Title:Hotspot Mutations in DICER1 Causing GLOW Syndrome-Associated Macrocephaly via Modulation of Specific microRNA Populations Result in the Activation of PI3K/ATK/mTOR Signaling
Volume: 9
Issue: 1
Author(s): Steven D. Klein and Julian A. Martinez-Agosto*
Affiliation:
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California,United States
Keywords:
Cancer, DICER1, micoRNA, overgrowth, PI3K/AKT/mTOR, hot spot.
Abstract:
Background: We have previously described mosaic mutations in the RNase IIIb domain
of DICER1that display global developmental delays, lung cysts, somatic overgrowth, macrocephaly
and Wilms tumor. This constellation of phenotypes was classified as GLOW syndrome. Due to the
phenotypic overlap between GLOW and syndromes caused by mutations in the PI3K/AKT/mTOR
pathway, we hypothesized that alterations in miRNA regulation of this pathway cause its specific
constellation of phenotypes.
Objective: To test the hypothesis that DICER1 “hot spot” mutations associated with GLOW syndrome
activate PI3K/AKT/mTOR signaling.
Methods: We developed HEK293T cells with loss of exon 25 in DICER1, a genetic modification that
is synonymous with the “hot spot” RNAseIIIb mutations that cause GLOW syndrome. We assayed
the cells for activation of the PI3K/AKT/mTOR signaling pathway.
Results: We observed activation of the PI3K/AKT/mTOR pathway as demonstrated by increased
pS6Kinase, p4EBP1 and pTSC2 levels. Additionally, these cells demonstrate a striking cellular phenotype,
with the ability to form spheres when the serum is removed from their growth medium. The
cells in these spheres are Oct4 and Sox2 positive and exhibit the property of reversion with the addition
of serum. We queried miRNA expression data and identified a population of miRNAs that increase
due to these mutations and target negative regulators of the PI3K/AKT/mTOR pathway.
Conclusion: This work identifies the delicate and essential role for miRNA control of the
PI3K/AKT/mTOR pathway. We conclude that the phenotypes observed in the GLOW syndrome are
the result of PI3K/AKT/mTOR activation.