Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Meta-Analysis

Thin-catheter Surfactant Application for Respiratory Distress Syndrome in Spontaneously Breathing Preterm Infants: A Meta-analysis of Randomized Clinical Trials

Author(s): Hanan Kesler, Klaus Lohmeier, Thomas Hoehn, Angela Kribs and Frank Peinemann*

Volume 18, Issue 4, 2022

Published on: 20 May, 2022

Page: [286 - 300] Pages: 15

DOI: 10.2174/1573396318666220404194857

Price: $65

conference banner
Abstract

Background: Surfactant application by a thin catheter represented by the term less invasive surfactant administration (LISA) for respiratory distress syndrome in spontaneously breathing preterm infants was developed as an alternative to endotracheal intubation.

Methods: We conducted a meta-analysis to assess the effects of LISA when compared to the socalled intubation-surfactant-extubation (INSURE) and the standard endotracheal intubation and mechanical ventilation (MV). The primary outcome was the composite incidence of death or bronchopulmonary dysplasia at a postmenstrual age of 36 weeks. The secondary outcome was the composite incidence of seven other severe adverse events. On 06 October 2021, we searched randomized clinical trials (RCTs) in PubMed, the Cochrane Library, ClinicalTrials.gov, and the ICTRP Registry.

Results: We included 18 RCTs. The pooled data on the primary outcome favored LISA when compared to either INSURE (risk ratio 0.67; 95% CI, 0.51 to 0.88) or MV (risk ratio 0.78; 95% CI, 0.61 to 0.99). The pooled data on the second outcome also favored LISA when compared to INSURE (risk ratio 0.75; 95% CI, 0.60 to 0.94) and MV (risk ratio 0.73; 95% CI, 0.55 to 0.96).

Conclusion: The findings showed that surfactant application by non-intubation respiratory support and the use of a thin catheter may decrease the composite risk of death or bronchopulmonary dysplasia. The included data support the view that LISA should be considered the preferred treatment option in eligible infants.

Keywords: Infant, premature, pulmonary surfactants, respiratory distress syndrome, bronchopulmonary dysplasia, systematic review, meta-analysis.

[1]
Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child 1959; 97(5, Part 1): 517-23.
[http://dx.doi.org/10.1001/archpedi.1959.02070010519001] [PMID: 13649082]
[2]
St Clair C, Norwitz ER, Woensdregt K, et al. The probability of neonatal respiratory distress syndrome as a function of gestational age and lecithin/sphingomyelin ratio. Am J Perinatol 2008; 25(8): 473-80.
[http://dx.doi.org/10.1055/s-0028-1085066] [PMID: 18773379]
[3]
Matthews TJ, MacDorman MF, Thoma ME. Infant mortality statistics from the 2013 period linked birth/infant death data set. Natl Vital Stat Rep 2015; 64(9): 1-30.
[PMID: 26270610]
[4]
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163(7): 1723-9.
[http://dx.doi.org/10.1164/ajrccm.163.7.2011060] [PMID: 11401896]
[5]
Ehrenkranz RA, Walsh MC, Vohr BR, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 2005; 116(6): 1353-60.
[http://dx.doi.org/10.1542/peds.2005-0249] [PMID: 16322158]
[6]
Herting E, Härtel C, Göpel W. Less invasive surfactant administration: Best practices and unanswered questions. Curr Opin Pediatr 2020; 32(2): 228-34.
[http://dx.doi.org/10.1097/MOP.0000000000000878] [PMID: 32068592]
[7]
Smiths Medical Portex. General anesthesia airway Intubation product catalog. Available from: https://www.smiths-medical. com/-/media/M/Smiths-medical_com/Files/Import-Files/SM196408EN-052018.pdf (Access on: 08 January 2022).
[8]
Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6(7): e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[9]
Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J Pediatr 1978; 92(4): 529-34.
[http://dx.doi.org/10.1016/S0022-3476(78)80282-0] [PMID: 305471]
[10]
Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 1978; 187(1): 1-7.
[http://dx.doi.org/10.1097/00000658-197801000-00001] [PMID: 413500]
[11]
The international classification of retinopathy of prematurity revisited. Arch Ophthalmol 2005; 123(7): 991-9.
[http://dx.doi.org/10.1001/archopht.123.7.991] [PMID: 16009843]
[12]
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327(7414): 557-60.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[13]
Higgins JPT, Altman DG, Sterne JAC. In: Chapter 8: Assessing risk of bias in included studiesCochrane Handbook for Systematic Reviews of Interventions Version 510 2011. Available from: www.handbook.cochrane.org (Accessed on: 08 January 2022).
[14]
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315(7109): 629-34.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[15]
Page MJ, Higgins JPT, Sterne JAC. In: Chapter 13: Assessing risk of bias due to missing results in a synthesisCochrane Handbook for Systematic Reviews of Interventions version 62. 2021. Available from: www.training.cochrane.org/handbook (Accessed on: 08January 2022).
[16]
Terrin N, Schmid CH, Lau J. In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. J Clin Epidemiol 2005; 58(9): 894-901.
[http://dx.doi.org/10.1016/j.jclinepi.2005.01.006] [PMID: 16085192]
[17]
Bao Y, Zhang G, Wu M, Ma L, Zhu J. A pilot study of less invasive surfactant administration in very preterm infants in a Chinese tertiary center. BMC Pediatr 2015; 15(1): 21.
[http://dx.doi.org/10.1186/s12887-015-0342-7] [PMID: 25885964]
[18]
Boskabadi H, Maamouri G, Gharaei Jomeh R, Zakerihamidi M. Comparative study of the effect of the administration of surfactant through a thin endotracheal catheter into trachea during spontaneous breathing with intubation (intubation- surfactant-extubation method). J Clin Neonatol 2019; 8(4): 227-31.
[http://dx.doi.org/10.4103/jcn.JCN_32_19]
[19]
Choupani R, Mashayekhy G, Hmidi M, Kheiri S, Khalili-Dehkordi M. A comparative study of the efficacy of surfactant administration through a thin intratracheal catheter and its administration via an endotracheal tube in neonatal respiratory distress syndrome. Iran J Neonatol 2018; 9(4): 33-40.
[http://dx.doi.org/10.22038/IJN.2018.30057.1408]
[20]
Göpel W, Kribs A, Ziegler A, et al. German Neonatal Network. Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial. Lancet 2011; 378(9803): 1627-34.
[http://dx.doi.org/10.1016/S0140-6736(11)60986-0] [PMID: 21963186]
[21]
Gupta BK, Saha AK, Mukherjee S, Saha B. Minimally invasive surfactant therapy versus InSurE in preterm neonates of 28 to 34 weeks with respiratory distress syndrome on non-invasive positive pressure ventilation-a randomized controlled trial. Eur J Pediatr 2020; 179(8): 1287-93.
[http://dx.doi.org/10.1007/s00431-020-03682-9] [PMID: 32462483]
[22]
Halim A, Shirazi H, Riaz S, Gul SS, Ali W. Less invasive surfactant administration in preterm infants with respiratory distress syndrome. J Coll Physicians Surg Pak 2019; 29(3): 226-330.
[http://dx.doi.org/10.29271/jcpsp.2019.03.226] [PMID: 30823947]
[23]
Han T, Liu H, Zhang H, et al. Minimally invasive surfactant administration for the treatment of neonatal respiratory distress syndrome: A multicenter randomized study in China. Front Pediatr 2020; 8: 182.
[http://dx.doi.org/10.3389/fped.2020.00182] [PMID: 32457854]
[24]
Heidarzadeh M, Mirnia K, Hoseini MB, et al. Surfactant administration via thin catheter during spontaneous breathing: Randomized controlled trial in Alzahra hospital. Iran J Neonatol 2013; 4(2): 5-9.
[25]
Jena SR, Bains HS, Pandita A, et al. On Behalf Of Sure Group. Surfactant therapy in premature babies: SurE or InSurE. Pediatr Pulmonol 2019; 54(11): 1747-52.
[http://dx.doi.org/10.1002/ppul.24479] [PMID: 31424177]
[26]
Kanmaz HG, Erdeve O, Canpolat FE, Mutlu B, Dilmen U. Surfactant administration via thin catheter during spontaneous breathing: Randomized controlled trial. Pediatrics 2013; 131(2): e502-9.
[http://dx.doi.org/10.1542/peds.2012-0603] [PMID: 23359581]
[27]
Kribs A, Roll C, Göpel W, et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: A randomized clinical trial. JAMA Pediatr 2015; 169(8): 723-30.
[http://dx.doi.org/10.1001/jamapediatrics.2015.0504] [PMID: 26053341]
[28]
Li XF, Cheng TT, Guan RL, et al. Effects of different surfactant administrations on cerebral autoregulation in preterm infants with respiratory distress syndrome. J Huazhong Univ Sci Technolog Med Sci 2016; 36(6): 801-5.
[http://dx.doi.org/10.1007/s11596-016-1665-9] [PMID: 27924521]
[29]
Mirnia K, Heidarzadeh M, Hoseini MB, Sadeghnia A, Balila M, Ghojazadeh M. Comparison outcome of surfactant administration via tracheal catheterization during spontaneous breathing with insure. Med J Islamic World Acad Sci 2013; 21(4): 143-8.
[http://dx.doi.org/10.12816/0002647]
[30]
Mohammadizadeh M, Ardestani AG, Sadeghnia AR. Early administration of surfactant via a thin intratracheal catheter in preterm infants with respiratory distress syndrome: Feasibility and outcome. J Res Pharm Pract 2015; 4(1): 31-6.
[http://dx.doi.org/10.4103/2279-042X.150053] [PMID: 25710048]
[31]
Mosayebi Z, Kadivar M, Taheri-Derakhsh N, Nariman S, Marashi SM, Farsi Z. A randomized trial comparing surfactant administration using insure technique and the minimally invasive surfactant therapy in preterm infants (28 to 34 weeks of gestation) with respiratory distress syndrome. J Compr Ped 2017; 8(4): e60724.
[http://dx.doi.org/10.5812/compreped.60724]
[32]
Pareek P, Deshpande S, Suryawanshi P. Less invasive surfactant administration (LISA) vs. intubation surfactant extubation (InSurE) in preterm infants with respiratory distress syndrome: A pilot randomized controlled trial. J Trop Pediatr 2021; 67(4): fmab086.
[http://dx.doi.org/10.1093/tropej/fmab086]
[33]
Sabzehei MK, Basiri B, Shokouhi M, Ghremani S, Moradi A. Comparison of minimally invasive surfactant therapy with intubation surfac-tant administration and extubation for treating preterm infants with respiratory distress syndrome: A randomized clinical trial. Clin Exp Pediatr 2022; 65(4): 188-93.
[http://dx.doi.org/10.3345/cep.2021.00297]
[34]
Yang G, Hei M, Xue Z, Zhao Y, Zhang X, Wang C. Effects of less invasive surfactant administration (LISA) via a gastric tube on the treatment of respiratory distress syndrome in premature infants aged 32 to 36 weeks. Medicine (Baltimore) 2020; 99(9): e19216.
[http://dx.doi.org/10.1097/MD.0000000000019216] [PMID: 32118723]
[35]
Alkan-Ozdemir S, Arun Ozer E, Ilhan O, Sutcuoglu S, Tatli MM. Less invasive surfactant administration in very low birth weight infants: NIPPVor NCPAP? Abstract pages 1743-4. In: EAPS Congress 2016: October 21-25, 2016. Eur J Pediatr 2016; 175(11): 1393-880.
[http://dx.doi.org/10.1007/s00431-016-2785-8] [PMID: 27744567]
[36]
Bohlin K, Blennow M. Surfactant administration by INSURE or thin catheter (SAINT) NCT04445571, ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT04445571
[37]
Dargaville PA, Kamlin CO, De Paoli AG, et al. The OPTIMIST-A trial: Evaluation of minimally-invasive surfactant therapy in preterm infants 25-28 weeks gestation. BMC Pediatr 2014; 14(1): 213.
[http://dx.doi.org/10.1186/1471-2431-14-213] [PMID: 25164872]
[38]
Dargaville PA. Multicentre randomised controlled trial of minimally-invasive surfactant therapy in preterm infants 29-32 weeks gestation on continuous positive airway pressure. The OPTIMIST-B trial. Australian New Zealand Clinical Trials Registry Registration number: ACTRN12611000917932. Available from: https://www. anzctr.org.au/Trial/Registration/TrialReview.aspx?id=343305isReview=true (Accessed on: 08 January 2022).
[39]
Ines F, Hutson S, Coughlin K, et al. Multicentre, randomised trial of preterm infants receiving caffeine and less invasive surfactant administration compared with caffeine and early continuous positive airway pressure (CaLI trial): study protocol. BMJ Open 2021; 11(1): e038343.
[http://dx.doi.org/10.1136/bmjopen-2020-038343] [PMID: 33483435]
[40]
Su BH, Lin HY. Minimally invasive surfactant therapy followed by cpap (mistcpap) in preterm infants with RDS. NCT01723683, ClinicalTrials.gov Available from: https://clinicaltrials.gov/ct2/show/ NCT01723683
[41]
Zhu J, Bao Y, Du L, et al. Less invasive surfactant administration versus endotracheal surfactant instillation followed by limited peak pressure ventilation in preterm infants with respiratory distress syndrome in China: Study protocol for a randomized controlled trial. Trials 2020; 21(1): 516.
[http://dx.doi.org/10.1186/s13063-020-04390-3] [PMID: 32527290]
[42]
Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev 2021; 5(5): CD011672.
[http://dx.doi.org/10.1371/10.1002/14651858.CD011672.pub2] [PMID: 33970483]
[43]
Aldana-Aguirre JC, Pinto M, Featherstone RM, Kumar M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: A systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2017; 102(1): F17-23.
[http://dx.doi.org/10.1136/archdischild-2015-310299] [PMID: 27852668]
[44]
Isayama T, Iwami H, McDonald S, Beyene J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dys-plasia among preterm infants: A systematic review and meta-analysis. JAMA 2016; 316(6): 611-24.
[http://dx.doi.org/10.1001/jama.2016.10708] [PMID: 27532916]
[45]
Panza R, Laforgia N, Bellos I, Pandita A. Systematic review found that using thin catheters to deliver surfactant to preterm neonates was associated with reduced bronchopulmonary dysplasia and mechanical ventilation. Acta Paediatr 2020; 109(11): 2219-25.
[http://dx.doi.org/10.1111/apa.15374] [PMID: 32441829]
[46]
Rigo V, Lefebvre C, Broux I. Surfactant instillation in spontaneously breathing preterm infants: A systematic review and meta-analysis. Eur J Pediatr 2016; 175(12): 1933-42.
[http://dx.doi.org/10.1007/s00431-016-2789-4] [PMID: 27678511]
[47]
Wu X, Feng Z, Kong J, et al. Efficacy and safety of surfactant administration via thin catheter in preterm infants with neonatal respiratory distress syndrome: A systematic review and meta-analysis. Pediatr Pulmonol 2021; 56(9): 3013-25.
[http://dx.doi.org/10.1002/ppul.25545] [PMID: 34215018]
[48]
Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. PLoS Med 2010; 7(3): e1000251.
[http://dx.doi.org/10.1371/journal.pmed.1000251] [PMID: 20352064]
[49]
Preterm birth. World health organization (19 February 2018). 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (Accessed on:08 January 2022).
[50]
STAT 507: Epidemiological research methods. 3.5 - bias, confounding and effect modification. Available from: https://online. stat.psu.edu/stat507/lesson/3/3.5 (Accessed on: 08 January 2022).
[51]
Dekker J, Lopriore E, van Zanten HA, Tan RNGB, Hooper SB, Te Pas AB. Sedation during minimal invasive surfactant therapy: A randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 2019; 104(4): F378-83.
[http://dx.doi.org/10.1136/archdischild-2018-315015] [PMID: 30068669]
[52]
Olivier F, Nadeau S, Bélanger S, et al. Efficacy of minimally invasive surfactant therapy in moderate and late preterm infants: A multicentre randomized control trial. Paediatr Child Health 2017; 22(3): 120-4.
[http://dx.doi.org/10.1093/pch/pxx033] [PMID: 29479196]
[53]
Ng EH, Shah V. Guidelines for surfactant replacement therapy in neonates. Paediatr Child Health 2021; 26(1): 35-49.
[http://dx.doi.org/10.1093/pch/pxaa116] [PMID: 33552321]
[54]
Klotz D, Porcaro U, Fleck T, Fuchs H. European perspective on less invasive surfactant administration-a survey. Eur J Pediatr 2017; 176(2): 147-54.
[http://dx.doi.org/10.1007/s00431-016-2812-9] [PMID: 27942865]
[55]
Kurepa D, Perveen S, Lipener Y, Kakkilaya V. The use of less invasive surfactant administration (LISA) in the United States with review of the literature. J Perinatol 2019; 39(3): 426-32.
[http://dx.doi.org/10.1038/s41372-018-0302-9] [PMID: 30635595]
[56]
Bayley N. Bayley scales of infant and toddler development. 3rd ed. San Antonio: Harcourt Assessment 2006.
[57]
Herting E, Kribs A, Härtel C, et al. Two-year outcome data suggest that less invasive surfactant administration (LISA) is safe. Results from the follow-up of the randomized controlled AMV (avoid mechanical ventilation) study. Eur J Pediatr 2020; 179(8): 1309-13.
[http://dx.doi.org/10.1007/s00431-020-03572-0] [PMID: 32067100]
[58]
Mehler K, Broer A, Roll C, et al. Developmental outcome of extremely preterm infants is improved after less invasive surfactant application: Developmental outcome after LISA. Acta Paediatr 2021; 110(3): 818-25.
[http://dx.doi.org/10.1111/apa.15565] [PMID: 32892376]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy