Zhang H, Mulya A, Nieuwoudt S, Mcdowell R, Kirwan J. GDF15 is a contraction-induced myokine that regulates pancreatic ß-cell function. Diabetes 2018; 67(1): 67.
[http://dx.doi.org/10.2337/db18-67-OR]
[44]
Nakayasu ES, Syed F, Tersey SA, et al. Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention. Cell Metab 2020; 31(2): 363-374.e6.
[http://dx.doi.org/10.1016/j.cmet.2019.12.005] [PMID: 31928885]
[45]
Sarkar S, Melchior JT, Henry HR, et al. GDF15: A potential therapeutic target for type 1 diabetes. Expert Opin Ther Targets 2022; 26(1): 57-67.
[http://dx.doi.org/10.1080/14728222.2022.2029410] [PMID: 35138971]
[46]
Kleinert M, Clemmensen C, Sjøberg KA, et al. Exercise increases circulating GDF15 in humans. Mol Metab 2018; 9: 187-91.
[http://dx.doi.org/10.1016/j.molmet.2017.12.016] [PMID: 29398617]
[47]
Coll AP, Chen M, Taskar P, et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020; 578(7795): 444-8.
[http://dx.doi.org/10.1038/s41586-019-1911-y] [PMID: 31875646]
[48]
Day EA, Ford RJ, Smith BK, et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab 2019; 1(12): 1202-8.
[http://dx.doi.org/10.1038/s42255-019-0146-4] [PMID: 32694673]
[49]
Li D, Zhang H, Zhong Y. Hepatic GDF15 is regulated by CHOP of the unfolded protein response and alleviates NAFLD progression in obese mice. Biochem Biophys Res Commun 2018; 498(3): 388-94.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.096] [PMID: 28847729]
[50]
Koo BK, Um SH, Seo DS, et al. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int 2018; 38(4): 695-705.
[http://dx.doi.org/10.1111/liv.13587] [PMID: 28898507]
[51]
Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet 2021; 397(10290): 2212-24.
[http://dx.doi.org/10.1016/S0140-6736(20)32511-3] [PMID: 33894145]
[52]
Smith BW, Adams LA. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci 2011; 48(3): 97-113.
[http://dx.doi.org/10.3109/10408363.2011.596521] [PMID: 21875310]
[53]
Nd AM. Non-alcoholic fatty liver disease, an overview. Integr Med 2019; 18(2): 42-9.
[PMID: 31341444]
[54]
Wang Y, Chen C, Chen J, et al. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol 2022; 52: 102322.
[http://dx.doi.org/10.1016/j.redox.2022.102322] [PMID: 35504134]
[55]
Kim KH, Kim SH, Han DH, Jo YS, Lee Y, Lee MS. Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Sci Rep 2018; 8(1): 6789.
[http://dx.doi.org/10.1038/s41598-018-25098-0] [PMID: 29717162]
[56]
Kim JM, Kosak JP, Kim JK, et al. NAG-1/GDF15 transgenic mouse has less white adipose tissue and a reduced inflammatory response. Mediators Inflamm 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/641851] [PMID: 23737651]
[57]
Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: A translational prospective. J Diabetes Res 2015; 2015: 1-14.
[http://dx.doi.org/10.1155/2015/490842] [PMID: 26273671]
[58]
Kempf T, Wollert KC. Growth differentiation factor-15: A new biomarker in cardiovascular disease. Herz 2009; 34(8): 594-9.
[http://dx.doi.org/10.1007/s00059-009-3317-3] [PMID: 20024638]
[59]
de Jager SCA, Bermúdez B, Bot I, et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med 2011; 208(2): 217-25.
[http://dx.doi.org/10.1084/jem.20100370] [PMID: 21242297]
[60]
Johnen H, Kuffner T, Brown DA, Wu BJ, Stocker R, Breit SN. Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE−/− mice from the development of atherosclerosis. Cardiovasc Pathol 2012; 21(6): 499-505.
[http://dx.doi.org/10.1016/j.carpath.2012.02.003] [PMID: 22386250]
[61]
Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol 2020; 17(6): 327-40.
[http://dx.doi.org/10.1038/s41569-019-0326-7] [PMID: 31996800]

© 2024 Bentham Science Publishers | Privacy Policy