Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

The Effect of Alkaloid Extracted from Huperzia Phlegmaria on Cognitive Deficits Scopolamine-Induced in Mice

Author(s): Dang K. Thu, Dao T. Vui, Nguyen T.N. Huyen, Nguyen T.T. Binh, Nguyen T. Huyen, Nguyen T.H. Yen and Bui T. Tung*

Volume 17, Issue 3, 2021

Published on: 20 May, 2020

Page: [267 - 278] Pages: 12

DOI: 10.2174/1573407216999200520082046

Price: $65

conference banner
Abstract

Background: Huperzia phlegmaria has been used for the treatment of the neurological disorder. Alkaloids are the main bioactive compounds found in Huperzia phlegmaria. We aimed to investigate the Acetylcholinesterase (AChE) inhibitory activity in vitro of Huperzia phlegmaria Alkaloid Extract (HpAE) and protective effects on mice that were induced cognitive deficits by scopolamine.

Methods: AChE inhibitory activity and kinetic inhibition mechanism were investigated by Ellman's assay. Mice were administrated orally HpAE (30 mg/kg and 60 mg/kg) for fourteen days, injected scopolamine at a dose of 3 mg/kg one day for Y- maze test and 1 mg/kg four days for Morris water maze test intraperitoneally to induce cognitive impairment. The Y-maze and the Morris water maze were used for evaluating memory behaviors. Acetylcholine (ACh) levels and AChE activity were measured in brain tissue. Glutathione Peroxidase (GPx), Superoxide Dismutase (SOD) activities, and Malondialdehyde (MDA) groups were also evaluated in the mouse brain tissues.

Results: Our data showed that HpAE had a strong AChE inhibitory activity with an IC50 value of 5.12 ± 0.48 μg/mL in a concentration-dependent manner. Kinetic inhibition analysis demonstrated that HpAE inhibited AChE followed the mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 4.37 ± 0.35 μg/mL. Scopolamine induced the cognitive impairment in the Morris Water Maze and Y-maze test along with reduced brain levels of ACh and antioxidant enzyme and increased AChE activity in mouse brain tissues. Treatment with HpAE at both doses (30 mg/kg and 60 mg/kg) decreased the SCP-induced cognitive impairment in both behavioral tests along with decreased acetylcholinesterase activity and MDA level, and increased ACh level and antioxidant enzyme in mouse brain tissues.

Conclusion: Our results suggested that the HpAE at both doses (30 mg/kg and 60 mg/kg) may be used for prevention and treatment of Alzheimer’s disease.

Keywords: Huperzia phlegmaria, scopolamine, cognitive deficits, y-maze test, morris water maze, acetylcholinesterase.

Graphical Abstract
[1]
(a)Hardy, J. Alzheimer’s disease: The amyloid cascade hypothesis: An update and reappraisal. J. Alzheimers Dis., 2006, 9(3)(Suppl.), 151-153.
(b)Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
(c)Bonda, D.J.; Wang, X.; Perry, G.; Nunomura, A.; Tabaton, M.; Zhu, X.; Smith, M.A. Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 2010, 59(4-5), 290-294.
[http://dx.doi.org/10.3233/JAD-2006-9S317] [PMID: 16914853] [http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443] [http://dx.doi.org/10.1016/j.neuropharm.2010.04.005] [PMID: 20394761]
[2]
Davies, P. Challenging the cholinergic hypothesis in Alzheimer disease. JAMA, 1999, 281(15), 1433-1434.
[http://dx.doi.org/10.1001/jama.281.15.1433] [PMID: 10217061]
[3]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine, 2007, 14(4), 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955]
[4]
Harman, D. The aging process. Proc. Natl. Acad. Sci. USA, 1981, 78(11), 7124-7128.
[http://dx.doi.org/10.1073/pnas.78.11.7124] [PMID: 6947277]
[5]
Marcus, D.L.; Thomas, C.; Rodriguez, C.; Simberkoff, K.; Tsai, J.S.; Strafaci, J.A.; Freedman, M.L. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp. Neurol., 1998, 150(1), 40-44.
[http://dx.doi.org/10.1006/exnr.1997.6750] [PMID: 9514828]
[6]
(a)Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Huperzine A from Huperzia serrata: A review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev., 2016, 15(1), 51-85.
(b)Tan, C.H.; Zhu, D.Y. Lycopodine‐Type Lycopodium Alkaloids from Huperzia serrata. Helv. Chim. Acta, 2004, 87(8), 1963-1967.
[http://dx.doi.org/10.1007/s11101-014-9384-y] [http://dx.doi.org/10.1002/hlca.200490178]
[7]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[8]
Kamal, M.A.; Greig, N.H.; Alhomida, A.S.; Al-Jafari, A.A. Kinetics of human acetylcholinesterase inhibition by the novel experimental Alzheimer therapeutic agent, tolserine. Biochem. Pharmacol., 2000, 60(4), 561-570.
[http://dx.doi.org/10.1016/S0006-2952(00)00330-0] [PMID: 10874131]
[9]
(a)Ma, M.X.; Chen, Y.M.; He, J.; Zeng, T.; Wang, J.H. Effects of morphine and its withdrawal on Y-maze spatial recognition memory in mice. Neuroscience, 2007, 147(4), 1059-1065.
(b)Bui, T.T.; Nguyen, H.T. Ethanolic extract of Sophora japonica flower buds alleviates cognitive deficits induced by scopolamine in mice. Orient. Pharm. Exp. Med., 2017, 17(4), 337-344.
[http://dx.doi.org/10.1016/j.neuroscience.2007.05.020] [PMID: 17601672] [http://dx.doi.org/10.1007/s13596-017-0286-6]
[10]
Bromley-Brits, K.; Deng, Y.; Song, W.; Morris, M. Water maze test for learning and memory deficits in Alzheimer's disease model mice. J. Vis. Exp., 2011, 2011(53), e2920-e2920.
[http://dx.doi.org/10.3791/2920]
[11]
Tung, B.T.; Hai, N.T.; Thu, D.K. Antioxidant and acetylcholinesterase inhibitory activities in vitro of different fraction of Huperzia squarrosa (Forst.) Trevis extract and attenuation of scopolamine-induced cognitive impairment in mice. J. Ethnopharmacol., 2017, 198, 24-32.
[http://dx.doi.org/10.1016/j.jep.2016.12.037] [PMID: 28025162]
[12]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[13]
Gilberstadt, M.L.; Russell, J.A. Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions. Anal. Biochem., 1984, 138(1), 78-85.
[http://dx.doi.org/10.1016/0003-2697(84)90772-3] [PMID: 6731854]
[14]
Gasparovic, A.C.; Jaganjac, M.; Mihaljevic, B.; Sunjic, S.B.; Zarkovic, N. Assays for the measurement of lipid peroxidation. Methods Mol. Biol., 2013, 965, 283-296.
[http://dx.doi.org/10.1007/978-1-62703-239-1_19] [PMID: 23296666]
[15]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[16]
Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase In: Methods in Enzymology; Lester, P., Ed.; Academic Press: New York, 1984; 105, pp. 114-120.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1]
[17]
Zhang, P.; Chen, Y.; Wu, Y.; Yang, M.; Li, C.; Chen, Z.; Xu, X. Preparation of bio-oil from direct liquefaction of Dunaliella tertiolecta in sub-and supercritical ethanol-water system. (Petroleum Processing Section). Acta Petrol. Sin., 20122012(5), 15.
[18]
Jiao, H.; Wang, Y.; Mo, X.; Zhang, X.; Zeng, Q. Analysis of volatile components of Pogostemon cablin from Indonesia and China. Pharmacy Today, 2013, 23, 1-3.
[19]
(a)Xu, M.; Eiriksson, F.F.; Thorsteinsdottir, M.; Heidmarsson, S.; Omarsdottir, S.; Olafsdottir, E.S. Alkaloid fingerprinting resolves Huperzia selago genotypes in Iceland. Biochem. Syst. Ecol., 2019, 83, 77-82.
(b)Sabulal, B.; George, V.; Shiburaj, S. Volatile constituents and antibacterial activity of the flower oil of Evodia lunu-ankenda (Gaertn) Merr. J. Essent. Oil Res., 2006, 18(4), 462-464.
(c)Tong, X-T.; Tan, C.H.; Ma, X.Q.; Wang, B.D.; Jiang, S.H.; Zhu, D.Y. Miyoshianines A and B, two new lycopodium alkaloids from Huperzia miyoshiana. Planta Med., 2003, 69(6), 576-579.
(d)Ayer, W.; Altenkirk, B.; Burnell, R.; Moinas, M. Alkaloids of Lycopodium lucidulum Michx. Structure and properties of alkaloid L. 23. Can. J. Chem., 1969, 47(3), 449-455.
[http://dx.doi.org/10.1016/j.bse.2019.01.009] [http://dx.doi.org/10.1080/10412905.2006.9699141] [http://dx.doi.org/10.1055/s-2003-40648] [PMID: 12865986] [http://dx.doi.org/10.1139/v69-065]
[20]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metaboldism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 360438.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[21]
(a) Stone, W.S.; Croul, C.E.; Gold, P.E. Attenuation of scopolamine-induced amnesia in mice. Psychopharmacology (Berl.), 1988, 96(3), 417-420.
(b) Klinkenberg, I.; Blokland, A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev., 2010, 34(8), 1307-1350.
[http://dx.doi.org/10.1007/BF00216073] [PMID: 3146778] [http://dx.doi.org/10.1016/j.neubiorev.2010.04.001] [PMID: 20398692]
[22]
Nguyen, H.T.; Doan, H.T.; Ho, D.V.; Pham, K.T.; Raal, A.; Morita, H. Huperphlegmines A and B, two novel Lycopodium alkaloids with an unprecedented skeleton from Huperzia phlegmaria, and their acetylcholinesterase inhibitory activities. Fitoterapia, 2018, 129, 267-271.
[http://dx.doi.org/10.1016/j.fitote.2018.07.016] [PMID: 30056186]
[23]
Hirasawa, Y.; Kato, Y.; Wong, C.P.; Uchiyama, N.; Goda, Y.; Hadi, A.H.A.; Ali, H.M.; Morita, H.; Hupermine, A. a novel C16N2-type Lycopodium alkaloid from Huperzia phlegmaria. Tetrahedron Lett., 2014, 55(11), 1902-1904.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.141]
[24]
Hirasawa, Y.; Kato, Y.; Wong, C.P.; Uchiyama, N.; Goda, Y.; Hadi, A.H.A.; Morita, H.; Huperminone, A. a novel C16N-type Lycopodium alkaloid from Huperzia phlegmaria. Tetrahedron Lett., 2013, 54(12), 1593-1595.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.048]
[25]
Doan, T.H.; Ho, V.D.; Le, T.B.H.; Le, T.A.; Pham, T.K.; Nguyen, T.H.; Raal, A. Two new abietane diterpenes huperphlegmarins A and B from Huperzia phlegmaria. Nat. Prod. Res., 2019, 33(14), 2051-2059.
[http://dx.doi.org/10.1080/14786419.2018.1484462] [PMID: 29923424]
[26]
Muir, J.L. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol. Biochem. Behav., 1997, 56(4), 687-696.
[http://dx.doi.org/10.1016/S0091-3057(96)00431-5] [PMID: 9130295]
[27]
Asante, R.K.; Paul, A.N. Beyond acetylcholinesterase inhibitors: Novel cholinergic treatments for Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13, 1-1.
[http://dx.doi.org/10.2174/1567205013666160930112625]
[28]
(a) Zhang, H.Y.; Zheng, C.Y.; Yan, H.; Wang, Z.F.; Tang, L.L.; Gao, X.; Tang, X.C. Potential therapeutic targets of huperzine A for Alzheimer’s disease and vascular dementia. Chem. Biol. Interact., 2008, 175(1-3), 396-402.
(b) Bai, D.L.; Tang, X.C.; He, X.C.; Huperzine, A. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem., 2000, 7(3), 355-374.
(c) Ohba, T.; Yoshino, Y.; Ishisaka, M.; Abe, N.; Tsuruma, K.; Shimazawa, M.; Oyama, M.; Tabira, T.; Hara, H. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci. Biotechnol. Biochem., 2015, 79(11), 1838-1844.
[http://dx.doi.org/10.1016/j.cbi.2008.04.049] [PMID: 18565502] [http://dx.doi.org/10.2174/0929867003375281] [PMID: 10637369] [http://dx.doi.org/10.1080/09168451.2015.1052773] [PMID: 26059088]
[29]
Raves, M.L.; Harel, M.; Pang, Y-P.; Silman, I.; Kozikowski, A.P.; Sussman, J.L. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nat. Struct. Biol., 1997, 4(1), 57-63.
[http://dx.doi.org/10.1038/nsb0197-57] [PMID: 8989325]
[30]
(a) Lee, J-S.; Kim, H-G.; Lee, H-W.; Han, J-M.; Lee, S-K.; Kim, D-W.; Saravanakumar, A.; Son, C-G. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model. Sci. Rep., 2015, 5, 9651.
(b) Kwon, S-H.; Lee, H-K.; Kim, J-A.; Hong, S-I.; Kim, H-C.; Jo, T-H.; Park, Y-I.; Lee, C-K.; Kim, Y-B.; Lee, S-Y.; Jang, C.G. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol., 2010, 649(1-3), 210-217.
[http://dx.doi.org/10.1038/srep09651] [PMID: 25974329] [http://dx.doi.org/10.1016/j.ejphar.2010.09.001] [PMID: 20854806]
[31]
Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev., 2002, 26(1), 91-104.
[http://dx.doi.org/10.1016/S0149-7634(01)00041-0] [PMID: 11835987]
[32]
Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 1984, 11(1), 47-60.
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[33]
Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2013, 2013, 316523.
[http://dx.doi.org/10.1155/2013/316523] [PMID: 23983897]
[34]
(a) Goverdhan, P.; Sravanthi, A.; Mamatha, T. Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int. J. Alzheimers Dis., 2012, 2012, 974013.
(b) Haider, S.; Tabassum, S.; Perveen, T. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: A comparative study. Brain Res. Bull., 2016, 127, 234-247.
(c) Fan, Y.; Hu, J.; Li, J.; Yang, Z.; Xin, X.; Wang, J.; Ding, J.; Geng, M. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett., 2005, 374(3), 222-226.
(d) Ataie, A.; Sabetkasaei, M.; Haghparast, A.; Moghaddam, A.H.; Kazeminejad, B. Neuroprotective effects of the polyphenolic antioxidant agent, curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol. Biochem. Behav., 2010, 96(4), 378-385.
[http://dx.doi.org/10.1155/2012/974013] [PMID: 22536538] [http://dx.doi.org/10.1016/j.brainresbull.2016.10.002] [PMID: 27725168] [http://dx.doi.org/10.1016/j.neulet.2004.10.063] [PMID: 15663967] [http://dx.doi.org/10.1016/j.pbb.2010.06.009] [PMID: 20619287]
[35]
Konrath, E.L.; Neves, B.M.; Passos, Cdos.S.; Lunardi, P.S.; Ortega, M.G.; Cabrera, J.L.; Gonçalves, C.A.; Henriques, A.T. Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain. Phytomedicine, 2012, 19(14), 1321-1324.
[http://dx.doi.org/10.1016/j.phymed.2012.08.009] [PMID: 23022390]
[36]
Zhang, H.Y.; Tang, X.C. Neuroprotective effects of huperzine A: New therapeutic targets for neurodegenerative disease. Trends Pharmacol. Sci., 2006, 27(12), 619-625.
[http://dx.doi.org/10.1016/j.tips.2006.10.004] [PMID: 17056129]
[37]
Ma, X.; Gang, D.R. The Lycopodium alkaloids. Nat. Prod. Rep., 2004, 21(6), 752-772.
[http://dx.doi.org/10.1039/b409720n] [PMID: 15565253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy