Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Emerging Promise of Immunotherapy for Alzheimer’s Disease: A New Hope for the Development of Alzheimer’s Vaccine

Author(s): Md. Tanvir Kabir, Md. Sahab Uddin*, Bijo Mathew, Pankoj Kumar Das, Asma Perveen and Ghulam Md. Ashraf*

Volume 20, Issue 13, 2020

Page: [1214 - 1234] Pages: 21

DOI: 10.2174/1568026620666200422105156

Price: $65

conference banner
Abstract

Background: Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language.

Objective: In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine.

Summary: Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine’s immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation.

Conclusion: Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.

Keywords: Alzheimer's disease, Amyloid-beta, Vaccine, Immunotherapy, Immunity, Dementia.

« Previous
Graphical Abstract
[1]
Sahab Uddin, M.; Ashraf, Md. Introductory chapter, G. Alzheimer’s disease—the most common cause of dementia. In: Advances in Dementia Research; IntechOpen: London, 2019.
[http://dx.doi.org/10.5772/intechopen.82196]
[2]
Ashraf, G. Md.; Alexiou, A. Biological, diagnostic and therapeutic advances in alzheimer’s disease; Springer: Singapore, 2019.
[3]
Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci., 2009, 11(2), 111-128.
[PMID: 19585947]
[4]
Uddin, M.S.; Kabir, M.T.; Al Mamun, A.; Abdel-Daim, M.M.; Barreto, G.E.; Ashraf, G.M. APOE and Alzheimer’s disease: evidence mounts that targeting apoe4 may combat alzheimer’s pathogenesis. Mol. Neurobiol., 2019, 56(4), 2450-2465.
[http://dx.doi.org/10.1007/s12035-018-1237-z] [PMID: 30032423]
[5]
Kumar, A.; Tsao, J.W. Alzheimer Disease; StatPearls Publishing, 2019.
[6]
Uddin, M.S.; Al Mamun, A.; Kabir, M.T.; Jakaria, M.; Mathew, B.; Barreto, G.E.; Ashraf, G.M. Nootropic and anti-alzheimer’s actions of medicinal plants: molecular insight into therapeutic potential to alleviate alzheimer’s neuropathology. Mol. Neurobiol., 2019, 56(7), 4925-4944.
[http://dx.doi.org/10.1007/s12035-018-1420-2] [PMID: 30414087]
[7]
McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s Disease. Neurology, 1984, 34(7), 939-944.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[8]
Evans, D.A.; Funkenstein, H.H.; Albert, M.S.; Scherr, P.A.; Cook, N.R.; Chown, M.J.; Hebert, L.E.; Hennekens, C.H.; Taylor, J.O. Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA, 1989, 262(18), 2551-2556.
[http://dx.doi.org/10.1001/jama.1989.03430180093036] [PMID: 2810583]
[9]
Uddin, M.S.; Al Mamun, A.; Asaduzzaman, M.; Hosn, F.; Abu Sufian, M.; Takeda, S.; Herrera-Calderon, O.; Abdel-Daim, M.M.; Uddin, G.M.S.; Noor, M.A.A.; Begum, M.M.; Kabir, M.T.; Zaman, S.; Sarwar, M.S.; Rahman, M.M.; Rafe, M.R.; Hossain, M.F.; Hossain, M.S.; Ashraful Iqbal, M.; Sujan, M.A.R. Spectrum of disease and prescription pattern for outpatients with neurological disorders: an empirical pilot study in Bangladesh. Ann. Neurosci., 2018, 25(1), 25-37.
[http://dx.doi.org/10.1159/000481812] [PMID: 29887680]
[10]
Davtyan, H.; Bacon, A.; Petrushina, I.; Zagorski, K.; Cribbs, D.H.; Ghochikyan, A.; Agadjanyan, M.G. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines. Hum. Vaccin. Immunother., 2014, 10(5), 1248-1255.
[http://dx.doi.org/10.4161/hv.27882] [PMID: 24525778]
[11]
Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging therapeutic potentials of dual-acting MAO and ACHe inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. (Weinheim), 2019.
[http://dx.doi.org/10.1002/ardp.201900177]
[12]
Barrera-Ocampo, A.; Lopera, F. Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb. Med., 2016, 47(4), 203-212.
[http://dx.doi.org/10.25100/cm.v47i4.2640] [PMID: 28293044]
[13]
Al Mamun, A.; Uddin, M.S.; Kabir, M.T.; Khanum, S.; Sarwar, M.S.; Mathew, B.; Rauf, A.; Ahmed, M.; Ashraf, G.M. Exploring the promise of targeting ubiquitin-proteasome system to combat Alzheimer’s disease. Neurotox. Res., 2020, 1-10.
[http://dx.doi.org/10.1007/s12640-020-00185-1] [PMID: 32157628]
[14]
Uddin, M.S.; Kabir, M.T.; Jeandet, P.; Mathew, B.; Ashraf, G.M.; Perveen, A.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Novel Anti-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid. Med. Cell. Longev., 2020, 2020, 7039138
[http://dx.doi.org/10.1155/2020/7039138]
[15]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[16]
Uddin, M.S.; Kabir, M.T.; Niaz, K.; Jeandet, P.; Clément, C.; Mathew, B.; Rauf, A.; Rengasamy, K.R.R.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Aleya, L. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s Disease. Mol, 2020, 25, 1267.
[17]
Uddin, M.S.; Kabir, M.T.; Rahman, M.M.; Mathew, B.; Shah, M.A.; Ashraf, G.M. TV 3326 for Alzheimer’s Dementia: A Novel Multimodal ChE and MAO Inhibitors to Mitigate Alzheimer’s‐like neuropathology. J. Pharm. Pharmacol., 2020. [ePub Ahead of Print]
[http://dx.doi.org/10.1111/jphp.13244]
[18]
Uddin, M.S.; Mamun, A.A.; Jakaria, M.; Thangapandiyan, S.; Ahmad, J.; Rahman, M.A.; Mathew, B.; Abdel-Daim, M.M.; Aleya, L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci. Total Environ., 2020, 707, 135624
[http://dx.doi.org/10.1016/j.scitotenv.2019.135624] [PMID: 31784171]
[19]
Hossain, M.F.; Uddin, M.S.; Uddin, G.M.S.; Sumsuzzman, D.M.; Islam, M.S.; Barreto, G.E.; Mathew, B.; Ashraf, G.M. Melatonin in Alzheimer’s Disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol., 2019, 56(12), 8255-8276.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[20]
Beyreuther, K.; Masters, C.L. Alzheimer’s disease. The ins and outs of amyloid-beta. Nature, 1997, 389(6652), 677-678.
[http://dx.doi.org/10.1038/39479] [PMID: 9338775]
[21]
Uddin, M.S.; Mamun, A.A.; Labu, Z.K.; Hidalgo-Lanussa, O.; Barreto, G.E.; Ashraf, G.M. Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J. Cell. Physiol., 2019, 234(6), 8094-8112.
[http://dx.doi.org/10.1002/jcp.27588] [PMID: 30362531]
[22]
Selkoe, D.J. Amyloid β-protein and the genetics of Alzheimer’s disease. J. Biol. Chem., 1996, 271(31), 18295-18298.
[http://dx.doi.org/10.1074/jbc.271.31.18295] [PMID: 8756120]
[23]
Bossy-Wetzel, E.; Schwarzenbacher, R.; Lipton, S.A. Molecular pathways to neurodegeneration. Nat. Med., 2004, 10(Suppl.), S2-S9.
[http://dx.doi.org/10.1038/nm1067] [PMID: 15272266]
[24]
Woodhouse, A.; Dickson, T.C.; Vickers, J.C. Vaccination strategies for Alzheimer’s disease: A new hope? Drugs Aging, 2007, 24(2), 107-119.
[http://dx.doi.org/10.2165/00002512-200724020-00003] [PMID: 17313199]
[25]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mathew, B.; Aleya, L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci. Total Environ., 2020, 700, 134836
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836] [PMID: 31704512]
[26]
Rahman, M.A.; Rahman, M.R.; Zaman, T.; Uddin, M.S.; Islam, R.; Abdel-Daim, M.M.; Rhim, H. Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr. Pharm. Des., 2020, 26(7), 772-779.
[http://dx.doi.org/10.2174/1381612826666200107142541] [PMID: 31914904]
[27]
Games, D.; Adams, D.; Alessandrini, R.; Barbour, R.; Berthelette, P.; Blackwell, C.; Carr, T.; Clemens, J.; Donaldson, T.; Gillespie, F.; Guido, T.; Hagopian, S.; Johnson-Wood, K.; Khan, K.; Lee, M.; Leibowitz, P.; Lieberburg, I.; Little, S.; Masliah, E.; McConlogue, L.; Montoya-Zavala, M.; Mucke, L.; Paganini, L.; Penniman, E.; Power, M.; Schenk, D.; Seubert, P.; Snyder, B.; Soriano, F.; Tan, H.; Vitale, J.; Wadsworth, S.; Wolozin, B.; Zhao, J. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature, 1995, 373(6514), 523-527.
[http://dx.doi.org/10.1038/373523a0] [PMID: 7845465]
[28]
Richards, J.G.; Higgins, G.A.; Ouagazzal, A-M.; Ozmen, L.; Kew, J.N.C.; Bohrmann, B.; Malherbe, P.; Brockhaus, M.; Loetscher, H.; Czech, C.; Huber, G.; Bluethmann, H.; Jacobsen, H.; Kemp, J.A. PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J. Neurosci., 2003, 23(26), 8989-9003.
[http://dx.doi.org/10.1523/JNEUROSCI.23-26-08989.2003] [PMID: 14523101]
[29]
Cheng, I.H.; Palop, J.J.; Esposito, L.A.; Bien-Ly, N.; Yan, F.; Mucke, L. Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat. Med., 2004, 10(11), 1190-1192.
[http://dx.doi.org/10.1038/nm1123] [PMID: 15502844]
[30]
Kawasumi, M.; Chiba, T.; Yamada, M.; Miyamae-Kaneko, M.; Matsuoka, M.; Nakahara, J.; Tomita, T.; Iwatsubo, T.; Kato, S.; Aiso, S.; Nishimoto, I.; Kouyama, K. Targeted introduction of V642I mutation in amyloid precursor protein gene causes functional abnormality resembling early stage of Alzheimer’s disease in aged mice. Eur. J. Neurosci., 2004, 19(10), 2826-2838.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03397.x] [PMID: 15147316]
[31]
Kitazawa, M.; Medeiros, R.; Laferla, F.M. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr. Pharm. Des., 2012, 18(8), 1131-1147.
[http://dx.doi.org/10.2174/138161212799315786] [PMID: 22288400]
[32]
Hsiao, K.; Chapman, P.; Nilsen, S.; Eckman, C.; Harigaya, Y.; Younkin, S.; Yang, F.; Cole, G. Correlative Memory Deficits, Abeta Elevation, and Amyloid Plaques in Transgenic Mice. Science (80-.), 1996, 274, 99-103.
[33]
Borchelt, D.R.; Ratovitski, T.; van Lare, J.; Lee, M.K.; Gonzales, V.; Jenkins, N.A.; Copeland, N.G.; Price, D.L.; Sisodia, S.S. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron, 1997, 19(4), 939-945.
[http://dx.doi.org/10.1016/S0896-6273(00)80974-5] [PMID: 9354339]
[34]
Sturchler-Pierrat, C.; Abramowski, D.; Duke, M.; Wiederhold, K-H.; Mistl, C.; Rothacher, S.; Ledermann, B.; Bürki, K.; Frey, P.; Paganetti, P.A.; Waridel, C.; Calhoun, M.E.; Jucker, M.; Probst, A.; Staufenbiel, M.; Sommer, B. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA, 1997, 94(24), 13287-13292.
[http://dx.doi.org/10.1073/pnas.94.24.13287] [PMID: 9371838]
[35]
Holcomb, L.; Gordon, M.N.; McGowan, E.; Yu, X.; Benkovic, S.; Jantzen, P.; Wright, K.; Saad, I.; Mueller, R.; Morgan, D.; Sanders, S.; Zehr, C.; O’Campo, K.; Hardy, J.; Prada, C.M.; Eckman, C.; Younkin, S.; Hsiao, K.; Duff, K. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med., 1998, 4(1), 97-100.
[http://dx.doi.org/10.1038/nm0198-097] [PMID: 9427614]
[36]
Janus, C.; Pearson, J.; McLaurin, J.; Mathews, P.M.; Jiang, Y.; Schmidt, S.D.; Chishti, M.A.; Horne, P.; Heslin, D.; French, J.; Mount, H.T.J.; Nixon, R.A.; Mercken, M.; Bergeron, C.; Fraser, P.E.; St George-Hyslop, P.; Westaway, D. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 2000, 408(6815), 979-982.
[http://dx.doi.org/10.1038/35050110] [PMID: 11140685]
[37]
Mucke, L.; Masliah, E.; Yu, G-Q.; Mallory, M.; Rockenstein, E.M.; Tatsuno, G.; Hu, K.; Kholodenko, D.; Johnson-Wood, K.; McConlogue, L. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci., 2000, 20(11), 4050-4058.
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-04050.2000] [PMID: 10818140]
[38]
Chishti, M.A.; Yang, D-S.; Janus, C.; Phinney, A.L.; Horne, P.; Pearson, J.; Strome, R.; Zuker, N.; Loukides, J.; French, J.; Turner, S.; Lozza, G.; Grilli, M.; Kunicki, S.; Morissette, C.; Paquette, J.; Gervais, F.; Bergeron, C.; Fraser, P.E.; Carlson, G.A.; George-Hyslop, P.S.; Westaway, D. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem., 2001, 276(24), 21562-21570.
[http://dx.doi.org/10.1074/jbc.M100710200] [PMID: 11279122]
[39]
Blanchard, V.; Moussaoui, S.; Czech, C.; Touchet, N.; Bonici, B.; Planche, M.; Canton, T.; Jedidi, I.; Gohin, M.; Wirths, O.; Bayer, T.A.; Langui, D.; Duyckaerts, C.; Tremp, G.; Pradier, L. Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp. Neurol., 2003, 184(1), 247-263.
[http://dx.doi.org/10.1016/S0014-4886(03)00252-8] [PMID: 14637096]
[40]
Gómez-Isla, T.; Hollister, R.; West, H.; Mui, S.; Growdon, J.H.; Petersen, R.C.; Parisi, J.E.; Hyman, B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol., 1997, 41(1), 17-24.
[http://dx.doi.org/10.1002/ana.410410106] [PMID: 9005861]
[41]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[42]
Wisniewski, K.E.; Wisniewski, H.M.; Wen, G.Y. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol., 1985, 17(3), 278-282.
[http://dx.doi.org/10.1002/ana.410170310] [PMID: 3158266]
[43]
Ribé, E.M.; Pérez, M.; Puig, B.; Gich, I.; Lim, F.; Cuadrado, M.; Sesma, T.; Catena, S.; Sánchez, B.; Nieto, M.; Gómez-Ramos, P.; Morán, M.A.; Cabodevilla, F.; Samaranch, L.; Ortiz, L.; Pérez, A.; Ferrer, I.; Avila, J.; Gómez-Isla, T. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol. Dis., 2005, 20(3), 814-822.
[http://dx.doi.org/10.1016/j.nbd.2005.05.027] [PMID: 16125396]
[44]
Tabira, T. Molecular Basis of Alzheimer’s Disease: From Amyloid Hypothesis to Treatment in the Foreseeable Future. Geriatr. Gerontol. Int., 2004, 4, S27-S31.
[http://dx.doi.org/10.1111/j.1447-0594.2004.00141.x]
[45]
Wilcock, D.M.; Gharkholonarehe, N.; Van Nostrand, W.E.; Davis, J.; Vitek, M.P.; Colton, C.A. Amyloid reduction by amyloid-beta vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J. Neurosci., 2009, 29(25), 7957-7965.
[http://dx.doi.org/10.1523/JNEUROSCI.1339-09.2009] [PMID: 19553436]
[46]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of alzheimer’s disease: progress and problems on the road to therapeutics. Science (80-.), 2002, 297, 353-356.
[47]
Weiner, H.L.; Frenkel, D. Immunology and immunotherapy of Alzheimer’s disease. Nat. Rev. Immunol., 2006, 6(5), 404-416.
[http://dx.doi.org/10.1038/nri1843] [PMID: 16639431]
[48]
Counts, S.E.; Lahiri, D.K. Overview of immunotherapy in Alzheimer’s disease (AD) and mechanisms of IVIG neuroprotection in preclinical models of AD. Curr. Alzheimer Res., 2014, 11(7), 623-625.
[http://dx.doi.org/10.2174/156720501107140815102453] [PMID: 25156573]
[49]
Uddin, M.S.; Mamun, A.A.; Takeda, S.; Sarwar, M.S.; Begum, M.M. Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics, 2019, 19(2), 87-94.
[http://dx.doi.org/10.1111/psyg.12368] [PMID: 30221441]
[50]
Al Mamun, A.; Uddin, M.S. KDS2010: A potent highly selective and reversible MAO-B inhibitor to abate Alzheimer’s Disease. Comb. Chem. High Throughput Screen, 2020. 23. [ePub ahead of Print]
[http://dx.doi.org/10.2174/1386207323666200117103144] [PMID: 31957612]
[51]
Rafii, M.S.; Aisen, P.S. Recent developments in Alzheimer’s disease therapeutics. BMC Med., 2009, 7, 7.
[http://dx.doi.org/10.1186/1741-7015-7-7] [PMID: 19228370]
[52]
Alexiou, A.; Nizami, B.; Khan, F.I.; Soursou, G.; Vairaktarakis, C.; Chatzichronis, S.; Tsiamis, V.; Manztavinos, V.; Yarla, N.S.; Md Ashraf, G. Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr. Protein Pept. Sci., 2018, 19(9), 850-857.
[http://dx.doi.org/10.2174/1389203718666170810150151] [PMID: 28799502]
[53]
Alexiou, A.; Soursou, G.; Chatzichronis, S.; Gasparatos, E.; Kamal, M.A.; Yarla, N.S.; Perveen, A.; Barreto, G.E.; Ashraf, G.M. Role of GTPases in the regulation of mitochondrial dynamics in alzheimer’s disease and cns-related disorders. Mol. Neurobiol., 2019, 56(6), 4530-4538.
[http://dx.doi.org/10.1007/s12035-018-1397-x] [PMID: 30338485]
[54]
Brody, D.L.; Holtzman, D.M. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci., 2008, 31, 175-193.
[http://dx.doi.org/10.1146/annurev.neuro.31.060407.125529] [PMID: 18352830]
[55]
Wisniewski, T.; Konietzko, U. Amyloid-β immunisation for Alzheimer’s disease. Lancet Neurol., 2008, 7(9), 805-811.
[http://dx.doi.org/10.1016/S1474-4422(08)70170-4] [PMID: 18667360]
[56]
Vickers, J.C.; Dickson, T.C.; Adlard, P.A.; Saunders, H.L.; King, C.E.; McCormack, G. The cause of neuronal degeneration in Alzheimer’s disease. Prog. Neurobiol., 2000, 60(2), 139-165.
[http://dx.doi.org/10.1016/S0301-0082(99)00023-4] [PMID: 10639052]
[57]
Uddin, M.S.; Kabir, M.T. Oxidative stress in Alzheimer’s disease: molecular hallmarks of underlying vulnerability. In: Biological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease; Springer Singapore: Singapore, 2019; p. 91-115.
[58]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[59]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[60]
Uddin, M.S.; Tewari, D.; Mamun, A.A.; Kabir, M.T.; Niaz, K.; Wahed, M.I.I.; Barreto, G.E.; Ashraf, G.M. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res. Rev., 2020, 60, 101046
[PMID: 32171783]
[61]
Uddin, M.S.; Kabir, M.T. Emerging signal regulating potential of genistein against alzheimer’s disease: a promising molecule of interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[62]
Benzing, W.C.; Ikonomovic, M.D.; Brady, D.R.; Mufson, E.J.; Armstrong, D.M. Evidence that transmitter-containing dystrophic neurites precede paired helical filament and Alz-50 formation within senile plaques in the amygdala of nondemented elderly and patients with Alzheimer’s disease. J. Comp. Neurol., 1993, 334(2), 176-191.
[http://dx.doi.org/10.1002/cne.903340203] [PMID: 7690048]
[63]
Masliah, E.; Mallory, M.; Hansen, L.; Alford, M.; DeTeresa, R.; Terry, R. An antibody against phosphorylated neurofilaments identifies a subset of damaged association axons in Alzheimer’s disease. Am. J. Pathol., 1993, 142(3), 871-882.
[PMID: 8456946]
[64]
Su, J.H.; Cummings, B.J.; Cotman, C.W. Plaque biogenesis in brain aging and Alzheimer’s disease. I. Progressive changes in phosphorylation states of paired helical filaments and neurofilaments. Brain Res., 1996, 739(1-2), 79-87.
[http://dx.doi.org/10.1016/S0006-8993(96)00811-6] [PMID: 8955927]
[65]
Dickson, T.C.; King, C.E.; McCormack, G.H.; Vickers, J.C. Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer’s disease. Exp. Neurol., 1999, 156(1), 100-110.
[http://dx.doi.org/10.1006/exnr.1998.7010] [PMID: 10192781]
[66]
Dickson, T.C.; Chuckowree, J.A.; Chuah, M.I.; West, A.K.; Vickers, J.C. α-Internexin immunoreactivity reflects variable neuronal vulnerability in Alzheimer’s disease and supports the role of the β-amyloid plaques in inducing neuronal injury. Neurobiol. Dis., 2005, 18(2), 286-295.
[http://dx.doi.org/10.1016/j.nbd.2004.10.001] [PMID: 15686957]
[67]
Braak, H.; Braak, E. Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol. Appl. Neurobiol., 1988, 14(1), 39-44.
[http://dx.doi.org/10.1111/j.1365-2990.1988.tb00864.x] [PMID: 2453810]
[68]
Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992, 42(3 Pt 1), 631-639.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[69]
Lue, L.F.; Brachova, L.; Civin, W.H.; Rogers, J. Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol., 1996, 55(10), 1083-1088.
[http://dx.doi.org/10.1097/00005072-199655100-00008] [PMID: 8858005]
[70]
Knowles, R.B.; Gomez-Isla, T.; Hyman, B.T. Abeta associated neuropil changes: correlation with neuronal loss and dementia. J. Neuropathol. Exp. Neurol., 1998, 57(12), 1122-1130.
[http://dx.doi.org/10.1097/00005072-199812000-00003] [PMID: 9862634]
[71]
Price, J.L.; Morris, J.C. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol., 1999, 45(3), 358-368.
[http://dx.doi.org/10.1002/1531-8249(199903)45:3<358:AID-ANA12>3.0.CO;2-X] [PMID: 10072051]
[72]
Giacobini, E. Modulation of brain acetylcholine levels with cholinesterase inhibitors as a treatment of Alzheimer disease. Keio J. Med., 1987, 36(4), 381-391.
[http://dx.doi.org/10.2302/kjm.36.381] [PMID: 3325681]
[73]
Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase inhibitors for Alzheimer’s Disease: Multitargeting strategy based on anti-alzheimer’s drugs repositioning. Curr. Pharm. Des., 2019, 25(33), 3519-3535.
[http://dx.doi.org/10.2174/1381612825666191008103141] [PMID: 31593530]
[74]
Advokat, C.; Pellegrin, A.I. Excitatory amino acids and memory: evidence from research on Alzheimer’s disease and behavioral pharmacology. Neurosci. Biobehav. Rev., 1992, 16(1), 13-24.
[http://dx.doi.org/10.1016/S0149-7634(05)80046-6] [PMID: 1553102]
[75]
Kabir, M.T.; Sufian, M.A.; Uddin, M.S.; Begum, M.M.; Akhter, S.; Islam, A.; Mathew, B.; Islam, M.S.; Amran, M.S.; Md Ashraf, G. NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr. Pharm. Des., 2019, 25(33), 3506-3518.
[http://dx.doi.org/10.2174/1381612825666191011102444] [PMID: 31604413]
[76]
Alves, R.P.S.; Yang, M.J.; Batista, M.T.; Ferreira, L.C.S. Alzheimer’s disease: is a vaccine possible? Braz. J. Med. Biol. Res., 2014, 47(6), 438-444.
[77]
Moreth, J.; Mavoungou, C.; Schindowski, K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets? Immun. Ageing, 2013, 10(1), 18.
[http://dx.doi.org/10.1186/1742-4933-10-18] [PMID: 23663286]
[78]
Uddin, M.S.; Rashid, M. Advances in Neuropharmacology : Drugs and Therapeutics; Apple Academic Press: Canada, 2020.
[http://dx.doi.org/10.1201/9780429242717]
[79]
Khorassani, F.; Hilas, O. Bapineuzumab, an investigational agent for Alzheimer’s disease. P&T, 2013, 38(2), 89-91.
[PMID: 23599675]
[80]
Treusch, S.; Cyr, D.M.; Lindquist, S. Amyloid deposits: protection against toxic protein species? Cell Cycle, 2009, 8(11), 1668-1674.
[http://dx.doi.org/10.4161/cc.8.11.8503] [PMID: 19411847]
[81]
Uddin, M.S.; Mamun, A.A.; Hossain, M.S.; Akter, F.; Iqbal, M.A.; Asaduzzaman, M. Exploring the effect of phyllanthus emblica L. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: promising natural gift for the mitigation of Alzheimer’s Disease. Ann. Neurosci., 2016, 23(4), 218-229.
[http://dx.doi.org/10.1159/000449482] [PMID: 27780989]
[82]
Mantzavinos, V.; Alexiou, A. Biomarkers for Alzheimer’s disease diagnosis. Curr. Alzheimer Res., 2017, 14(11), 1149-1154.
[http://dx.doi.org/10.2174/1567205014666170203125942] [PMID: 28164766]
[83]
Lee, H.G.; Casadesus, G.; Zhu, X.; Takeda, A.; Perry, G.; Smith, M.A. Challenging the amyloid cascade hypothesis: senile plaques and amyloid-β as protective adaptations to Alzheimer disease. Ann. N. Y. Acad. Sci., 2004, 1019, 1-4.
[http://dx.doi.org/10.1196/annals.1297.001] [PMID: 15246983]
[84]
Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R.; Bi, W.; Cohen, A.D.; Lopresti, B.J.; DeKosky, S.T.; Halligan, E.M.; Klunk, W.E. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol., 2008, 65(11), 1509-1517.
[http://dx.doi.org/10.1001/archneur.65.11.1509] [PMID: 19001171]
[85]
Busche, M.A.; Konnerth, A. Impairments of neural circuit function in Alzheimer’s disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1700), 20150429
[http://dx.doi.org/10.1098/rstb.2015.0429] [PMID: 27377723]
[86]
Busche, M.A.; Grienberger, C.; Keskin, A.D.; Song, B.; Neumann, U.; Staufenbiel, M.; Förstl, H.; Konnerth, A. Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat. Neurosci., 2015, 18(12), 1725-1727.
[http://dx.doi.org/10.1038/nn.4163] [PMID: 26551546]
[87]
Liu, Y-H.; Bu, X-L.; Liang, C-R.; Wang, Y-R.; Zhang, T.; Jiao, S-S.; Zeng, F.; Yao, X-Q.; Zhou, H-D.; Deng, J.; Wang, Y-J. An N-terminal antibody promotes the transformation of amyloid fibrils into oligomers and enhances the neurotoxicity of amyloid-beta: the dust-raising effect. J. Neuroinflammation, 2015, 12, 153.
[http://dx.doi.org/10.1186/s12974-015-0379-4] [PMID: 26311039]
[88]
Bai, Y.; Li, M.; Zhou, Y.; Ma, L.; Qiao, Q.; Hu, W.; Li, W.; Wills, Z.P.; Gan, W-B. Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer’s disease. Mol. Neurodegener., 2017, 12(1), 86.
[http://dx.doi.org/10.1186/s13024-017-0228-2] [PMID: 29137651]
[89]
Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; Regan, C.M.; Walsh, D.M.; Sabatini, B.L.; Selkoe, D.J. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med., 2008, 14(8), 837-842.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[90]
Selkoe, D.J. Light at the end of the amyloid Tunnel. Biochemistry, 2018, 57(41), 5921-5922.
[http://dx.doi.org/10.1021/acs.biochem.8b00985] [PMID: 30272957]
[91]
Panza, F.; Lozupone, M.; Dibello, V.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Imbimbo, B.P. Are antibodies directed against amyloid-β (Aβ) oligomers the last call for the Aβ hypothesis of Alzheimer’s disease? Immunotherapy, 2019, 11(1), 3-6.
[http://dx.doi.org/10.2217/imt-2018-0119] [PMID: 30702009]
[92]
Budd Haeberlein, S.; O’Gorman, J.; Chiao, P.; Bussière, T.; von Rosenstiel, P.; Tian, Y.; Zhu, Y.; von Hehn, C.; Gheuens, S.; Skordos, L.; Chen, T.; Sandrock, A. Clinical development of aducanumab, an Anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s Disease. J. Prev. Alzheimers Dis., 2017, 4(4), 255-263.
[PMID: 29181491]
[93]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[94]
Lambert, M.P.; Barlow, A.K.; Chromy, B.A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T.E.; Rozovsky, I.; Trommer, B.; Viola, K.L.; Wals, P.; Zhang, C.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6448-6453.
[http://dx.doi.org/10.1073/pnas.95.11.6448] [PMID: 9600986]
[95]
Cline, E.N.; Bicca, M.A.; Viola, K.L.; Klein, W.L. The amyloid-β oligomer hypothesis: beginning of the third decade. J. Alzheimers Dis., 2018, 64(s1), S567-S610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[96]
Dodel, R.; Balakrishnan, K.; Keyvani, K.; Deuster, O.; Neff, F.; Andrei-Selmer, L-C.; Röskam, S.; Stüer, C.; Al-Abed, Y.; Noelker, C.; Balzer-Geldsetzer, M.; Oertel, W.; Du, Y.; Bacher, M. Naturally occurring autoantibodies against β-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J. Neurosci., 2011, 31(15), 5847-5854.
[http://dx.doi.org/10.1523/JNEUROSCI.4401-10.2011] [PMID: 21490226]
[97]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[98]
Marciani, D.J. Promising results from alzheimer’s disease passive immunotherapy support the development of a preventive vaccine. Research (Wash D C), 2019, 2019, 5341375
[http://dx.doi.org/10.34133/2019/5341375] [PMID: 31549066]
[99]
Sehlin, D.; Englund, H.; Simu, B.; Karlsson, M.; Ingelsson, M.; Nikolajeff, F.; Lannfelt, L.; Pettersson, F.E. Large aggregates are the major soluble Aβ species in AD brain fractionated with density gradient ultracentrifugation. PLoS One, 2012, 7(2), e32014
[http://dx.doi.org/10.1371/journal.pone.0032014] [PMID: 22355408]
[100]
Lee, M.; Bard, F.; Johnson-Wood, K.; Lee, C.; Hu, K.; Griffith, S.G.; Black, R.S.; Schenk, D.; Seubert, P. Abeta42 immunization in Alzheimer’s disease generates Abeta N-terminal antibodies. Ann. Neurol., 2005, 58(3), 430-435.
[http://dx.doi.org/10.1002/ana.20592] [PMID: 16130106]
[101]
Barghorn, S.; Nimmrich, V.; Striebinger, A.; Krantz, C.; Keller, P.; Janson, B.; Bahr, M.; Schmidt, M.; Bitner, R.S.; Harlan, J.; Barlow, E.; Ebert, U.; Hillen, H. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J. Neurochem., 2005, 95(3), 834-847.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03407.x] [PMID: 16135089]
[102]
Briney, B.; Sok, D.; Jardine, J.G.; Kulp, D.W.; Skog, P.; Menis, S.; Jacak, R.; Kalyuzhniy, O.; de Val, N.; Sesterhenn, F.; Le, K.M.; Ramos, A.; Jones, M.; Saye-Francisco, K.L.; Blane, T.R.; Spencer, S.; Georgeson, E.; Hu, X.; Ozorowski, G.; Adachi, Y.; Kubitz, M.; Sarkar, A.; Wilson, I.A.; Ward, A.B.; Nemazee, D.; Burton, D.R.; Schief, W.R. Tailored immunogens direct affinity maturation toward hiv neutralizing antibodies. Cell, 2016, 166(6), 1459-1470.e11.
[http://dx.doi.org/10.1016/j.cell.2016.08.005] [PMID: 27610570]
[103]
Zolla-Pazner, S.; deCamp, A.; Gilbert, P.B.; Williams, C.; Yates, N.L.; Williams, W.T.; Howington, R.; Fong, Y.; Morris, D.E.; Soderberg, K.A.; Irene, C.; Reichman, C.; Pinter, A.; Parks, R.; Pitisuttithum, P.; Kaewkungwal, J.; Rerks-Ngarm, S.; Nitayaphan, S.; Andrews, C.; O’Connell, R.J.; Yang, Z.Y.; Nabel, G.J.; Kim, J.H.; Michael, N.L.; Montefiori, D.C.; Liao, H-X.; Haynes, B.F.; Tomaras, G.D. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One, 2014, 9(2), e87572
[http://dx.doi.org/10.1371/journal.pone.0087572] [PMID: 24504509]
[104]
Wisniewski, T.; Drummond, E. Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev. Vaccines, 2016, 15(3), 401-415.
[http://dx.doi.org/10.1586/14760584.2016.1121815] [PMID: 26577574]
[105]
Marciani, D.J. Alzheimer’s disease: toward the rational design of an effective vaccine. Rev. Neuropsiquiatr., 2015, 78, 140.
[http://dx.doi.org/10.20453/rnp.v78i3.2572]
[106]
Yu, Y-Z.; Xu, Q. Prophylactic immunotherapy of Alzheimer’s disease using recombinant amyloid-β B-cell epitope chimeric protein as subunit vaccine. Hum. Vaccin. Immunother., 2016, 12(11), 2801-2804.
[http://dx.doi.org/10.1080/21645515.2016.1197456] [PMID: 27379885]
[107]
Wang, C.Y.; Wang, P-N.; Chiu, M-J.; Finstad, C.L.; Lin, F.; Lynn, S.; Tai, Y-H.; De Fang, X.; Zhao, K.; Hung, C-H.; Tseng, Y.; Peng, W-J.; Wang, J.; Yu, C-C.; Kuo, B-S.; Frohna, P.A. UB-311, a novel UBITh® amyloid β peptide vaccine for mild Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2017, 3(2), 262-272.
[http://dx.doi.org/10.1016/j.trci.2017.03.005] [PMID: 29067332]
[108]
Marciani, D.J. Alzheimer’s disease vaccine development: A new strategy focusing on immune modulation. J. Neuroimmunol., 2015, 287, 54-63.
[http://dx.doi.org/10.1016/j.jneuroim.2015.08.008] [PMID: 26439962]
[109]
Wang, S.W.; Liu, D.Q.; Zhang, L.X.; Ji, M.; Zhang, Y.X.; Dong, Q.X.; Liu, S.Y.; Xie, X.X.; Liu, R.T. A vaccine with Aβ oligomer-specific mimotope attenuates cognitive deficits and brain pathologies in transgenic mice with Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 41.
[http://dx.doi.org/10.1186/s13195-017-0267-5] [PMID: 28592267]
[110]
Zhang, Y.X.; Wang, S.W.; Lu, S.; Zhang, L.X.; Liu, D.Q.; Ji, M.; Wang, W.Y.; Liu, R.T. A mimotope of Aβ oligomers may also behave as a β-sheet inhibitor. FEBS Lett., 2017, 591(21), 3615-3624.
[http://dx.doi.org/10.1002/1873-3468.12871] [PMID: 28976547]
[111]
Deshpande, A.; Mina, E.; Glabe, C.; Busciglio, J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J. Neurosci., 2006, 26(22), 6011-6018.
[http://dx.doi.org/10.1523/JNEUROSCI.1189-06.2006] [PMID: 16738244]
[112]
Di Fede, G.; Catania, M.; Maderna, E.; Ghidoni, R.; Benussi, L.; Tonoli, E.; Giaccone, G.; Moda, F.; Paterlini, A.; Campagnani, I.; Sorrentino, S.; Colombo, L.; Kubis, A.; Bistaffa, E.; Ghetti, B.; Tagliavini, F. Molecular subtypes of Alzheimer’s disease. Sci. Rep., 2018, 8(1), 3269.
[http://dx.doi.org/10.1038/s41598-018-21641-1] [PMID: 29459625]
[113]
Sengupta, U.; Nilson, A.N.; Kayed, R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine, 2016, 6, 42-49.
[http://dx.doi.org/10.1016/j.ebiom.2016.03.035] [PMID: 27211547]
[114]
Burki, T. Alzheimer’s disease research: the future of BACE inhibitors. Lancet, 2018, 391(10139), 2486.
[http://dx.doi.org/10.1016/S0140-6736(18)31425-9] [PMID: 29976459]
[115]
Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front Chem., 2018, 6, 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[116]
Lambert, M.P.; Viola, K.L.; Chromy, B.A.; Chang, L.; Morgan, T.E.; Yu, J.; Venton, D.L.; Krafft, G.A.; Finch, C.E.; Klein, W.L. Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem., 2001, 79(3), 595-605.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00592.x] [PMID: 11701763]
[117]
Bard, F.; Cannon, C.; Barbour, R.; Burke, R-L.; Games, D.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson-Wood, K.; Khan, K.; Kholodenko, D.; Lee, M.; Lieberburg, I.; Motter, R.; Nguyen, M.; Soriano, F.; Vasquez, N.; Weiss, K.; Welch, B.; Seubert, P.; Schenk, D.; Yednock, T. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med., 2000, 6(8), 916-919.
[http://dx.doi.org/10.1038/78682] [PMID: 10932230]
[118]
Morgan, D. Immunotherapy for Alzheimer’s disease. J. Intern. Med., 2011, 269(1), 54-63.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02315.x] [PMID: 21158978]
[119]
Wilcock, D.M.; Rojiani, A.; Rosenthal, A.; Levkowitz, G.; Subbarao, S.; Alamed, J.; Wilson, D.; Wilson, N.; Freeman, M.J.; Gordon, M.N.; Morgan, D. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J. Neurosci., 2004, 24(27), 6144-6151.
[http://dx.doi.org/10.1523/JNEUROSCI.1090-04.2004] [PMID: 15240806]
[120]
Levites, Y.; Smithson, L.A.; Price, R.W.; Dakin, R.S.; Yuan, B.; Sierks, M.R.; Kim, J.; McGowan, E.; Reed, D.K.; Rosenberry, T.L.; Das, P.; Golde, T.E. Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer’s disease mouse models. FASEB J., 2006, 20(14), 2576-2578.
[http://dx.doi.org/10.1096/fj.06-6463fje] [PMID: 17068112]
[121]
Karlnoski, R.A.; Rosenthal, A.; Kobayashi, D.; Pons, J.; Alamed, J.; Mercer, M.; Li, Q.; Gordon, M.N.; Gottschall, P.E.; Morgan, D. Suppression of amyloid deposition leads to long-term reductions in Alzheimer’s pathologies in Tg2576 mice. J. Neurosci., 2009, 29(15), 4964-4971.
[http://dx.doi.org/10.1523/JNEUROSCI.4560-08.2009] [PMID: 19369565]
[122]
DeMattos, R.B.; Bales, K.R.; Cummins, D.J.; Dodart, J-C.; Paul, S.M.; Holtzman, D.M. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8850-8855.
[http://dx.doi.org/10.1073/pnas.151261398] [PMID: 11438712]
[123]
Deane, R.; Du Yan, S.; Submamaryan, R.K.; LaRue, B.; Jovanovic, S.; Hogg, E.; Welch, D.; Manness, L.; Lin, C.; Yu, J.; Zhu, H.; Ghiso, J.; Frangione, B.; Stern, A.; Schmidt, A.M.; Armstrong, D.L.; Arnold, B.; Liliensiek, B.; Nawroth, P.; Hofman, F.; Kindy, M.; Stern, D.; Zlokovic, B. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med., 2003, 9(7), 907-913.
[http://dx.doi.org/10.1038/nm890] [PMID: 12808450]
[124]
Solomon, B.; Koppel, R.; Frankel, D.; Hanan-Aharon, E. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA, 1997, 94(8), 4109-4112.
[http://dx.doi.org/10.1073/pnas.94.8.4109] [PMID: 9108113]
[125]
Solomon, B.; Koppel, R.; Hanan, E.; Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 452-455.
[http://dx.doi.org/10.1073/pnas.93.1.452] [PMID: 8552659]
[126]
Alcantar, N.A.; Jimenez, J.; Morgan, D. Direct observation of the kinetic mechanisms for Aß peptide aggregation: towards elucidating alzheimer plaque dissolution. Alzheimer’s Dement. J. Alzheimer’s Assoc., 2010, 6, S247.
[http://dx.doi.org/10.1016/j.jalz.2010.05.807]
[127]
Deane, R.; Sagare, A.; Hamm, K.; Parisi, M.; LaRue, B.; Guo, H.; Wu, Z.; Holtzman, D.M.; Zlokovic, B.V. IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J. Neurosci., 2005, 25(50), 11495-11503.
[http://dx.doi.org/10.1523/JNEUROSCI.3697-05.2005] [PMID: 16354907]
[128]
Karlnoski, R.A.; Rosenthal, A.; Alamed, J.; Ronan, V.; Gordon, M.N.; Gottschall, P.E.; Grimm, J.; Pons, J.; Morgan, D. Deglycosylated anti-Abeta antibody dose-response effects on pathology and memory in APP transgenic mice. J. Neuroimmune Pharmacol., 2008, 3(3), 187-197.
[http://dx.doi.org/10.1007/s11481-008-9114-6] [PMID: 18607758]
[129]
Asuni, A.A.; Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci., 2007, 27(34), 9115-9129.
[http://dx.doi.org/10.1523/JNEUROSCI.2361-07.2007] [PMID: 17715348]
[130]
Boimel, M.; Grigoriadis, N.; Lourbopoulos, A.; Haber, E.; Abramsky, O.; Rosenmann, H. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp. Neurol., 2010, 224(2), 472-485.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.010] [PMID: 20546729]
[131]
Kontsekova, E.; Zilka, N.; Kovacech, B.; Novak, P.; Novak, M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res. Ther., 2014, 6(4), 44.
[http://dx.doi.org/10.1186/alzrt278] [PMID: 25478017]
[132]
Rajamohamedsait, H.; Rasool, S.; Rajamohamedsait, W.; Lin, Y.; Sigurdsson, E.M. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci. Rep., 2017, 7(1), 17034.
[http://dx.doi.org/10.1038/s41598-017-17313-1] [PMID: 29213096]
[133]
Richter, M.; Mewes, A.; Fritsch, M.; Krügel, U.; Hoffmann, R.; Singer, D. Doubly phosphorylated peptide vaccines to protect transgenic p301s mice against alzheimer’s disease like tau aggregation. Vaccines (Basel), 2014, 2(3), 601-623.
[http://dx.doi.org/10.3390/vaccines2030601] [PMID: 26344748]
[134]
Theunis, C.; Crespo-Biel, N.; Gafner, V.; Pihlgren, M.; López-Deber, M.P.; Reis, P.; Hickman, D.T.; Adolfsson, O.; Chuard, N.; Ndao, D.M.; Borghgraef, P.; Devijver, H.; Van Leuven, F.; Pfeifer, A.; Muhs, A. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One, 2013, 8(8), e72301
[http://dx.doi.org/10.1371/journal.pone.0072301] [PMID: 23977276]
[135]
Cooper, H.M.; Paterson, Y. Determination of the Specific Antibody Titer.Current Protocols in Molecular Biology; John Wiley & Sons, Inc., 2001.
[136]
Yagi, M.; Palacpac, N.M.Q.; Ito, K.; Oishi, Y.; Itagaki, S.; Balikagala, B.; Ntege, E.H.; Yeka, A.; Kanoi, B.N.; Katuro, O.; Shirai, H.; Fukushima, W.; Hirota, Y.; Egwang, T.G.; Horii, T. Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine responders during a follow-up study in Uganda. Sci. Rep., 2016, 6, 34363.
[http://dx.doi.org/10.1038/srep34363] [PMID: 27703240]
[137]
Agadjanyan, M.G.; Petrovsky, N.; Ghochikyan, A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer’s disease. Alzheimers Dement., 2015, 11(10), 1246-1259.
[http://dx.doi.org/10.1016/j.jalz.2015.06.1884] [PMID: 26192465]
[138]
Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; Buee, L.; Zilka, N. A walk through tau therapeutic strategies. Acta Neuropathol. Commun., 2019, 7(1), 22.
[http://dx.doi.org/10.1186/s40478-019-0664-z] [PMID: 30767766]
[139]
Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem., 2011, 118(4), 658-667.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07337.x] [PMID: 21644996]
[140]
Troquier, L.; Caillierez, R.; Burnouf, S.; Fernandez-Gomez, F.J.; Grosjean, M.E.; Zommer, N.; Sergeant, N.; Schraen-Maschke, S.; Blum, D.; Buee, L. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr. Alzheimer Res., 2012, 9(4), 397-405.
[http://dx.doi.org/10.2174/156720512800492503] [PMID: 22272619]
[141]
Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci., 2010, 30(49), 16559-16566.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-10.2010] [PMID: 21147995]
[142]
Bi, M.; Ittner, A.; Ke, Y.D.; Götz, J.; Ittner, L.M. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One, 2011, 6(12), e26860
[http://dx.doi.org/10.1371/journal.pone.0026860] [PMID: 22174735]
[143]
Ando, K.; Kabova, A.; Stygelbout, V.; Leroy, K.; Heraud, C.; Frédérick, C.; Suain, V.; Yilmaz, Z.; Authelet, M.; Dedecker, R.; Potier, M.C.; Duyckaerts, C.; Brion, J.P. Vaccination with Sarkosyl insoluble PHF-tau decrease neurofibrillary tangles formation in aged tau transgenic mouse model: a pilot study. J. Alzheimers Dis., 2014, 40(Suppl. 1), S135-S145.
[http://dx.doi.org/10.3233/JAD-132237] [PMID: 24614899]
[144]
Richter, M.; Hoffmann, R.; Singer, D. T-cell epitope-dependent immune response in inbred (C57BL/6J, SJL/J, and C3H/HeN) and transgenic P301S and Tg2576 mice. J. Pept. Sci., 2013, 19(7), 441-451.
[http://dx.doi.org/10.1002/psc.2518] [PMID: 23728915]
[145]
Ji, M.; Xie, X.X.; Liu, D.Q.; Yu, X.L.; Zhang, Y.; Zhang, L.X.; Wang, S.W.; Huang, Y.R.; Liu, R.T. Hepatitis B core VLP-based mis-disordered tau vaccine elicits strong immune response and alleviates cognitive deficits and neuropathology progression in Tau.P301S mouse model of Alzheimer’s disease and frontotemporal dementia. Alzheimers Res. Ther., 2018, 10(1), 55.
[http://dx.doi.org/10.1186/s13195-018-0378-7] [PMID: 29914543]
[146]
Zilka, N.; Filipcik, P.; Koson, P.; Fialova, L.; Skrabana, R.; Zilkova, M.; Rolkova, G.; Kontsekova, E.; Novak, M. Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett., 2006, 580(15), 3582-3588.
[http://dx.doi.org/10.1016/j.febslet.2006.05.029] [PMID: 16753151]
[147]
Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; Brunner, M.; Staffen, W.; Rainer, M.; Ondrus, M.; Ropele, S.; Smisek, M.; Sivak, R.; Winblad, B.; Novak, M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol., 2017, 16(2), 123-134.
[http://dx.doi.org/10.1016/S1474-4422(16)30331-3] [PMID: 27955995]
[148]
Brezovakova, V.; Valachova, B.; Hanes, J.; Novak, M.; Jadhav, S. Dendritic Cells as an Alternate Approach for Treatment of Neurodegenerative Disorders. Cell. Mol. Neurobiol., 2018, 38(6), 1207-1214.
[http://dx.doi.org/10.1007/s10571-018-0598-1] [PMID: 29948552]
[149]
Winblad, B.; Graf, A.; Riviere, M.E.; Andreasen, N.; Ryan, J.M. Active immunotherapy options for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(1), 7.
[http://dx.doi.org/10.1186/alzrt237] [PMID: 24476230]
[150]
Du, Y.; Gu, H.; Dodel, R.; Farlow, M. Advances in the development of antibody-based immunotherapy against prion disease. Antib. Technol. J., 2014, 4, 45.
[151]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[152]
Goate, A.; Chartier-Harlin, M-C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; Mant, R.; Newton, P.; Rooke, K.; Roques, P.; Talbot, C.; Pericak-Vance, M.; Roses, A.; Williamson, R.; Rossor, M.; Owen, M.; Hardy, J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 1991, 349(6311), 704-706.
[http://dx.doi.org/10.1038/349704a0] [PMID: 1671712]
[153]
Greenberg, B.D.; Savage, M.J.; Howland, D.S.; Ali, S.M.; Siedlak, S.L.; Perry, G.; Siman, R.; Scott, R.W. APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol. Aging, 1996, 17(2), 153-171.
[http://dx.doi.org/10.1016/0197-4580(96)00001-2] [PMID: 8744397]
[154]
Gordon, M.N.; Holcomb, L.A.; Jantzen, P.T.; DiCarlo, G.; Wilcock, D.; Boyett, K.W.; Connor, K.; Melachrino, J.; O’Callaghan, J.P.; Morgan, D. Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp. Neurol., 2002, 173(2), 183-195.
[http://dx.doi.org/10.1006/exnr.2001.7754] [PMID: 11822882]
[155]
Morgan, D.; Diamond, D.M.; Gottschall, P.E.; Ugen, K.E.; Dickey, C.; Hardy, J.; Duff, K.; Jantzen, P.; DiCarlo, G.; Wilcock, D.; Connor, K.; Hatcher, J.; Hope, C.; Gordon, M.; Arendash, G.W. A β peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature, 2000, 408(6815), 982-985.
[http://dx.doi.org/10.1038/35050116] [PMID: 11140686]
[156]
Kotilinek, L.A.; Bacskai, B.; Westerman, M.; Kawarabayashi, T.; Younkin, L.; Hyman, B.T.; Younkin, S.; Ashe, K.H. Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J. Neurosci., 2002, 22(15), 6331-6335.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06331.2002] [PMID: 12151510]
[157]
Dodart, J-C.; Bales, K.R.; Gannon, K.S.; Greene, S.J.; DeMattos, R.B.; Mathis, C.; DeLong, C.A.; Wu, S.; Wu, X.; Holtzman, D.M.; Paul, S.M. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat. Neurosci., 2002, 5(5), 452-457.
[http://dx.doi.org/10.1038/nn842] [PMID: 11941374]
[158]
Lemere, C.A.; Oh, J.; Stanish, H.A.; Peng, Y.; Pepivani, I.; Fagan, A.M.; Yamaguchi, H.; Westmoreland, S.V.; Mansfield, K.G. Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer’s disease? Rejuvenation Res., 2008, 11(2), 321-332.
[http://dx.doi.org/10.1089/rej.2008.0677] [PMID: 18341428]
[159]
Lemere, C.A.; Beierschmitt, A.; Iglesias, M.; Spooner, E.T.; Bloom, J.K.; Leverone, J.F.; Zheng, J.B.; Seabrook, T.J.; Louard, D.; Li, D.; Selkoe, D.J.; Palmour, R.M.; Ervin, F.R. Alzheimer’s disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. Am. J. Pathol., 2004, 165(1), 283-297.
[http://dx.doi.org/10.1016/S0002-9440(10)63296-8] [PMID: 15215183]
[160]
Head, E.; Pop, V.; Vasilevko, V.; Hill, M.; Saing, T.; Sarsoza, F.; Nistor, M.; Christie, L-A.; Milton, S.; Glabe, C.; Barrett, E.; Cribbs, D. A two-year study with fibrillar beta-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J. Neurosci., 2008, 28(14), 3555-3566.
[http://dx.doi.org/10.1523/JNEUROSCI.0208-08.2008] [PMID: 18385314]
[161]
Black, R.S.; Sperling, R.A.; Safirstein, B.; Motter, R.N.; Pallay, A.; Nichols, A.; Grundman, M. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2010, 24(2), 198-203.
[http://dx.doi.org/10.1097/WAD.0b013e3181c53b00] [PMID: 20505438]
[162]
Salloway, S.; Sperling, R.; Gilman, S.; Fox, N.C.; Blennow, K.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Doody, R.; van Dyck, C.H.; Mulnard, R.; Barakos, J.; Gregg, K.M.; Liu, E.; Lieberburg, I.; Schenk, D.; Black, R.; Grundman, M. Bapineuzumab 201 Clinical Trial Investigators. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology, 2009, 73(24), 2061-2070.
[http://dx.doi.org/10.1212/WNL.0b013e3181c67808] [PMID: 19923550]
[163]
Risner, M.E.; Saunders, A.M.; Altman, J.F.B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Rosiglitazone in Alzheimer’s Disease Study Group. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J., 2006, 6(4), 246-254.
[http://dx.doi.org/10.1038/sj.tpj.6500369] [PMID: 16446752]
[164]
Farlow, M.R.; Lahiri, D.K.; Poirier, J.; Davignon, J.; Schneider, L.; Hui, S.L. Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer’s disease. Neurology, 1998, 50(3), 669-677.
[http://dx.doi.org/10.1212/WNL.50.3.669] [PMID: 9521254]
[165]
Knight, E.M.; Kim, S.H.; Kottwitz, J.C.; Hatami, A.; Albay, R.; Suzuki, A.; Lublin, A.; Alberini, C.M.; Klein, W.L.; Szabo, P.; Relkin, N.R.; Ehrlich, M.; Glabe, C.G.; Gandy, S.; Steele, J.W. Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes. Neurol. Neuroimmunol. Neuroinflamm., 2016, 3(3), e237
[http://dx.doi.org/10.1212/NXI.0000000000000237] [PMID: 27218118]
[166]
Marciani, D.J. A retrospective analysis of the Alzheimer’s disease vaccine progress - The critical need for new development strategies. J. Neurochem., 2016, 137(5), 687-700.
[http://dx.doi.org/10.1111/jnc.13608] [PMID: 26990863]
[167]
Vellas, B.; Black, R.; Thal, L.J.; Fox, N.C.; Daniels, M.; McLennan, G.; Tompkins, C.; Leibman, C.; Pomfret, M.; Grundman, M. AN1792 (QS-21)-251 Study Team. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res., 2009, 6(2), 144-151.
[http://dx.doi.org/10.2174/156720509787602852] [PMID: 19355849]
[168]
Heidari, A.R.; Boroumand-Noughabi, S.; Nosratabadi, R.; Lavi Arab, F.; Tabasi, N.; Rastin, M.; Mahmoudi, M. Acylated and deacylated quillaja saponin-21 adjuvants have opposite roles when utilized for immunization of C57BL/6 mice model with MOG35-55 peptide. Mult. Scler. Relat. Disord., 2019, 29, 68-82.
[http://dx.doi.org/10.1016/j.msard.2019.01.025] [PMID: 30685444]
[169]
Marciani, D.J. Rejecting the Alzheimer’s disease vaccine development for the wrong reasons. Drug Discov. Today, 2017, 22(4), 609-614.
[http://dx.doi.org/10.1016/j.drudis.2016.10.012] [PMID: 27989721]
[170]
Hock, C.; Konietzko, U.; Streffer, J.R.; Tracy, J.; Signorell, A.; Müller-Tillmanns, B.; Lemke, U.; Henke, K.; Moritz, E.; Garcia, E.; Wollmer, M.A.; Umbricht, D.; de Quervain, D.J.F.; Hofmann, M.; Maddalena, A.; Papassotiropoulos, A.; Nitsch, R.M. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 2003, 38(4), 547-554.
[http://dx.doi.org/10.1016/S0896-6273(03)00294-0] [PMID: 12765607]
[171]
von Bernhardi, R. Immunotherapy in Alzheimer’s disease: where do we stand? Where should we go? J. Alzheimers Dis., 2010, 19(2), 405-421.
[http://dx.doi.org/10.3233/JAD-2010-1248] [PMID: 20110590]
[172]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[173]
Marciani, D.J. New Th2 adjuvants for preventive and active immunotherapy of neurodegenerative proteinopathies. Drug Discov. Today, 2014, 19(7), 912-920.
[http://dx.doi.org/10.1016/j.drudis.2014.02.015] [PMID: 24607730]
[174]
He, P.; Zou, Y.; Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother., 2015, 11(2), 477-488.
[http://dx.doi.org/10.1080/21645515.2014.1004026] [PMID: 25692535]
[175]
Kooijman, S.; Brummelman, J.; van Els, C.A.C.M.; Marino, F.; Heck, A.J.R.; Mommen, G.P.M.; Metz, B.; Kersten, G.F.A.; Pennings, J.L.A.; Meiring, H.D. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J. Proteomics, 2018, 175, 144-155.
[http://dx.doi.org/10.1016/j.jprot.2017.12.021] [PMID: 29317357]
[176]
Lemere, C.A. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine. Prog. Brain Res., 2009, 175, 83-93.
[http://dx.doi.org/10.1016/S0079-6123(09)17506-4] [PMID: 19660650]
[177]
Mandler, M.; Santic, R.; Gruber, P.; Cinar, Y.; Pichler, D.; Funke, S.A.; Willbold, D.; Schneeberger, A.; Schmidt, W.; Mattner, F. Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines. PLoS One, 2015, 10(1), e0115237
[http://dx.doi.org/10.1371/journal.pone.0115237] [PMID: 25611858]
[178]
Boeckler, C.; Frisch, B.; Muller, S.; Schuber, F. Immunogenicity of new heterobifunctional cross-linking reagents used in the conjugation of synthetic peptides to liposomes. J. Immunol. Methods, 1996, 191(1), 1-10.
[http://dx.doi.org/10.1016/0022-1759(95)00284-7] [PMID: 8642195]
[179]
Delrieu, J.; Ousset, P.J.; Caillaud, C.; Vellas, B. ‘Clinical trials in Alzheimer’s disease’: immunotherapy approaches. J. Neurochem., 2012, 120(Suppl. 1), 186-193.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07458.x] [PMID: 21883222]
[180]
Hull, M.; Sadowsky, C.; Arai, H.; Le Prince Leterme, G.; Holstein, A.; Booth, K.; Peng, Y.; Yoshiyama, T.; Suzuki, H.; Ketter, N.; Liu, E.; Ryan, J.M. Long-Term extensions of randomized vaccination trials of acc-001 and qs-21 in mild to moderate alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(7), 696-708.
[http://dx.doi.org/10.2174/1567205014666170117101537] [PMID: 28124589]
[181]
Vandenberghe, R.; Riviere, M-E.; Caputo, A.; Sovago, J.; Maguire, R.P.; Farlow, M.; Marotta, G.; Sanchez-Valle, R.; Scheltens, P.; Ryan, J.M.; Graf, A. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement. (N. Y.), 2016, 3(1), 10-22.
[http://dx.doi.org/10.1016/j.trci.2016.12.003] [PMID: 29067316]
[182]
Wang, C.Y.; Finstad, C.L.; Walfield, A.M.; Sia, C.; Sokoll, K.K.; Chang, T-Y.; Fang, X.D.; Hung, C.H.; Hutter-Paier, B.; Windisch, M. Site-specific UBITh amyloid-β vaccine for immunotherapy of Alzheimer’s disease. Vaccine, 2007, 25(16), 3041-3052.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.031] [PMID: 17287052]
[183]
Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D.M. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines, 2011, 10(4), 499-511.
[http://dx.doi.org/10.1586/erv.10.174] [PMID: 21506647]
[184]
Mirotti, L.; Alberca Custódio, R.W.; Gomes, E.; Rammauro, F.; de Araujo, E.F.; Garcia Calich, V.L.; Russo, M. CpG-ODN Shapes alum adjuvant activity signaling via MyD88 and IL-10. Front. Immunol., 2017, 8, 47.
[http://dx.doi.org/10.3389/fimmu.2017.00047] [PMID: 28220116]
[185]
Davtyan, H.; Zagorski, K.; Rajapaksha, H.; Hovakimyan, A.; Davtyan, A.; Petrushina, I.; Kazarian, K.; Cribbs, D.H.; Petrovsky, N.; Agadjanyan, M.G.; Ghochikyan, A. Alzheimer’s disease Advax(CpG)- adjuvanted MultiTEP-based dual and single vaccines induce high-titer antibodies against various forms of tau and Aβ pathological molecules. Sci. Rep., 2016, 6, 28912.
[http://dx.doi.org/10.1038/srep28912] [PMID: 27363809]
[186]
Wang, T.; Xie, X.X.; Ji, M.; Wang, S.W.; Zha, J.; Zhou, W.W.; Yu, X.L.; Wei, C.; Ma, S.; Xi, Z.Y.; Pang, G.L.; Liu, R.T. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer’s disease than intravenous immunoglobulin. Neuropharmacology, 2016, 105, 561-576.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.015] [PMID: 26907803]
[187]
Gringhuis, S.I.; Kaptein, T.M.; Wevers, B.A.; Mesman, A.W.; Geijtenbeek, T.B.H. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation. Nat. Commun., 2014, 5, 3898.
[http://dx.doi.org/10.1038/ncomms4898] [PMID: 24867235]
[188]
Engering, A.; Geijtenbeek, T.B.H.; van Vliet, S.J.; Wijers, M.; van Liempt, E.; Demaurex, N.; Lanzavecchia, A.; Fransen, J.; Figdor, C.G.; Piguet, V.; van Kooyk, Y. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol., 2002, 168(5), 2118-2126.
[http://dx.doi.org/10.4049/jimmunol.168.5.2118] [PMID: 11859097]
[189]
Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; Zotova, E.; Nicoll, J.A. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet, 2008, 372(9634), 216-223.
[http://dx.doi.org/10.1016/S0140-6736(08)61075-2] [PMID: 18640458]
[190]
Nicoll, J.A.R.; Barton, E.; Boche, D.; Neal, J.W.; Ferrer, I.; Thompson, P.; Vlachouli, C.; Wilkinson, D.; Bayer, A.; Games, D.; Seubert, P.; Schenk, D.; Holmes, C. Abeta species removal after abeta42 immunization. J. Neuropathol. Exp. Neurol., 2006, 65(11), 1040-1048.
[http://dx.doi.org/10.1097/01.jnen.0000240466.10758.ce] [PMID: 17086100]
[191]
Boche, D.; Nicoll, J.A.R. The role of the immune system in clearance of Abeta from the brain. Brain Pathol., 2008, 18(2), 267-278.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00134.x] [PMID: 18363937]
[192]
Boche, D.; Zotova, E.; Weller, R.O.; Love, S.; Neal, J.W.; Pickering, R.M.; Wilkinson, D.; Holmes, C.; Nicoll, J.A.R. Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain, 2008, 131(Pt 12), 3299-3310.
[http://dx.doi.org/10.1093/brain/awn261] [PMID: 18953056]
[193]
Morris, J.C.; Price, J.L. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci., 2001, 17(2), 101-118.
[http://dx.doi.org/10.1385/JMN:17:2:101] [PMID: 11816784]
[194]
van Dyck, C.H. Anti-amyloid-β monoclonal antibodies for alzheimer’s disease: pitfalls and promise. Biol. Psychiatry, 2018, 83(4), 311-319.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[195]
Mullane, K.; Williams, M. Alzheimer’s disease (AD) therapeutics - 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem. Pharmacol., 2018, 158, 359-375.
[http://dx.doi.org/10.1016/j.bcp.2018.09.026] [PMID: 30273553]
[196]
Liu, Y-H.; Giunta, B.; Zhou, H-D.; Tan, J.; Wang, Y-J. Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat. Rev. Neurol., 2012, 8(8), 465-469.
[http://dx.doi.org/10.1038/nrneurol.2012.118] [PMID: 22751529]
[197]
Sakono, M.; Zako, T. Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J., 2010, 277(6), 1348-1358.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07568.x] [PMID: 20148964]
[198]
Goure, W.F.; Krafft, G.A.; Jerecic, J.; Hefti, F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther., 2014, 6(4), 42.
[http://dx.doi.org/10.1186/alzrt272] [PMID: 25045405]
[199]
Larson, M.E.; Lesné, S.E. Soluble Aβ oligomer production and toxicity. J. Neurochem., 2012, 120(Suppl. 1), 125-139.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07478.x] [PMID: 22121920]
[200]
Bittar, A.; Sengupta, U.; Kayed, R. Prospects for strain-specific immunotherapy in Alzheimer’s disease and tauopathies. NPJ Vaccines, 2018, 3, 9.
[http://dx.doi.org/10.1038/s41541-018-0046-8] [PMID: 29507776]
[201]
Aleksis, R.; Oleskovs, F.; Jaudzems, K.; Pahnke, J.; Biverstål, H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie, 2017, 140, 176-192.
[http://dx.doi.org/10.1016/j.biochi.2017.07.011] [PMID: 28751216]
[202]
Suvorina, M.Y.; Selivanova, O.M.; Grigorashvili, E.I.; Nikulin, A.D.; Marchenkov, V.V.; Surin, A.K.; Galzitskaya, O.V. Studies of polymorphism of amyloid-β42 peptide from different suppliers. J. Alzheimers Dis., 2015, 47(3), 583-593.
[http://dx.doi.org/10.3233/JAD-150147] [PMID: 26401694]
[203]
Tycko, R. Amyloid polymorphism: structural basis and neurobiological relevance. Neuron, 2015, 86(3), 632-645.
[http://dx.doi.org/10.1016/j.neuron.2015.03.017] [PMID: 25950632]
[204]
Marciani, D.J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017, 50(7), 393-402.
[http://dx.doi.org/10.1080/08916934.2017.1373766] [PMID: 28906131]
[205]
Rosenberg, R.N.; Fu, M.; Lambracht-Washington, D. Active full-length DNA Aβ42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. Alzheimers Res. Ther., 2018, 10(1), 115.
[http://dx.doi.org/10.1186/s13195-018-0441-4] [PMID: 30454039]
[206]
Maletto, B.; Rópolo, A.; Morón, V.; Pistoresi-Palencia, M.C. CpG-DNA stimulates cellular and humoral immunity and promotes Th1 differentiation in aged BALB/c mice. J. Leukoc. Biol., 2002, 72(3), 447-454.
[PMID: 12223511]
[207]
Cao, C.; Lin, X.; Zhang, C.; Wahi, M.M.; Wefes, I.; Arendash, G.; Potter, H. Mutant amyloid-beta-sensitized dendritic cells as Alzheimer’s disease vaccine. J. Neuroimmunol., 2008, 200(1-2), 1-10.
[http://dx.doi.org/10.1016/j.jneuroim.2008.05.017] [PMID: 18649951]
[208]
Luo, Z.; Li, J.; Nabar, N.R.; Lin, X.; Bai, G.; Cai, J.; Zhou, S-F.; Cao, C.; Wang, J. Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer’s mice. J. Neuroimmune Pharmacol., 2012, 7(3), 640-655.
[http://dx.doi.org/10.1007/s11481-012-9371-2] [PMID: 22684353]
[209]
Okano, M.; Satoskar, A.R.; Nishizaki, K.; Harn, D.A., Jr Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response. J. Immunol., 2001, 167(1), 442-450.
[http://dx.doi.org/10.4049/jimmunol.167.1.442] [PMID: 11418681]
[210]
Boscardin, S.B.; Hafalla, J.C.R.; Masilamani, R.F.; Kamphorst, A.O.; Zebroski, H.A.; Rai, U.; Morrot, A.; Zavala, F.; Steinman, R.M.; Nussenzweig, R.S.; Nussenzweig, M.C. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J. Exp. Med., 2006, 203(3), 599-606.
[http://dx.doi.org/10.1084/jem.20051639] [PMID: 16505139]
[211]
Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L.; Mueller, R.; Ransohoff, R.M.; Wilcock, D.M.; Bain, L.; Bales, K. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2016, 2(2), 99-109.
[http://dx.doi.org/10.1016/j.trci.2016.05.001] [PMID: 29067297]
[212]
Ugen, K.E.; Morgan, D. Alzheimer’s disease: molecularly based immunotherapeutics. DNA Cell Biol., 2001, 20(11), 677-678.
[http://dx.doi.org/10.1089/10445490152717523] [PMID: 11788044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy