Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Human Mesenchymal Stem Cells for Spinal Cord Injury

Author(s): Masoumeh Alishahi, Amir Anbiyaiee, Maryam Farzaneh* and Seyed E. Khoshnam*

Volume 15, Issue 4, 2020

Page: [340 - 348] Pages: 9

DOI: 10.2174/1574888X15666200316164051

Price: $65

conference banner
Abstract

Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.

Keywords: Spinal cord injury, cell-based therapies, stem cells, mesenchymal stem cells, devastating disease, somatic stem cells.

[1]
Gazdic M, Volarevic V, Harrell CR, et al. Stem cells therapy for spinal cord injury. Int J Mol Sci 2018; 19(4): 1039.
[http://dx.doi.org/10.3390/ijms19041039] [PMID: 29601528]
[2]
Qu J, Zhang H. Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int 2017; 2017
[http://dx.doi.org/10.1155/2017/5251313]
[3]
Yılmaz T, Kaptanoğlu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 2015; 6(1): 42-55.
[http://dx.doi.org/10.5312/wjo.v6.i1.42] [PMID: 25621210]
[4]
Oh SK, Jeon SR. Current concept of stem cell therapy for spinal cord injury: A review. Korean J Neurotrauma 2016; 12(2): 40-6.
[http://dx.doi.org/10.13004/kjnt.2016.12.2.40] [PMID: 27857906]
[5]
Wang J, Li H, Yao Y, et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther 2018; 9(1): 106.
[http://dx.doi.org/10.1186/s13287-018-0832-2] [PMID: 29653590]
[6]
Tsintou M, Dalamagkas K, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 2015; 10(5): 726-42.
[http://dx.doi.org/10.4103/1673-5374.156966] [PMID: 26109946]
[7]
Xu W, Zheng J, Gao L, Li T, Zhang J, Shao A. Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells Int 2017; 20174653936
[http://dx.doi.org/10.1155/2017/4653936] [PMID: 28757878]
[8]
Suárez-Meade P, Carvajal HG, Yasuhara T, Tajiri N, Date I, Borlongan CV. Regenerative medicine for central nervous system disorders: Role of therapeutic molecules in stem cell therapy. Brain Circ 2015; 1(2): 125.
[http://dx.doi.org/10.4103/2394-8108.172884]
[9]
Batista CEM, Mariano ED, Marie SKN, et al. Stem cells in neurology--current perspectives. Arq Neuropsiquiatr 2014; 72(6): 457-65.
[http://dx.doi.org/10.1590/0004-282X20140045] [PMID: 24964114]
[10]
Rayagiri SS, Ranaldi D, Raven A, et al. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun 2018; 9(1): 1075.
[http://dx.doi.org/10.1038/s41467-018-03425-3] [PMID: 29540680]
[11]
He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 2009; 25: 377-406.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113248] [PMID: 19575646]
[12]
Molofsky AV, Pardal R, Morrison SJ. Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 2004; 16(6): 700-7.
[http://dx.doi.org/10.1016/j.ceb.2004.09.004] [PMID: 15530784]
[13]
Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013; 85(1): 3-10.
[http://dx.doi.org/10.1159/000345615] [PMID: 23257690]
[14]
Farzaneh M, Khoshnam S, Mozdziak P. Concise review: Avian multipotent stem cells as a novel tool for investigating cell-based therapies. J Dairy Vet Anim Res 2017; 5(1): 00125.
[http://dx.doi.org/10.15406/jdvar.2017.05.00125]
[15]
Farzaneh M, Attari F, Khoshnam SE. Concise review: LIN28/let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming, and Tumorigenicity. Cell Reprogram 2017; 19(5): 289-93.
[http://dx.doi.org/10.1089/cell.2017.0015] [PMID: 28846452]
[16]
Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 2019; 14(1): 9-13.
[http://dx.doi.org/10.2174/1574888X13666180821160421] [PMID: 30152289]
[17]
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani N, Nejabatdoust A, Khoshnam S. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Curr Stem Sell Res Ther 2019.
[http://dx.doi.org/10.2174/1871527318666190314110529]
[18]
Farzaneh M, Alishahi M, Derakhshan Z, Sarani N, Attari F, Khoshnam S. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Curr Stem Sell Res Ther 2019.
[http://dx.doi.org/10.2174/1574888X14666190123162402]
[19]
Jin S. Bipotent stem cells support the cyclical regeneration of endometrial epithelium of the murine uterus. Proc Natl Acad Sci USA 2019; 116(14): 6848-57.
[http://dx.doi.org/10.1073/pnas.1814597116] [PMID: 30872480]
[20]
Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28(1): 93-9.
[PMID: 19904738]
[21]
Curtis E, Martin JR, Gabel B, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 2018; 22(6): 941-950. e6.
[http://dx.doi.org/10.1016/j.stem.2018.05.014]
[22]
Levi AD, Anderson KD, Okonkwo DO, et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurotrauma 2019; 36(6): 891-902.
[http://dx.doi.org/10.1089/neu.2018.5843] [PMID: 30180779]
[23]
Yin JQ, Zhu J, Ankrum JA. Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3(2): 90-104.
[http://dx.doi.org/10.1038/s41551-018-0325-8] [PMID: 30944433]
[24]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12.
[http://dx.doi.org/10.1186/1478-811X-9-12] [PMID: 21569606]
[25]
Christodoulou I, Kolisis FN, Papaevangeliou D, Zoumpourlis V. Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells Int 2013; 2013246134
[http://dx.doi.org/10.1155/2013/246134] [PMID: 23533440]
[26]
Wang L-T, Ting C-H, Yen M-L, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23(1): 76.
[http://dx.doi.org/10.1186/s12929-016-0289-5] [PMID: 27809910]
[27]
Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 2010; 5(6): 933-46.
[http://dx.doi.org/10.2217/rme.10.72] [PMID: 21082892]
[28]
Tanna T, Sachan V. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 2014; 9(6): 513-21.
[http://dx.doi.org/10.2174/1574888X09666140923101110] [PMID: 25248677]
[29]
Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells 2014; 6(2): 120-33.
[http://dx.doi.org/10.4252/wjsc.v6.i2.120] [PMID: 24772239]
[30]
Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus 2019; 46(3)E10
[http://dx.doi.org/10.3171/2018.12.FOCUS18602] [PMID: 30835679]
[31]
Xu P, Yang X. The efficacy and safety of mesenchymal stem cell transplantation for spinal cord injury patients: a meta-analysis and systematic review. Cell Transplant 2019; 28(1): 36-46.
[http://dx.doi.org/10.1177/0963689718808471] [PMID: 30362373]
[32]
Ulndreaj A, Badner A, Fehlings MG. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000 Res 2017; 6: 1907.
[http://dx.doi.org/10.12688/f1000research.11633.1] [PMID: 29152227]
[33]
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9(1): 204.
[http://dx.doi.org/10.1186/ar2116] [PMID: 17316462]
[34]
Bertassoli BM, Neto A. Oliveira FDd, Arroyo MAM, Ferrão JSP, Silva JBd, Pignatari GC, and Braga PB, Mesenchymal stem cells: emphasis in adipose tissue. Braz Arch Biol Technol 2013; 56(4): 607-17.
[http://dx.doi.org/10.1590/S1516-89132013000400011]
[35]
Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal Stem Cells: A Potential Therapeutic Approach for Amyotrophic Lateral Sclerosis? Stem Cells Int 2019; 20193675627
[http://dx.doi.org/10.1155/2019/3675627] [PMID: 30956667]
[36]
Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 2019; 14(2): 227-37.
[http://dx.doi.org/10.4103/1673-5374.244778] [PMID: 30531002]
[37]
Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 2005; 113(11-12): 831-44.
[http://dx.doi.org/10.1111/j.1600-0463.2005.apm_3061.x] [PMID: 16480453]
[38]
Nagoshi N, Okano H. Applications of induced pluripotent stem cell technologies in spinal cord injury. J Neurochem 2017; 141(6): 848-60.
[http://dx.doi.org/10.1111/jnc.13986] [PMID: 28199003]
[39]
Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cell Int 2016.
[http://dx.doi.org/10.1155/2016/5646384]
[40]
Baghaei K, Hashemi SM, Tokhanbigli S, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench 2017; 10(3): 208-13.
[PMID: 29118937]
[41]
Bieback K, Netsch P. Isolation, culture, and characterization of human umbilical cord blood-derived mesenchymal stromal cellsMesenchymal Stem Cells. Springer 2016; pp. 245-58.
[42]
Wilson A, Chee M, Butler P, Boyd AS. Isolation and Characterisation of Human Adipose-Derived Stem CellsImmunological Tolerance. Springer 2019; pp. 3-13.
[43]
Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 2007; 28(36): 5401-6.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.008] [PMID: 17915311]
[44]
Liu J, Yu F, Sun Y, et al. Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 2015; 33(3): 627-38.
[http://dx.doi.org/10.1002/stem.1909] [PMID: 25447379]
[45]
Lu J, Zhu LF, Cai YM, Dong HY, Zhu L, Tan JM. Isolation and multipotential differentiation of mesenchymal stromal cell‑like progenitor cells from human bladder. Mol Med Rep 2019; 19(1): 187-94.
[PMID: 30431114]
[46]
Simones AA, Beisang DJ, Panoskaltsis-Mortari A, Roberts KD. Mesenchymal stem cells in the pathogenesis and treatment of bronchopulmonary dysplasia: a clinical review. Pediatr Res 2018; 83(1-2): 308-17.
[http://dx.doi.org/10.1038/pr.2017.237] [PMID: 28945702]
[47]
Lalu MM, McIntyre L, Pugliese C, et al. Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 2012; 7(10)e47559
[http://dx.doi.org/10.1371/journal.pone.0047559] [PMID: 23133515]
[48]
Zheng H, Zhang B, Chhatbar PY, et al. Mesenchymal Stem Cell Therapy in Stroke: A Systematic Review of Literature in Pre-Clinical and Clinical Research. Cell Transplant 2018; 27(12): 1723-30.
[http://dx.doi.org/10.1177/0963689718806846] [PMID: 30343609]
[49]
Tompkins BA, Balkan W, Winkler J, et al. Preclinical studies of stem cell therapy for heart disease. Circ Res 2018; 122(7): 1006-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312486] [PMID: 29599277]
[50]
Schulman IH, et al. Unique Aspects of the Design of Phase I/II Clinical Trials of Stem Cell Therapy. The Manag Clin Trials. IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.72949]
[51]
HechmiToumi EL. Mazor M Stem cell-based therapies for osteoarthritis: From pre-clinical to clinical applications mesenchymal stem cells: Isolation. Character Applicat 2017; p. 205.
[52]
Rosado-de-Castro PH, de Carvalho FG, de Freitas GR, Mendez-Otero R, Pimentel-Coelho PM. Review of preclinical and clinical studies of bone marrow-derived cell therapies for intracerebral hemorrhage. Stem Cells Int 2016; 2016
[http://dx.doi.org/10.1155/2016/4617983]
[53]
Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013
[http://dx.doi.org/10.1155/2013/130763]
[54]
Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strate-gies for improvement. iScience 2019; 15: 421-38.
[55]
Musiał-Wysocka A, Kot M, Majka M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant 2019; 28(7): 801-12.
[http://dx.doi.org/10.1177/0963689719837897] [PMID: 31018669]
[56]
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76(17): 3323-48.
[http://dx.doi.org/10.1007/s00018-019-03125-1] [PMID: 31055643]
[57]
Moosazadeh Moghaddam M, Bonakdar S, Shokrgozar MA, Faghihi S. Repair of spinal cord injury; mesenchymal stem cells as an alternative for Schwann cells. J Applied Biotechnol Rep 2018; 5(2): 42-7.
[http://dx.doi.org/10.29252/JABR.05.02.01]
[58]
Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 2017; 18(10): 2087.
[http://dx.doi.org/10.3390/ijms18102087] [PMID: 28974046]
[59]
Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 2016; 7(1): 131.
[http://dx.doi.org/10.1186/s13287-016-0394-0] [PMID: 27612948]
[60]
Ciavarella C, Pasquinelli G. The Dual Nature of Mesenchymal Stem Cells (MSCs). Yin and Yang of the Inflammatory Process.Mesenchymal Stem Cells. IntechOpen 2019.
[61]
Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16(3): 381-90.
[PMID: 5336210]
[62]
Yang M, Li Q, Sheng L, Li H, Weng R, Zan T. Bone marrow-derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion. Ann Surg 2011; 253(1): 202-9.
[http://dx.doi.org/10.1097/SLA.0b013e3181f9ba1ah] [PMID: 21233617]
[63]
Abdullah RH, Yaseen NY, Salih SM, Al-Juboory AA, Hassan A, Al-Shammari AM. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. J Chem Neuroanat 2016; 77: 129-42.
[http://dx.doi.org/10.1016/j.jchemneu.2016.07.003] [PMID: 27417692]
[64]
Kubinová Š. Biomaterials and magnetic stem cell delivery in the treatment of spinal cord injury. Neurochem Res 2020; 45(1): 171-9.
[http://dx.doi.org/10.1007/s11064-019-02808-2] [PMID: 31028504]
[65]
Matyas JJ, Stewart AN, Goldsmith A, et al. Effects of Bone-Marrow-Derived MSC Transplantation on Functional Recovery in a Rat Model of Spinal Cord Injury: Comparisons of Transplant Locations and Cell Concentrations. Cell Transplant 2017; 26(8): 1472-82.
[http://dx.doi.org/10.1177/0963689717721214] [PMID: 28901182]
[66]
Boody BS, Sharma R, Bronson WH, Russo GS, Segar A, Vaccaro AR. Update on Stem Cell Applications in Spine Surgery. Contemp Spine Surg 2019; 20(3): 1-7.
[http://dx.doi.org/10.1097/01.CSS.0000553647.94054.e0]
[67]
Yu D, Lü G, Cao Y, Li G, Zhi X, Fan Z. [Effects of bone marrow mesenchymal stem cells transplantation on expression of vascular endothelial growth factor gene and angiogenesis after spinal cord injury in rats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011; 25(7): 837-41.
[PMID: 21818951]
[68]
Zeng X, Zeng YS, Ma YH, et al. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant 2011; 20(11-12): 1881-99.
[http://dx.doi.org/10.3727/096368911X566181] [PMID: 21396163]
[69]
Zeng X, Ma YH, Chen YF, et al. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury. J Biomed Mater Res A 2016; 104(8): 1902-11.
[http://dx.doi.org/10.1002/jbm.a.35720] [PMID: 26991461]
[70]
Kim M, Kim KH, Song SU, et al. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J Tissue Eng Regen Med 2018; 12(2): e1034-45.
[http://dx.doi.org/10.1002/term.2425] [PMID: 28112873]
[71]
Stanco D, Viganò M, Perucca Orfei C, et al. Multidifferentiation potential of human mesenchymal stem cells from adipose tissue and hamstring tendons for musculoskeletal cell-based therapy. Regen Med 2015; 10(6): 729-43.
[http://dx.doi.org/10.2217/rme.14.92] [PMID: 25565145]
[72]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[http://dx.doi.org/10.1091/mbc.e02-02-0105] [PMID: 12475952]
[73]
Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Subcutaneous adipose tissue–derived stem cell utility is independent of anatomical harvest site. Biores Open Access 2015; 4(1): 131-45.
[http://dx.doi.org/10.1089/biores.2014.0059]
[74]
Nepali S, Park M, Lew H, Kim O. Comparative Analysis of Human Adipose-Derived Mesenchymal Stem Cells from Orbital and Abdominal Fat. Stem Cells Int 2018; 2018
[http://dx.doi.org/10.1155/2018/3932615]
[75]
Takahashi A, Nakajima H, Uchida K, et al. Comparison of mesenchymal stromal cells isolated from murine adipose tissue and bone marrow in the treatment of spinal cord injury. Cell Transplant 2018; 27(7): 1126-39.
[http://dx.doi.org/10.1177/0963689718780309] [PMID: 29947256]
[76]
Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res 2017; 22(1): 17-7.
[http://dx.doi.org/10.1186/s40001-017-0258-9] [PMID: 28526089]
[77]
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10(1): 199-9.
[http://dx.doi.org/10.1186/s13287-019-1310-1] [PMID: 31287024]
[78]
Taha S, Saller MM, Haas E, et al. Adipose-derived stem/progenitor cells from lipoaspirates: A comparison between the Lipivage200-5 liposuction system and the Body-Jet liposuction system. J Plast Reconstr Aesthet Surg 2019; S1748-6815(19): 30304-.
[79]
Zhou Z, Chen Y, Zhang H, et al. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 2013; 15(4): 434-48.
[http://dx.doi.org/10.1016/j.jcyt.2012.11.015] [PMID: 23376106]
[80]
Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 2006; 15(4): 583-94.
[http://dx.doi.org/10.1089/scd.2006.15.583] [PMID: 16978061]
[81]
Ryu HH, Lim JH, Byeon YE, et al. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci 2009; 10(4): 273-84.
[http://dx.doi.org/10.4142/jvs.2009.10.4.273] [PMID: 19934591]
[82]
Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, et al. Adipose-derived mesenchymal stem cell application combined with fibrin matrix promotes structural and functional recovery following spinal cord injury in rats. Front Pharmacol 2018; 9: 343.
[http://dx.doi.org/10.3389/fphar.2018.00343] [PMID: 29692732]
[83]
Carelli S, Giallongo T, Rey F, et al. Neuroprotection, Recovery of Function and Endogenous Neurogenesis in Traumatic Spinal Cord Injury Following Transplantation of Activated Adipose Tissue. Cells 2019; 8(4): 329.
[http://dx.doi.org/10.3390/cells8040329] [PMID: 30965679]
[84]
Sultana T, Lee S, Yoon H-Y, Lee JI. Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine. Stem Cells Int 2018; 2018
[http://dx.doi.org/10.1155/2018/8329174]
[85]
Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 2010; 3(4): 248-69.
[PMID: 21072260]
[86]
Gang EJ, Hong SH, Jeong JA, et al. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004; 321(1): 102-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.111] [PMID: 15358221]
[87]
Ali H, Al-Yatama MK, Abu-Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton’s Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS One 2015; 10(4)e0122465
[http://dx.doi.org/10.1371/journal.pone.0122465] [PMID: 25848763]
[88]
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7(1): 82.
[http://dx.doi.org/10.1186/s13287-016-0341-0] [PMID: 27259550]
[89]
Roura S, Gálvez-Montón C, Mirabel C, Vives J, Bayes-Genis A. Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Res Ther 2017; 8(1): 238.
[http://dx.doi.org/10.1186/s13287-017-0695-y] [PMID: 29078809]
[90]
Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of human mesenchymal stem cells towards neuronal lineage: Clinical trials in nervous system disorders. Biomol Ther (Seoul) 2020; 28(1): 34-44.
[http://dx.doi.org/10.4062/biomolther.2019.065] [PMID: 31649208]
[91]
Rafieemehr H, Kheirandish M, Soleimani M. Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions. Iran J Basic Med Sci 2015; 18(11): 1100-6.
[PMID: 26949497]
[92]
Park D-H, Lee J-H, Borlongan CV, Sanberg PR, Chung Y-G, Cho T-H. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev Rep 2011; 7(1): 181-94.
[http://dx.doi.org/10.1007/s12015-010-9163-0] [PMID: 20532836]
[93]
Newcomb JD, Sanberg PR, Klasko SK, Willing AE. Umbilical cord blood research: current and future perspectives. Cell Transplant 2007; 16(2): 151-8.
[http://dx.doi.org/10.3727/000000007783464623] [PMID: 17474296]
[94]
Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003; 12(3): 271-8.
[http://dx.doi.org/10.1089/152581603322023007] [PMID: 12857368]
[95]
Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 2005; 147(9): 985-92.
[http://dx.doi.org/10.1007/s00701-005-0538-y] [PMID: 16010451]
[96]
Dasari VR, Spomar DG, Gondi CS, et al. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 2007; 24(2): 391-410.
[http://dx.doi.org/10.1089/neu.2006.0142] [PMID: 17376002]
[97]
Lee JH, Chung WH, Kang EH, et al. Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury. J Neurol Sci 2011; 300(1-2): 86-96.
[http://dx.doi.org/10.1016/j.jns.2010.09.025] [PMID: 21071039]
[98]
Ning G, Tang L, Wu Q, et al. Human umbilical cord blood stem cells for spinal cord injury: early transplantation results in better local angiogenesis. Regen Med 2013; 8(3): 271-81.
[http://dx.doi.org/10.2217/rme.13.26] [PMID: 23627822]
[99]
Cristante AF, Barros Filho TE, Marcon RM, Letaif OB, Rocha ID. Therapeutic approaches for spinal cord injury. Clinics (São Paulo) 2012; 67(10): 1219-24.
[http://dx.doi.org/10.6061/clinics/2012(10)16] [PMID: 23070351]
[100]
Okada S. The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regen 2016; 36(1): 20.
[http://dx.doi.org/10.1186/s41232-016-0026-1] [PMID: 29259693]
[101]
Yu S, Yao S, Wen Y, Wang Y, Wang H, Xu Q. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats. Sci Rep 2016; 6: 33428.
[http://dx.doi.org/10.1038/srep33428] [PMID: 27641997]
[102]
Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 2018; 22(3): 1428-42.
[http://dx.doi.org/10.1111/jcmm.13492] [PMID: 29392844]
[103]
Ayala-Cuellar AP, Kang J-H, Jeung E-B, Choi K-C. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther (Seoul) 2019; 27(1): 25-33.
[http://dx.doi.org/10.4062/biomolther.2017.260] [PMID: 29902862]
[104]
Syková E, Jendelová P, Urdzíková L, Lesný P, Hejčl A. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006; 26(7-8): 1113-29.
[http://dx.doi.org/10.1007/s10571-006-9007-2] [PMID: 16633897]
[105]
Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015; 11(1): 21-34.
[http://dx.doi.org/10.1038/nrrheum.2014.157] [PMID: 25247412]
[106]
Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. BioMed Res Int 2018; 20187848901
[107]
Liu S, Schackel T, Weidner N, Puttagunta R. Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives. Front Cell Neurosci 2018; 11: 430.
[http://dx.doi.org/10.3389/fncel.2017.00430] [PMID: 29375316]
[108]
Carballo-Molina OA, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neurosci 2015; 9: 13.
[http://dx.doi.org/10.3389/fncel.2015.00013] [PMID: 25741236]
[109]
Li X, Liu D, Xiao Z, et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 2019; 197: 20-31.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.012] [PMID: 30639547]
[110]
Liu J, Chen J, Liu B, et al. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 2013; 325(1-2): 127-36.
[http://dx.doi.org/10.1016/j.jns.2012.11.022] [PMID: 23317924]
[111]
Zhao Y, Tang F, Xiao Z, et al. Clinical Study of NeuroRegen Scaffold Combined With Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury. Cell Transplant 2017; 26(5): 891-900.
[http://dx.doi.org/10.3727/096368917X695038] [PMID: 28185615]
[112]
Li X, Tan J, Xiao Z, et al. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 2017; 7: 43559.
[http://dx.doi.org/10.1038/srep43559] [PMID: 28262732]
[113]
Li Z, Zhao W, Liu W, Zhou Y, Jia J, Yang L. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury. Neural Regen Res 2014; 9(24): 2197-204.
[http://dx.doi.org/10.4103/1673-5374.147953] [PMID: 25657742]
[114]
Lotfy A, Ali NS, Abdelgawad M, Salama M. Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies. Rev Neurosci 2020; 31(2): 161-79.
[http://dx.doi.org/10.1515/revneuro-2019-0040] [PMID: 31605598]
[115]
Tan JW, Wang KY, Liao GJ, Chen FM, Mu MZ. Neuroprotective effect of methylprednisolone combined with placenta-derived mesenchymal stem cell in rabbit model of spinal cord injury. Int J Clin Exp Pathol 2015; 8(8): 8976-82.
[PMID: 26464639]
[116]
Lu Y, Gao H, Zhang M, Chen B, Yang H. Glial cell line-derived neurotrophic factor-transfected placenta-derived versus bone marrow-derived mesenchymal cells for treating spinal cord injury. Medical science monitor. Med Sci Monit 2017; 23: 1800-11.
[http://dx.doi.org/10.12659/MSM.902754] [PMID: 28408732]
[117]
Han S, Xiao Z, Li X, et al. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 2018; 61(1): 2-13.
[http://dx.doi.org/10.1007/s11427-016-9002-6] [PMID: 28527111]
[118]
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35(2)e00191
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[119]
De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016; 8(3): 73-87.
[http://dx.doi.org/10.4252/wjsc.v8.i3.73] [PMID: 27022438]
[120]
Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthop Translat 2017; 9: 19-27.
[http://dx.doi.org/10.1016/j.jot.2017.03.002] [PMID: 29662796]
[121]
Steens J, Klein D. Current strategies to generate human mesenchymal stem cells in vitro. Stem Cells Int 2018; 20186726185
[122]
Lee SH. The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporos Sarcopenia 2018; 4(4): 150-0.
[http://dx.doi.org/10.1016/j.afos.2018.11.083] [PMID: 30775559]
[123]
Kim HJ, Park J-S. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Dev Reprod 2017; 21(1): 1-10.
[http://dx.doi.org/10.12717/DR.2017.21.1.001] [PMID: 28484739]
[124]
Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J Cell Immun 2016; 2(1): 3-20.
[http://dx.doi.org/10.1016/j.jocit.2014.12.001]
[125]
Crisostomo PR, Wang M, Wairiuko GM, et al. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 2006; 26(6): 575-80.
[http://dx.doi.org/10.1097/01.shk.0000235087.45798.93] [PMID: 17117132]
[126]
Neri S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci 2019; 20(10): 2406.
[http://dx.doi.org/10.3390/ijms20102406] [PMID: 31096604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy