Abstract
Background: Huperzia phlegmaria has been used for the treatment of the neurological disorder. Alkaloids are the main bioactive compounds found in Huperzia phlegmaria. We aimed to investigate the Acetylcholinesterase (AChE) inhibitory activity in vitro of Huperzia phlegmaria Alkaloid Extract (HpAE) and protective effects on mice that were induced cognitive deficits by scopolamine.
Methods: AChE inhibitory activity and kinetic inhibition mechanism were investigated by Ellman's assay. Mice were administrated orally HpAE (30 mg/kg and 60 mg/kg) for fourteen days, injected scopolamine at a dose of 3 mg/kg one day for Y- maze test and 1 mg/kg four days for Morris water maze test intraperitoneally to induce cognitive impairment. The Y-maze and the Morris water maze were used for evaluating memory behaviors. Acetylcholine (ACh) levels and AChE activity were measured in brain tissue. Glutathione Peroxidase (GPx), Superoxide Dismutase (SOD) activities, and Malondialdehyde (MDA) groups were also evaluated in the mouse brain tissues.
Results: Our data showed that HpAE had a strong AChE inhibitory activity with an IC50 value of 5.12 ± 0.48 μg/mL in a concentration-dependent manner. Kinetic inhibition analysis demonstrated that HpAE inhibited AChE followed the mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 4.37 ± 0.35 μg/mL. Scopolamine induced the cognitive impairment in the Morris Water Maze and Y-maze test along with reduced brain levels of ACh and antioxidant enzyme and increased AChE activity in mouse brain tissues. Treatment with HpAE at both doses (30 mg/kg and 60 mg/kg) decreased the SCP-induced cognitive impairment in both behavioral tests along with decreased acetylcholinesterase activity and MDA level, and increased ACh level and antioxidant enzyme in mouse brain tissues.
Conclusion: Our results suggested that the HpAE at both doses (30 mg/kg and 60 mg/kg) may be used for prevention and treatment of Alzheimer’s disease.
Keywords: Huperzia phlegmaria, scopolamine, cognitive deficits, y-maze test, morris water maze, acetylcholinesterase.
(b)Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
(c)Bonda, D.J.; Wang, X.; Perry, G.; Nunomura, A.; Tabaton, M.; Zhu, X.; Smith, M.A. Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 2010, 59(4-5), 290-294.
[http://dx.doi.org/10.3233/JAD-2006-9S317] [PMID: 16914853] [http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443] [http://dx.doi.org/10.1016/j.neuropharm.2010.04.005] [PMID: 20394761]
[http://dx.doi.org/10.1001/jama.281.15.1433] [PMID: 10217061]
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955]
[http://dx.doi.org/10.1073/pnas.78.11.7124] [PMID: 6947277]
[http://dx.doi.org/10.1006/exnr.1997.6750] [PMID: 9514828]
(b)Tan, C.H.; Zhu, D.Y. Lycopodine‐Type Lycopodium Alkaloids from Huperzia serrata. Helv. Chim. Acta, 2004, 87(8), 1963-1967.
[http://dx.doi.org/10.1007/s11101-014-9384-y] [http://dx.doi.org/10.1002/hlca.200490178]
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[http://dx.doi.org/10.1016/S0006-2952(00)00330-0] [PMID: 10874131]
(b)Bui, T.T.; Nguyen, H.T. Ethanolic extract of Sophora japonica flower buds alleviates cognitive deficits induced by scopolamine in mice. Orient. Pharm. Exp. Med., 2017, 17(4), 337-344.
[http://dx.doi.org/10.1016/j.neuroscience.2007.05.020] [PMID: 17601672] [http://dx.doi.org/10.1007/s13596-017-0286-6]
[http://dx.doi.org/10.3791/2920]
[http://dx.doi.org/10.1016/j.jep.2016.12.037] [PMID: 28025162]
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[http://dx.doi.org/10.1016/0003-2697(84)90772-3] [PMID: 6731854]
[http://dx.doi.org/10.1007/978-1-62703-239-1_19] [PMID: 23296666]
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1]
(b)Sabulal, B.; George, V.; Shiburaj, S. Volatile constituents and antibacterial activity of the flower oil of Evodia lunu-ankenda (Gaertn) Merr. J. Essent. Oil Res., 2006, 18(4), 462-464.
(c)Tong, X-T.; Tan, C.H.; Ma, X.Q.; Wang, B.D.; Jiang, S.H.; Zhu, D.Y. Miyoshianines A and B, two new lycopodium alkaloids from Huperzia miyoshiana. Planta Med., 2003, 69(6), 576-579.
(d)Ayer, W.; Altenkirk, B.; Burnell, R.; Moinas, M. Alkaloids of Lycopodium lucidulum Michx. Structure and properties of alkaloid L. 23. Can. J. Chem., 1969, 47(3), 449-455.
[http://dx.doi.org/10.1016/j.bse.2019.01.009] [http://dx.doi.org/10.1080/10412905.2006.9699141] [http://dx.doi.org/10.1055/s-2003-40648] [PMID: 12865986] [http://dx.doi.org/10.1139/v69-065]
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
(b) Klinkenberg, I.; Blokland, A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev., 2010, 34(8), 1307-1350.
[http://dx.doi.org/10.1007/BF00216073] [PMID: 3146778] [http://dx.doi.org/10.1016/j.neubiorev.2010.04.001] [PMID: 20398692]
[http://dx.doi.org/10.1016/j.fitote.2018.07.016] [PMID: 30056186]
[http://dx.doi.org/10.1016/j.tetlet.2014.01.141]
[http://dx.doi.org/10.1016/j.tetlet.2013.01.048]
[http://dx.doi.org/10.1080/14786419.2018.1484462] [PMID: 29923424]
[http://dx.doi.org/10.1016/S0091-3057(96)00431-5] [PMID: 9130295]
[http://dx.doi.org/10.2174/1567205013666160930112625]
(b) Bai, D.L.; Tang, X.C.; He, X.C.; Huperzine, A. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem., 2000, 7(3), 355-374.
(c) Ohba, T.; Yoshino, Y.; Ishisaka, M.; Abe, N.; Tsuruma, K.; Shimazawa, M.; Oyama, M.; Tabira, T.; Hara, H. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci. Biotechnol. Biochem., 2015, 79(11), 1838-1844.
[http://dx.doi.org/10.1016/j.cbi.2008.04.049] [PMID: 18565502] [http://dx.doi.org/10.2174/0929867003375281] [PMID: 10637369] [http://dx.doi.org/10.1080/09168451.2015.1052773] [PMID: 26059088]
[http://dx.doi.org/10.1038/nsb0197-57] [PMID: 8989325]
(b) Kwon, S-H.; Lee, H-K.; Kim, J-A.; Hong, S-I.; Kim, H-C.; Jo, T-H.; Park, Y-I.; Lee, C-K.; Kim, Y-B.; Lee, S-Y.; Jang, C.G. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol., 2010, 649(1-3), 210-217.
[http://dx.doi.org/10.1038/srep09651] [PMID: 25974329] [http://dx.doi.org/10.1016/j.ejphar.2010.09.001] [PMID: 20854806]
[http://dx.doi.org/10.1016/S0149-7634(01)00041-0] [PMID: 11835987]
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[http://dx.doi.org/10.1155/2013/316523] [PMID: 23983897]
(b) Haider, S.; Tabassum, S.; Perveen, T. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: A comparative study. Brain Res. Bull., 2016, 127, 234-247.
(c) Fan, Y.; Hu, J.; Li, J.; Yang, Z.; Xin, X.; Wang, J.; Ding, J.; Geng, M. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett., 2005, 374(3), 222-226.
(d) Ataie, A.; Sabetkasaei, M.; Haghparast, A.; Moghaddam, A.H.; Kazeminejad, B. Neuroprotective effects of the polyphenolic antioxidant agent, curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol. Biochem. Behav., 2010, 96(4), 378-385.
[http://dx.doi.org/10.1155/2012/974013] [PMID: 22536538] [http://dx.doi.org/10.1016/j.brainresbull.2016.10.002] [PMID: 27725168] [http://dx.doi.org/10.1016/j.neulet.2004.10.063] [PMID: 15663967] [http://dx.doi.org/10.1016/j.pbb.2010.06.009] [PMID: 20619287]
[http://dx.doi.org/10.1016/j.phymed.2012.08.009] [PMID: 23022390]
[http://dx.doi.org/10.1016/j.tips.2006.10.004] [PMID: 17056129]
[http://dx.doi.org/10.1039/b409720n] [PMID: 15565253]