Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases

Author(s): Lorane I. da S. Hage-Melim*, Jaderson V. Ferreira, Nayana K.S. de Oliveira, Lenir C. Correia, Marcos R.S. Almeida, João G.C. Poiani, Carlton A. Taft and Carlos H.T. de Paula da Silva

Volume 23, Issue 3, 2019

Page: [335 - 360] Pages: 26

DOI: 10.2174/1385272823666190327100418

Price: $65

conference banner
Abstract

Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.

Keywords: Natural compounds, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, spinocerebellar ataxia 3, spinal and bulbar muscular atrophy, Creutzfeldt-Jakob disease.

« Previous
Graphical Abstract
[1]
Kim, B.M. The role of saikosaponins in therapeutic strategies for age-related diseases. oxid. Med. Cell Longev., 2018, 17, 1-10.
[2]
Thompson, L.M. An update on pharmacological approaches to neurodegenerative diseases. Nature, 2008, 452(7188), 707-708.
[3]
Scatena, R.; Martorana, G.E.; Bottoni, P.; Botta, G.; Pastore, P.; Giardina, B. An update on pharmacological approaches to neurodegenerative diseases. Expert Opin. Investig. Drugs, 2007, 16(1), 59-72.
[4]
Lucas, S.M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol., 2006, 147, S232-S240.
[5]
Linseman, D.A. Targeting oxidative stress for neuroprotection. Antioxid. Redox Signal., 2009, 11(3), 421-424.
[6]
Gomes, A.; Pimpão, R.C.; Fortalezas, S.; Figueira, I.; Miguel, C.; Aguiar, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Clemente, A.; Costa, C.; Martins-Loução, M.A.; Ferreira, R.B.; Santos, C.N. Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Ind. Crops Prod., 2015, 74, 505-513.
[7]
Woolley, J.D.; Khan, B.K.; Murthy, N.K.; Miller, B.L.; Rankin, K.P. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J. Clin. Psychiatry, 2011, 72(2), 126-133.
[8]
Montero-Odasso, M.; Pieruccini-Faria, F.; Bartha, R.; Black, S.E.; Finger, E.; Freedman, M.; Greenberg, B.; Grimes, D.A.; Hegele, R.A.; Hudson, C.; Kleinstiver, P.W.; Lang, A.E.; Masellis, M.; McLaughlin, P.M.; Munoz, D.P.; Strother, S.; Swartz, R.H.; Symons, S.; Tartaglia, M.C.; Zinman, L.; Strong, M.J. ONDRI, Investigators.; McIlroy, W. Motor phenotype in neurodegenerative disorders: Gait and balance platform study design protocol for the ontario neurodegenerative research initiative (ONDRI). J. Alzheimers Dis., 2017, 59(2), 707-721.
[9]
Hervás, R.; Oroz, J.; Galera-Prat, A.; Goñi, O.; Valbuena, A.; Vera, A.M.; Gómez-Sicilia, A.; Losada-Urzáiz, F.; Uversky, V.N.; Menéndez, M.; Laurents, D.V.; Bruix, M.; Carrión-Vázquez, M. Common features at the start of the neurodegeneration cascade. PLoS Biol., 2012, 10(5), e1001-e1335.
[10]
Vadakkan, K.I. Neurodegenerative disorders share common features of “loss of function” states of a proposed mechanism of nervous system functions. Biomed. Pharmacother., 2016, 83, 412-430.
[11]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[12]
Behl, C. Alzheimer’s disease and oxidative stress: Implications for novel therapeutic approaches. Prog. Neurobiol., 1999, 57(3), 301-323.
[13]
Aruoma, O.I.; Bahorun, T.; Jen, L.S. Neuroprotection by bioactive components in medicinal and food plant extracts. Mutat. Res., 2003, 544(2-3), 203-215.
[14]
Rasool, M.; Malik, A.; Qureshi, M.S.; Manan, A.; Pushparaj, P.N.; Asif, M.; Qazi, M.H.; Qazi, A.M.; Kamal, M.A.; Gan, S.H.; Sheikh, I.A. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med., 2014, 2014, 979-730.
[15]
Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443(7113), 780-786.
[16]
Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci., 2018, 8(9), E177.
[17]
Teles, R.B.A.; Diniz, T.C.; Pinto, T.C.C.; De Oliveira Júnior, R.G.; Silva, M.G.; Lavor, E.M.; Fernandes, A.W.C.; Oliveira, A.P.; Ribeiro, F.P.R.A.; Silva, A.A.M.; Cavalcante, T.C.F.; Quintans Júnior, L.J.; Almeida, J.R.G.S. Flavonoids as therapeutic agents in alzheimer’s and parkinson’s diseases: A systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018, 2018, 1-21.
[18]
Borroni, E.; Bohrmann, B.; Grueninger, F.; Prinssen, E.; Nave, S.; Loetscher, H.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Siddiqui, A.; Ellenbroek, B.; Messer, J.; Pähler, A.; Andersen, J.K.; Wyler, R.; Cesura, A.M. Sembragiline: A novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2017, 362, 413-423.
[19]
Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88, 640-651.
[20]
Tan, R.H.; Kril, J.J.; Yang, Y.; Tom, N.; Hodges, J.R.; Villemagne, V.L.; Rowe, C.C.; Leyton, C.E.; Kwok, J.B.J.; Ittner, L.M.; Halliday, G.M. Assessment of amyloid b in pathologically confirmed frontotemporal dementia syndromes. Alzheimers Dement. (Amst.), 2017, 9, 10-20.
[21]
Tong, T.; Ledig, C.; Guerrero, R.; Schuh, A.; Koikkalainen, J.; Tolonen, A.; Rhodius, H.; Barkhof, F.; Tijms, B.; Lemstra, A.W.; Soininen, H.; Remes, A.M.; Waldemar, G.; Hasselbalch, S.; Mecocci, P.; Baroni, M.; Lötjönen, J.; Flier, W.V.; Rueckert, D. Five-class differential diagnostics of neurodegenerative diseases usingrandom undersampling boosting. Neuroimage Clin., 2017, 15, 613-624.
[22]
Picanço, L.C.S.; Ozela, P.F.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; De Paula Da Silva, C.H.T.; Dos Santos, C.B.R.; Rosa, J.M.C.; Hage-Melim, L.I.S. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2017, 24, 1-19.
[23]
Mishra, C.B.; Manral, A.; Kumari, S.; Saini, V.; Tiwari, M. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-bamyloid aggregation, antioxidant and neuroprotection properties against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24, 3829-3841.
[24]
Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules, 2018, 23, 814.
[25]
Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290.
[26]
Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement., 2018, 14, 367-429.
[27]
Zufferey, V.; Donati, A.; Popp, J.; Meuli, R.; Rossier, J.; Frackowiak, R.; Draganski, B.; Von Gunten, A.; Kherif, F. Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer’s disease. Alzheimers Dement. (Amst.), 2017, 7, 107-114.
[28]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[29]
Piechotta, A.; Parthier, C.; Kleinschmidt, M.; Gnoth, K.; Pillot, T.; Lues, I.; Demuth, H.U.; Schilling, S.; Rahfeld, J.U.; Stubbs, M.T. Structural and functional analyses of Pyroglutamate-Amyloid- β-Specific antibodies as a basis for Alzheimer Immunotherapy. J. Biol. Chem., 2017, 292(30), 12713-12724.
[30]
Kumar, A.; Ekavali, A.S. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67, 195-203.
[31]
Picanço, L.C.S.; Castro, L.; Pinheiro, A.; Silva, K.; Souza, L.; Braga, F.; Silva, C.; Santos, B.C.; Hage-Melim, L.I.S. Study of molecular docking, physicochemical and pharmacokinetic properties of GSK-3β inhibitors. Br. J. Pharm. Res., 2015, 7, 152-175.
[32]
Rodrigues, R.P.; Silva, C.H.T.P. da Discovery of potential neurodegenerative inhibitors in Alzheimer’s disease by casein kinase 1 structure-based virtual screening. Med. Chem. Res., 2017, 26, 3274-3285.
[33]
Mishra, C.B.; Kumari, S.; Manral, A.; Prakash, A.; Saini, V.; Lynn, A.M.; Tiwari, M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 736-750.
[34]
Federico, L.B.; Almeida, J.R.; Taft, C.A.; Silva, C.H.T.P. Ligand and structure-based drug design as strategies for the screening of new BACE1 inhibitor candidates. Curr. Phys. Chem., 2016, 5, 253-262.
[35]
Dey, A.; Bhattacharya, R.; Mukherjee, A.; Panday, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216.
[36]
McKhann, G.M.; Albert, M.S.; Sperling, R.A. Changing diagnostic concepts of Alzheimer’s Disease. In: Alzheimer’s Disease - Modernizing concept, biological diagnosis and therapy; Hampel, H., Carrillo, M.C, EDs.; Basal, Switzerland: Karger; 2012, Vol. 28, 28, 115-21.
[37]
Brito, M.F.B.; Ferreira, J.V.; Souza, L.R.; Gemaque, L.R.; Sousa, K.P.; Santos, C.F.; Braga, F.S.; Pernomian, L.; Silva, C.H.T.P.; Santos, C.B.R. Taft, Carlton A.; Hage-Melim, L.I.S. Computational molecular modeling of compounds from amaryllidaceae family as potential acetylcholinesterase inhibitors. Curr. Bioact. Compd., 2017, 13, 121-129.
[38]
Akram, M.; Nawaz, A. Effects of medicinal plants on alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 4(12), 660-670.
[39]
Silva, I.X.; Oliveira, M.G. Conceição, E.C.; Taft, C.A.; Da Silva, C.H.T.P.; Da Silva, V.B. Binding model of capsaicin is able to reach the peripheral anionic site of acetylcholinesterase. Curr. Bioact. Compd., 2017, 13(2), 152-156.
[40]
Xu, W.; Liu, J.; Ma, D.; Yuan, G.; Lu, Y.; Yang, Y. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS One, 2017, 12(2), e0172477.
[41]
Chonpathompikunlert, P.; Wattanathorn, J.; Muchimapura, A. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem. Toxicol., 2010, 48(3), 798-802.
[42]
Figueredo, A.S.; Oliveira, M.G.; Safadi, G.M.V.V.; da Silva, C.H.T.P.; da Silva, V.B.; Taft, C.A.; de Aquino, G.L.B. The natural alkaloid piperine and its acid and ester synthetic derivatives are acetylcholinesterase inhibitors. Curr. Phys. Chem., 2015, 5(4), 294-300.
[43]
Ghareeb, D.A.; Elahwany, A.M.D.; El-Mallawany, S.M.; Saif, A.A. In vitro screening for anti-acetylcholiesterase, anti-oxidant, anti-glucosidase, anti-inflammatory and anti-bacterial effect of three traditional medicinal plants. Biotechnol. Biotechnol. Equip., 2014, 28(6), 1155-1164.
[44]
Jung, H.A.; Min, B-S.; Yokozawa, T.; Lee, J-H.; Kim, Y.S.; Choi, J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 2009, 32, 1433-1438.
[45]
Gunesch, S.; Schramm, S.; Decker, M. Natural antioxidants in hybrids for the treatment of neurodegenerative diseases: a successful strategy? Future Med. Chem., 2017, 9(8), 711-713.
[46]
Savica, R.; Grossardt, B.R.; Bower, J.H.; Eric Ahlskog, J.; Rocca, W.A. Time Trends in the Incidence of Parkinson Disease. JAMA Neurol., 2016, 73, 981-989.
[47]
Delamarre, A.; Meissner, W.G. Épidémiologie, facteurs de risque environnementaux et génétiques de la maladie de parkinson. Presse Med., 2017, 46, 175-181.
[48]
Hassan, A.; Benarroch, E.E. Heterogeneity of the midbrain dopamine system. Neurology, 2015, 85, 1795-1805.
[49]
Siciliano, M.; Trojano, L.; De Micco, R.; De Mase, A.; Garramone, F.; Russo, A.; Tedeschi, G.; Tessitore, A. Motor, behavioural, and cognitive correlates of fatigue in early, de novo parkinson disease patients. Parkinsonism Relat. Disord., 2017, 45, 63-68.
[50]
Niranjan, R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of parkinson’s disease: focus on astrocytes. Mol. Neurobiol., 2014, 49, 28-38.
[51]
Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in parkinson disease. Nat. Rev. Neurosci., 2017, 18, 101-113.
[52]
Kiriyama, Y.; Nochi, H. The Function of Autophagy in Neurodegenerative Diseases. Int. J. Mol. Sci., 2015, 16, 26797-26812.
[53]
Guerreiro, R.; Escott-Price, V.; Darwent, L.; Parkkinen, L.; Ansorge, O.; Hernandez, D.G.; Nalls, M.A.; Clark, L.; Honig, L.; Marder, K.; Van der Flier, W.; Holstege, H.; Louwersheimer, E.; Lemstra, A.; Scheltens, P.; Rogaeva, E.; St George-Hyslop, P.; Londos, E.; Zetterberg, H.; Ortega-Cubero, S.; Pastor, P.; Ferman, T.J.; Graff-Radford, N.R.; Ross, O.A.; Barber, I.; Braae, A.; Brown, K.; Morgan, K.; Maetzler, W.; Berg, D.; Troakes, C.; Al-Sarraj, S.; Lashley, T.; Compta, Y.; Revesz, T.; Lees, A.; Cairns, N.J.; Halliday, G.M.; Mann, D.; Pickering-Brown, S.; Powell, J.; Lunnon, K.; Lupton, M.K.; Dickson, D.; Hardy, J.; Singleton, A.; Bras, J. Genome-Wide analysis of genetic correlation in dementia with lewy bodies, parkinson’s and alzheimer’s diseases. Neurobiol. Aging, 2016, 38, 214.e7-214.e10.
[54]
Zhang, S.; Xiao, Q.; Le, W. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein. PLoS One, 2015, 10.
[55]
Small, S.A.; Petsko, G.A. Retromer in alzheimer disease, parkinson disease and other neurological disorders. Nat. Rev. Neurosci., 2015, 16, 126-132.
[56]
McMillan, K.J.; Korswagen, H.C.; Cullen, P.J. The emerging role of retromer in neuroprotection. Curr. Opin. Cell Biol., 2017, 47, 72-82.
[57]
Manoharan, S.; Guillemin, G.J.; Abiramasundari, R.S.; Essa, M.M.; Akbar, M.; Akbar, M.D. The role of reactive oxygen species in the pathogenesis of alzheimer’s disease, parkinson’s disease, and huntington’s disease: A mini review. Oxi. Med. Cell. Longev., 2016, 2016
[58]
Buddhala, C.; Loftin, S.K.; Kuley, B.M.; Cairns, N.J.; Campbell, M.C.; Perlmutter, J.S.; Kotzbauer, P.T. Dopaminergic, serotonergic, and noradrenergic deficits in parkinson disease. Ann. Clin. Transl. Neurol., 2015, 2, 949-959.
[59]
Sauerbier, A.; Jenner, P.; Todorova, A.; Chaudhuri, K.R. Non motor subtypes and parkinson’s disease. Parkinsonism Relat. Disord., 2016, 22, S41-S46.
[60]
Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-Motor features of parkinson disease. Nat. Rev. Neurosci., 2017, 18, 435-450.
[61]
Quik, M.; Zhang, D.; McGregor, M.; Bordia, T. Alpha7 nicotinic receptors as therapeutic targets for parkinson’s disease. Biochem. Pharmacol., 2015, 97, 399-407.
[62]
Mogg, A.J.; Whiteaker, P.; McIntosh, J.M.; Marks, M.; Collins, A.C.; Wonnacott, S. Methyllycaconitine is a potent antagonist of alpha-conotoxin-mii-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J. Pharmacol. Exp. Ther., 2002, 302, 197-204.
[63]
Chekani, F.; Bali, V.; Aparasu, R.; Mullen, P. A systematic review of the impact of adjuvant antiparkinson medications on disability and quality of life of patients with parkinson’s disease. Value Health, 2016, 19, A67.
[64]
Crispo, J.A.G.; Fortin, Y.; Thibault, D.P.; Emons, M.; Bjerre, L.M.; Kohen, D.E.; Perez-Lloret, S.; Mattison, D.; Willis, A.W.; Krewski, D. Trends in Inpatient antiparkinson drug use in the USA, 2001-2012. Eur. J. Clin. Pharmacol., 2015, 71, 1011-1019.
[65]
Mallajosyula, J.K.; Kaur, D.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Nicholls, D.G.; Di Monte, D.A.; Macarthur, H.; Andersen, J.K. MAO-B elevation in mouse brain astrocytes results in parkinson’s pathology. PLoS One, 2008, 3, e1616.
[66]
Lee, E.K.; Lee, Y.J. Prescription patterns of anticholinergic agents and their associated factors in korean elderly patients with dementia. Int. J. Clin. Pharm., 2013, 35, 711-718.
[67]
Bonifácio, M.J.; Torrão, L.; Loureiro, A.I.; Palma, P.N.; Wright, L.C.; Soares-Da-Silva, P. Pharmacological profile of opicapone, a third-generation nitrocatechol catechol-o-methyl transferase inhibitor, in the rat. Br. J. Pharmacol., 2015, 172, 1739-1752.
[68]
Poewe, W.; Antonini, A. Novel formulations and modes of delivery of levodopa. Mov. Disord., 2015, 30, 114-120.
[69]
Souza, L.R.; De Picanço, R.D.M.; Pinheiro, A.A.; Silva, K.R.; Taft, C.A.; Da Silva, C.H.T.P.; Santos, C.B.R.; Hage-Melim, L.I.S. Development of monoamine oxidase b inhibitors with antipark- inson activity. Curr. Phys. Chem., 2016, 6, 40-52.
[70]
Zhang, Z.; Li, G.; Szeto, S.S.W.; Chong, C.M.; Quan, Q.; Huang, C.; Cui, W.; Guo, B.; Wang, Y.; Han, Y.; Michael Siu, K.W.; Lee, Yuen. S.M.; Chu, I.K. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of parkinson disease. Free Radic. Biol. Med., 2015, 84, 331-343.
[71]
Ojha, S.; Javed, H.; Azimullah, S.; Haque, M.E. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of parkinson disease. Mol. Cell. Biochem., 2016, 418, 59-70.
[72]
Schober, A. Classic toxin-induced animal models of parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res., 2004, 318, 215-224.
[73]
Zhao, Z.; Wang, J.; Wang, L.; Yao, X.; Liu, Y.; Li, Y.; Chen, S.; Yue, T.; Wang, X.; Yu, W.; Liu, Y. Capsaicin protects against oxidative insults and alleviates behavioral deficits in rats with 6-OHDA-induced parkinson’s disease via activation of TRPV1. Neurochem. Res., 2017, 42(12), 3431-3438.
[74]
Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88, 754-761.
[75]
Park, H.J.; Zhao, T.T.; Lee, K.S.; Lee, S.H.; Shin, K.S.; Park, K.H.; Choi, H.S.; Lee, M.K. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of parkinson’s disease rat models. Neurochem. Int., 2015, 83-84, 19-27.
[76]
Jung, U.J.; Jeon, M-T.; Choi, M-S.; Kim, S.R. Silibinin attenuates mpp + -induced neurotoxicity in the substantia nigra in vivo. J. Med. Food, 2014, 17, 599-605.
[77]
Lee, Y.; Park, H.R.; Chun, H.J.; Lee, J. Silibinin prevents dopaminergic neuronal loss in a mouse model of parkinson’s disease via mitochondrial stabilization. J. Neurosci. Res., 2015, 93, 755-765.
[78]
Zhang, Z.; Li, G.; Szeto, S.S.W.; Chong, C.M.; Quan, Q.; Huang, C.; Cui, W.; Guo, B.; Wang, Y.; Han, Y.; Michael Siu, K.W.; Lee, Yuen. S.M.; Chu, I.K. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of parkinson disease. Free Radic. Biol. Med., 2015, 84, 331-343.
[79]
Abushouk, A.I.; Negida, A.; Ahmed, H.; Abdel-Daim, M.M. Neuroprotective mechanisms of plant extracts against mptp induced neurotoxicity: Future applications in parkinson’s disease. Biomed. Pharmacother., 2017, 85, 635-645.
[80]
Bitu Pinto, N.; Da Silva Alexandre, B.; Neves, K.R.T.; Silva, A.H.; Leal, L.K.A.M.; Viana, G.S.B. Neuroprotective properties of the standardized extract from camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of parkinson’s disease. Evid. Based Complement. Alternat. Med., 2015, 2015, 161092.
[81]
Chowdhury, A.; Sarkar, J.; Chakraborti, T.; Pramanik, P.K.; Chakraborti, S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed. Pharmacother., 2016, 78, 50-59.
[82]
Choi, D.Y.; Choi, H. Natural products from marine organisms with neuroprotective activity in the experimental models of alzheimer’s disease, parkinson’s disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch. Pharm. Res., 2015, 38, 139-170.
[83]
Ravi, S.K.; Narasingappa, R.B.; Joshi, C.G.; Girish, T.K.; Vincent, B. Neuroprotective effects of cassia tora against paraquatinduced neurodegeneration: relevance for parkinson’s disease. Nat. Prod. Res., 2018, 32, 1476-1480.
[84]
Zhao, Q.; Yang, X.; Cai, D.; Ye, L.; Hou, Y.; Zhang, L.; Cheng, J.; Shen, Y.; Wang, K.; Bai, Y. Echinacoside protects against MPP+-induced neuronal apoptosis via ros/atf3/chop pathway regulation. Neurosci. Bull., 2016, 32, 349-362.
[85]
Li, M.; Zhou, F.; Xu, T.; Song, H.; Lu, B. Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food Chem. Toxicol., 2018, 119, 6-13.
[86]
Zhang, H.; Bai, L.; He, J.; Zhong, L.; Duan, X.; Ouyang, L.; Zhu, Y.; Wang, T.; Zhang, Y.; Shi, J. Recent advances in discovery and development of natural products as source for anti-parkinson’s disease lead compounds. Eur. J. Med. Chem., 2017, 141, 257-272.
[87]
Sarrafchi, A.; Bahmani, M.; Shirzad, H.; Rafieian-Kopaei, M. Oxidative stress and parkinson’s disease: New hopes in treatment with herbal antioxidants. Curr. Pharm. Des., 2016, 22.
[88]
Chen, W.C.; Lai, Y.S.; Lu, K.H.; Lin, S.H.; Liao, L.Y.; Ho, C.T.; Sheen, L.Y. Method development and validation for the high-performance liquid chromatography assay of gastrodin in water extracts from different sources of gastrodia elata blume. Food Drug Anal., 2015, 23, 803-810.
[89]
Jang, J.H.; Son, Y.; Kang, S.S.; Bae, C.S.; Kim, J.C.; Kim, S.H.; Shin, T.; Moon, C. Neuropharmacological potential of gastrodia elata blume and its components. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-14.
[90]
Jiang, F.; Gao, R.; Liu, H.; Zhao, D.; Xu, P.; Zhang, L.; Qian, X. Neuroprotective effect of hyperoside on human pc12 cells against the oxidative damage. Int. J. Clin. Exp. Pathol., 2016, 9, 5176-5183.
[91]
Kiasalari, Z.; Baluchnejadmojarad, T.; Roghani, M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of parkinson’s disease. Cell. Mol. Neurobiol., 2016, 36, 521-530.
[92]
Lu, C.; Zhang, J.; Shi, X.; Miao, S.; Bi, L.; Zhang, S.; Yang, Q.; Zhou, X.; Zhang, M.; Xie, Y.; Miao, Q.; Wang, S.W. Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of parkinson’s disease induced by MPTP. Int. J. Biol. Sci., 2014, 10, 350-357.
[93]
Michel, H.E.; Tadros, M.G.; Esmat, A.; Khalifa, A.E.; Abdel-Tawab, A.M. Tetramethylpyrazine ameliorates rotenone-induced parkinson’s disease in rats: involvement of its anti-inflammatory and anti-apoptotic actions. Mol. Neurobiol., 2017, 54, 4866-4878.
[94]
Zheng, M.; Liu, C.; Fan, Y.; Yan, P.; Shi, D.; Zhang, Y. Neuroprotection by paeoniflorin in the mptp mouse model of parkinson’s disease. Neuropharmacology, 2017, 116, 412-420.
[95]
Manayi, A.; Omidpanah, S.; Barreca, D.; Ficarra, S.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Neuroprotective effects of paeoniflorin in neurodegenerative diseases of the central nervous system. Phytochem. Rev., 2017, 16, 1173-1181.
[96]
Fan, Z.; Liang, Z.; Yang, H.; Pan, Y.; Zheng, Y.; Wang, X. Tenuigenin protects dopaminergic neurons from inflammation via suppressing nlrp3 inflammasome activation in microglia. J. Neuroinflammation, 2017, 14, 256.
[97]
Lu, L.; Li, X.; Xu, P.; Zheng, Y.; Wang, X. Tenuigenin down-regulates the release of nitric oxide, matrix metalloproteinase-9 and cytokines from lipopolysaccharide-stimulated microglia. Neurosci. Lett., 2017, 650, 82-88.
[98]
Lofrumento, D.D.; Nicolardi, G.; Cianciulli, A.; Nuccio, F.; De Pesa, V.; La Carofiglio, V.; Dragone, T.; Calvello, R.; Panaro, M.A. Neuroprotective effects of resveratrol in an mptp mouse model of parkinson’s-like disease: Possible role of socs-1 in reducing pro-inflammatory responses. Innate Immun., 2014, 20, 249-260.
[99]
Allen, E.N.; Potdar, S.; Tapias, V.; Parmar, M.; Mizuno, C.S.; Rimando, A.; Cavanaugh, J.E. Resveratrol and pinostilbene confer neuroprotection against aging-related deficits through an ERK1/2-dependent mechanism. J. Nutr. Biochem., 2018, 54, 77-86.
[100]
Hu, Q.; Uversky, V.N.; Huang, M.; Kang, H.; Xu, F.; Liu, X.; Lian, L.; Liang, Q.; Jiang, H.; Liu, A.; Zhang, C.; Pan-Montojo, F.; Zhu, S. Baicalein inhibits α-synuclein oligomer formation and prevents progression of α-synuclein accumulation in a rotenone mouse model of parkinson’s disease. Biochim. Biophys. Acta, 2016, 1862, 1883-1890.
[101]
Zhu, Q.; Zhuang, X.; Lu, J. Neuroprotective effects of baicalein in animal models of parkinson’s disease: A systematic review of experimental studies. phytomedicine, 2018, phytomedicine.
[102]
Sarrafchi, A.; Bahmani, M.; Shirzad, H.; Rafieian-Kopaei, M. Oxidative Stress and Parkinson’s Disease: New Hopes in Treatment with Herbal Antioxidants. Curr. Pharm. Des., 2016, 22(2), 238-246.
[103]
Huang, Y.Y.; Zhang, Q.; Zhang, J.N.; Zhang, Y.N.; Gu, L.; Yang, H.M.; Xia, N.; Wang, X.M.; Zhang, H. Triptolide up-regulates metabotropic glutamate receptor 5 to inhibit microglia activation in the lipopolysaccharide-induced model of parkinson’s disease. Brain Behav. Immun., 2018, 71, 93-107.
[104]
Jiang, M.; Yun, Q.; Niu, G.; Gao, Y.; Shi, F.; Yu, S. puerarin prevents inflammation and apoptosis in the neurocytes of a murine parkinson’s disease model. Genet. Mol. Res., 2016, •••, 15.
[105]
Shiying, L.; Xinhui, Q.; Guanghua, J.; Feng, N.; Feng, L.; Shumei, C.; Fan, H. puerarin promoted proliferation and differentiation of dopamine-producing cells in parkinson’s animal models. Biomed. Pharmacother., 2018, 106, 1236-1242.
[106]
Fernández-Moriano, C.; González-Burgos, E.; Gómez-Serranillos, M.P. Mitochondria-Targeted protective compounds in parkinson’s and alzheimer’s diseases. Oxid. Med. Cell. Longev., 2015, 2015, 408927.
[107]
Liu, H.; Ma, S.; Xia, H.; Lou, H.; Zhu, F.; Sun, L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from salvia miltiorrhiza f. alba roots in thp-1 macrophages. J. Ethnopharmacol., 2018, 222, 201-207.
[108]
Mccolgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2017, 25(1), 24-34.
[109]
Pandey, M.; Rajamma, U. Huntington’s disease: The coming of age. J. Genet., 2018, 97(3), 649-664.
[110]
Wexler, A.; Wild, E.J.; Tabrizi, S.J. George Huntington: A legacy of inquiry, empathy and hope. Brain, 2016, 139, 2326-2333.
[111]
Veenhuizen, R.; Nijsten, H.; Van Roosmalen, P.; Lammertsen, K.; Stor, T.; De Jager, L.; De Man, J.; Van Der Doelen, R.; Landa, K.; Grond, V.; Heffels, J.; Groenewoud, R.; Rovers, L.; Bakker, C.; Leiwakabessy, S.; Van Der Wedden, D.; Van Blitterswijk, J.; Van Den Bosch, D. Huntington’s disease outpatient clinic for functional diagnosis and treatment: Coming to consensus: How long term care facility procedures complement specialist diagnosis and treatment. J. Huntingtons Dis., 2018, 7(2), 189-191.
[112]
Krench, M.; Littleton, J.T. Modeling huntington disease in drosophila: insights into axonal transport defects and modifiers of toxicity. Fly (Austin), 2013, 7, 229-236.
[113]
Bates, E.A.; Victor, M.; Jones, A.K.; Shi, Y.; Hart, A.C. Differential contributions of caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci., 2006, 26, 2830-2838.
[114]
Yang, S.H.; Cheng, P.H.; Banta, H.; Piotrowska-Nitsche, K.; Yang, J.J.; Cheng, E.C.; Snyder, B.; Larkin, K.; Liu, J.; Orkin, J.; Fang, Z.H.; Smith, Y.; Bachevalier, J.; Zola, S.M.; Li, S.H.; Li, X.J.; Chan, A.W. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature, 2008, 453(7197), 921-925.
[115]
Hodgson, J.G.; Agopyan, N.; Gutekunst, C.A.; Leavitt, B.R.; Lepiane, F.; Singaraja, R.; Smith, D.J.; Bissada, N.; Mccutcheon, K.; Nasir, J.; Jamot, L.; Li, X.J.; Stevens, M.E.; Rosemond, E.; Roder, J.C.; Phillips, A.G.; Rubin, E.M.; Hersch, S.M.; Hayden, M.R. A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 1999, 23(1), 181-192.
[116]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Primers, 2015, 1, 1-21.
[117]
Castilhos, R.M.; Souza, A.F.; Furtado, G.V.; Gheno, T.C.; Silva, A.L.; Vargas, F.R.; Lima, M.A.; Barsottini, O.; Pedroso, J.L.; Godeiro, C.J.; Salarini, D.; Pereira, E.T.; Lin, K.; Toralles, M.B.; Saute, J.A.; Rieder, C.R.; Quintas, M.; Sequeiros, J.; Alonso, I.; Saraiva-Pereira, M.L.; Jardim, L.B. Huntington disease and huntington disease-like in a case series from brazil. Clin. Genet., 2014, 86, 373-377.
[118]
Ross, C.A.; Aylward, E.H.; Wild, E.J.; Langbehn, D.R.; Long, J.D.; Warner, J.H.; Scahill, R.I.; Leavitt, B.R.; Stout, J.C.; Paulsen, J.S.; Reilmann, R.; Unschuld, P.G.; Wexler, A.; Margolis, R.L.; Tabrizi, S.J. Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol., 2014, 10(4), 204-216.
[119]
Xi, W.; Wang, X.; Laue, T.M.; Denis, C.L. Multiple discrete soluble aggregates influence polyglutamine toxicity in a Huntington’s disease model system. Sci. Rep., 2016, 6, 1-14.
[120]
Grima, J.C.; Daigle, J.G.; Arbez, N.; Cunningham, K.C.; Zhang, K.; Ochaba, J.; Geater, C.; Morozko, E.; Stocksdale, J.; Glatzer, J.C.; Pham, J.T.; Ahmed, I.; Peng, Q.; Wadhwa, H.; Pletnikova, O.; Troncoso, J.C.; Duan, W.; Snyder, S.H.; Ranum, L.P.W.; Thompson, L.M.; Lloyd, T.E.; Ross, C.A.; Rothstein, J.D. Mutant huntingtin disrupts the nuclear pore complex. Neuron, 2017, 94(1), 93-107.
[121]
Croce, K.R.; Yamamoto, A. A role for autophagy in Huntington’s disease. Neurobiol. Dis., 2018, 18, 30481-30489.
[122]
Andrich, J.; Saft, C.; Ostholt, N.; Müller, T. Complex movement behavior and progression of Huntington’s disease. Neurosci. Lett., 2007, 416, 272-274.
[123]
Bonilla, E. Huntington disease. A review. Invest. Clin., 2000, 41(2), 117-141.
[124]
Bouwens, J.A.; Van Duijn, E.; Van Der Mast, R.C.; Roos, R.A.; Giltay, E.J. Irritability in a prospective cohort of Huntington’s disease mutation carriers. J. Neuropsychiatry Clin. Neurosci., 2015, 27, 206-212.
[125]
Bora, E.; Velakoulis, D.; Walterfang, M. Social cognition in Huntington’s disease: A meta-analysis. Behav. Brain Res., 2016, 297, 131-140.
[126]
Southwell, A.L.; Franciosi, S.; Villanueva, E.B.; Xie, Y.; Winter, L.A.; Veeraraghavan, J.; Jonason, A.; Felczak, B.; Zhang, W.; Kovalik, V.; Waltl, S.; Hall, G.; Pouladi, M.A.; Smith, E.S.; Bowers, W.J.; Zauderer, M.; Hayden, M.R. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2015, 76, 46-56.
[127]
Padovan-Neto, F.E.; Sammut, S.; Chakroborty, S.; Dec, A.M.; Threlfell, S.; Campbell, P.W.; Mudrakola, V.; Harms, J.F.; Schmidt, C.J.; West, A.R. Facilitation of corticostriatal transmission following pharmacological inhibition of striatal phosphodiesterase 10A: Role of nitric oxide-soluble guanylyl cyclase-cGMP signaling pathways. J. Neurosci., 2015, 35(14), 5781-5791.
[128]
Smith, M.R.; Syed, A.; Lukacsovich, T.; Purcell, J.; Barbaro, B.A.; Worthge, S.A.; Wei, S.R.; Pollio, G.; Magnoni, L.; Scali, C.; Massai, L. F ranceschini, D.; Camarri, M.; Gianfriddo, M.; Diodato, E.; Thomas, R.; Gokce, O.; Tabrizi, S.J.; Caricasole, A.; Landwehrmeyer, B.; Menalled, L.; Murphy, C.; Ramboz, S.; Luthi-Carter, R.; Westerberg, G.; Marsh, J.L. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum. Mol. Genet., 2014, 23(11), 2995-3007.
[129]
Simmons, D.A. Modulating neurotrophin receptor signaling as a therapeutic strategy for Huntington’s disease. J. Huntingtons Dis., 2017, 6(4), 303-325.
[130]
Kieburtz, K.; Reilmann, R.; Olanow, C.W. Huntington’s disease: Current and future therapeutic prospects. Mov. Disord., 2018, 33, 1033-1041.
[131]
Huntington study group. Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. Neurology, 2006, 66(3), 366-372.
[132]
Mestre, T.A.; Ferreira, J.J. An evidence-based approach in the treatment of Huntington’s disease. Parkinsonism Relat. Disord., 2012, 18(4), 316-320.
[133]
Krishnan, H.S.; Bernard-Gauthier, V.; Placzek, M.S.; Dahl, K.; Narayanaswami, V.; Livni, E.; Chen, Z.; Yang, J.; Collier, T.L.; Ran, C.; Hooker, J.M.; Liang, S.H.; Vasdev, N. Metal protein-attenuating compound for PET neuroimaging: Synthesis and preclinical evaluation of [11C] PBT2. Mol. Pharm., 2018, 15(2), 695-702.
[134]
Huang, Z.; Adachi, H. Natural compounds preventing neurodegenerative diseases through autophagic activation. J. UOEH, 2016, 38(2), 139-148.
[135]
Zeng, Y.; Guo, W.; Xu, G.; Wang, Q.; Feng, L.; Long, S.; Liang, F.; Huang, Y.; Lu, X.; Li, S.; Zhou, J.; Burgunder, J.M.; Pang, J.; Pei, Z. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington’s disease. Drug Des. Devel. Ther., 2016, 10, 1443-1451.
[136]
Long, S.M.; Liang, F.Y.; Wu, Q.; Lu, X.L.; Yao, X.L.; Li, S.C.; Li, J.; Su, H.; Pang, J.Y.; Pei, Z. Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish. Mar. Drugs, 2014, 12(6), 3307-3322.
[137]
Ehrnhoefer, D.E.; Duennwald, M.; Markovic, P.; Wacker, J.L.; Engemann, S.; Roark, M.; Legleiter, J.; Marsh, J.L.; Thompson, L.M.; Lindquist, S.; Muchowski, P.J.; Wanker, E.E. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet., 2006, 15(18), 2743-2751.
[138]
Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem., 2007, 282(8), 5641-5652.
[139]
Wu, A.G.; Wong, V.K.; Xu, S.W.; Chan, W.K.; Ng, C.I.; Liu, L.; Law, B.Y. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int. J. Mol. Sci., 2013, 14(11), 22618-22641.
[140]
Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One, 2015, 10(7), 1-16.
[141]
Paez-Colasante, X.; Figueroa-Romero, C.; Sakowski, S.A.; Goutman, S.A.; Feldman, E.L.X. Amyotrophic lateral sclerosis: Mechanisms and therapeutics in the epigenomic era. Nat. Rev. Neurol., 2015, 11(5), 266-279.
[142]
Schultz, J. Disease-Modifying treatment of amyotrophic lateral sclerosis. Am. J. Manag. Care, 2018, 24(15), 327-335.
[143]
Volk, A.E.; Weishaupt, J.H.; Andersen, P.M.; Ludolph, A.C.; Kubisch, C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med. Genetik, 2018, 30(2), 252-258.
[144]
Kumar, V.; Islam, A.; Hassan, Md. I.; Ahmad, F. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur. J. Med. Chem., 2016, 121, 903-917.
[145]
Dervishi, I.; Gozutok, O.; Murnan, K.; Gautam, M.; Heller, D.; Bigio, E.; Ozdinler, P.H. Protein-protein interactions reveal key canonical pathways, upstream regulators, interactome domains, and novel targets in ALS. Sci. Rep., 2018, 8(1), 1-19.
[146]
Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2017, 377(2), 162-172.
[147]
Ip, P.; Sharda, P.R.; Cunningham, A.; Chakrabartty, S.; Pande, V.; Chakrabartty, A. quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the a4v sod1 als-causing mutant. Protein Eng. Des. Sel., 2017, 30(6), 431-440.
[148]
Khan, S.; Ahmad, K.; Alshammari, E.M.A.; Adnan, M.; Baig, M.H.; Lohani, M.; Somvanshi, P.; Haque, S. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. BioMed Res. Int., 2015, 2015, 1-9.
[149]
Zhu, J.; Shen, L.; Lin, X.; Hong, Y.; Feng, Y. Clinical research on traditional chinese medicine compounds and their preparations for amyotrophic lateral sclerosis. Biomed. Pharmacother., 2017, 96, 854-864.
[150]
Barbeito, L. Astrocyte-based cell therapy: new hope for amyotrophic lateral sclerosis patients? Stem Cell Res. Ther., 2018, 9(1), 241.
[151]
Li, J. Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Q.; Wu, Y.; Wu, D.; Luo, Hai-Bin. Structure-based design, synthesis, biological evaluation, and molecular docking of Novel PDE10 inhibitors with antioxidant activities. Front Chem., 2018, 6, 1-12.
[152]
Wu, B.; De, S.K.; Kulinich, A.; Salem, A.F.; Koeppen, J.; Wang, R.; Barile, E.; Wang, S.; Zhang, D.; Ethell, I.; Pellecchia, M. Potent and selective EphA4 agonists for the treatment of als. Cell Chem. Biol., 2017, 24(3), 293-305.
[153]
Stanga, S.; Brambilla, L.; Tasiaux, B.; Dang, A.H.; Ivanoiu, A.; Octave, J.N.; Rossi, D.; Pesch, V.V.; Kienlen-Campard, P. A role for GDNF and soluble APP as biomarkers of amyotrophic lateral sclerosis pathophysiology. Front. Neurol., 2018, 9, 1-9.
[154]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals, 2018, 11(2), 1-21.
[155]
Nabavi, S.; Daglia, M.; D’Antona, Gi.; Sobarzo-Sanchez, E.; Talas, Z.; Nabavi, S. Natural compounds used as therapies targeting to amyotrophic lateral sclerosis. Curr. Pharm. Biotechnol., 2015, 16(3), 211-218.
[156]
Nakano, K.K.; Dawson, D.M.; Spence, A. Machado disease: a hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology, 1972, 22, 49-55.
[157]
Rosenberg, R.N.; Nyhan, W.L.; Bau, C.; Shore, R. Autosomal dominant striatonigral degeneration. Neurology, 1976, 26, 703-714.
[158]
Dawson, D.M. Ataxia in families from the Azores. A. Eng. J. Med., 1977, 296, 1529-1530.
[159]
Romanul, E.C.A.; Fowler, H.L.; Radvany, J. Azorean disease of the nervous system. N. Engl. J. Med., 1977, 296, 1505-1508.
[160]
Schols, L. Machado-Joseph disease mutation as the genetic basis of most spinocerebellar ataxias in Germany. J. Neurol. Neurosurg. Psychiatry, 1995, 59, 49-50.
[161]
Durr, A.; Stevanin, G.; Cancel, G.; Duyckaerts, C.; Abbas, N.; Didierjean, O.; Chneiweiss, H.; Benomar, A.; Lyon-Caen, O.; Julien, J.; Serdaru, M.; Penet, C.; Agid, Y.; Brice, A. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular and neuropathological features. Ann. Neurol., 1996, 39, 490-499.
[162]
Inoue, K.; Hanihara, T.; Yamada, Y.; Kosaka, K.; Katsuragi, K.; Iwabuchi, K. Clinical and genetic evaluation of Japanese autosomal dominant cerebellar ataxias: is Machado-Joseph disease common in the Japanese? J. Neurol. Neurosurg. Psychiatry, 1996, 60(6), 697-698.
[163]
Watanabe, H.; Tanaka, P.; Matsumoto, M.; Doyu, M.; Ando, T.; Mitsuma, T.; Sobue, G. Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patietns and clinical characterization of spinocerebellar ataxia 6. Clin. Genet., 1998, 53, 13-19.
[164]
Moseley, M.L.; Benzow, K.A.; Schut, L.J.; Bird, T.D.; Gomez, C.M.; Barkhaus, R.E.; Blindauer, K.A.; Labuda, M.; Pandolfo, M.; Koob, M.D.; Ranum, L.P. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology, 1998, 51, 1666-1671.
[165]
Soong, B.; Lu, Y.; Choo, K. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch. Neurol., 2001, 5, 1105-1109.
[166]
Paulson, H.L. The Spinocerebellar Ataxias. J. Neuroophthalmol., 2009, 29(3), 227-237.
[167]
Bevivino, A.E.; Loll, R.J. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta-fibrils. Proc. Natl Acad. Set U.S.A., 2001, 98, 11955-11960.
[168]
Suenaga, T.; Matsushima, H. Ubiquitin-immunoreactive inclusions in anterior horn cells and hypoglossal neurons in a case with Joseph’s disease. Acta Neuropathol., 1993, 85, 341-344.
[169]
Rub, U.; Brunt, E.R.; Deller, T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr. Opin. Neurol., 2008, 21, 111-116.
[170]
Takiyama, Y.; Nishizawa, S.; Tanaka, H. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat. Genet., 1993, 4, 300-305.
[171]
Kawaguchi, Y.; Okamoto, T.; Taniwaki, M. CAG expansions in a novel gene for machado-joseph disease at chromosome 14q32.1. Nat. Genet., 1994, 8, 221-228.
[172]
Klockgether, T.; Schols, L.; Abele, M.; Burk, K.; Topka, H.; Andres, E.; Amoiridis, G.; Ludtke, R.; Riess, L.; Laccone, R.; Dichgans, J. Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). J. Neurol. Neurosurg. Psychiatry, 1996, 66, 222-224.
[173]
Warrick, J.M.; Chan, E.; Gray-Board, G.L. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone Hsp70. Nat. Genet., 1999, 23, 425-442.
[174]
Sakai, T.; Antoku, Y.; Matsuishi, T.; Iwashita, H. Tetrahydrobiopterin double-blind, crossover trial in machado-joseph disease. J. Neurol. Sci., 1996, 136, 71-72.
[175]
Menzies, F.M.; Huebener, J.; Renna, M.; Bonin, M.; Riess, O.; Rubinsztein, D.C. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain, 2010, 133, 93-104.
[176]
Chang, K.H.; Chen, W.L.; Lee, L.C.; Lin, C.H.; Kung, P.J.; Lin, T.H.; Wu, Y.C.; Wu, Y.R.; Chen, Y.C.; Lee-Chen, G.J.; Chen, C.M. Aqueous extract of paeonia lactiflora and paeoniflorin as aggregation reducers targeting chaperones in cell models of spinocerebellar ataxia 3. Evid. Based Complement. Alternat. Med., 2013, 1-11.
[177]
Zhou, L.; Wang, H.; Wang, P.; Ren, H.; Chen, D.; Ying, Z.; Wang, G. Ataxin-3 protects cells against H2O2-induced oxidative stress by enhancing the interaction between Bcl-XL and Bax. Neuroscience, 2013, 243C, 14-21.
[178]
Goodwin, V.A.; Richards, S.H.; Taylor, R.S.; Taylor, A.H.; Campbell, J.L. The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord., 2008, 23(5), 631-640.
[179]
Tuite, P.J.; Rogaeva, E.A.; St. George-Hyslop, P.H.; Lang, A.E. Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann. Neurol., 1995, 38, 684-687.
[180]
França Jr, M.C.; D’Abreu, A.; Friedman, J.H.; Nucci, A.; Lopes-Cendes, I. Chronic pain in Machado-Joseph disease: a frequent and disabling symptom. Arch. Neurol., 2007, 64, 1767-1770.
[181]
França Jr, M.C.; D’Abreu, A.; Nucci, A.; Lopes-Cendes, I. Muscle excitability abnormalities in Machado-Joseph disease. Arch. Neurol., 2008, 65, 525-529.
[182]
Levine, J.; Greenwald, B.D. Fatigue in Parkinson disease, stroke, and traumatic brain injury. Phys. Med. Rehabil. Clin. N. Am., 2009, 20(2), 347-361.
[183]
Adam, O.R.; Jankovic, J. Treatment of dystonia. Parkinsonism Relat. Disord., 2007, 13(3), 362-368.
[184]
Chang, K.H.; Chen, W.L.; Wu, Y.R.; Lin, T.H.; Wu, Y.C.; Chao, C.Y.; Lin, J.Y.; Lee, L.C.; Chen, Y.C.; Lee-Chen, G.J. Aqueous extract of gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology, 2014, 81, 166-175.
[185]
Chou, A.H.; Chen, Y.L.; Chiu, C.C.; Yuan, S.J.; Weng, Y.H.; Yeh, T.H.; Lin, Y.L.; Fang, J.M.; Wang, H.L. T1-11 and JMF1907 ameliorate polyglutamine-expanded ataxin-3-induced neurodegeneration, transcriptional dysregulation and ataxic symptom in the SCA3 transgenic mouse. Neuropharmacology, 2015, 99, 308-317.
[186]
Rajamani, K.; Liu, J.W.; Wu, C.H.; Chiang, I.T.; You, D.H.; Lin, S.Y.; Hsieh, D.K.; Lin, S.Z.; Harn, H.J.; Chiou, T.W. n-Butylidenephthalide exhibits protection against neurotoxicity through regulation of tryptophan 2, 3 dioxygenase in spinocerebellar ataxia type 3. Neuropharmacology, 2017, 117, 434-446.
[187]
La Spada, A.R.; Wilson, E.M.; Lubahn, D.B.; Harding, A.E.; Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 1991, 352, 77-79.
[188]
Schmidt, B.J.; Greenberg, C.R.; Allingham-Hawkins, D.J.; Spriggs, E.L. Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology, 2002, 59, 770-772.
[189]
Rhodes, L.E.; Freeman, B.K.; Auh, S.; Kokkinis, A.D.; La Pean, A.; Chen, C.; Lehky, T.J.; Shrader, J.A.; Levy, E.W.; Harris-Love, M.; Di Prospero, N.A.; Fischbeck, K.H. Clinical features of spinal and bulbar muscular atrophy. Brain, 2009, 132, 3242-3251.
[190]
Roselli, F.; Caroni, P. From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases. Neuron, 2015, 85, 901-910.
[191]
Tut, T.G.; Ghadessy, F.J.; Trifiro, M.A.; Pinsky, L.; Yong, E.L. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J. Clin. Endocrinol. Metab., 1997, 82, 3777-3782.
[192]
Wang, Q.; Udayakumar, T.S.; Vasaitis, T.S.; Brodie, A.M.; Fondell, J.D. Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells. J. Biol. Chem., 2004, 279, 17319-17328.
[193]
Parodi, S.; Pennuto, M. Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Front. Neuroendocrinol., 2011, 32, 416-425.
[194]
Klement, I.A.; Skinner, P.J.; Kaytor, M.D.; Yi, H.; Hersch, S.M.; Clark, H.B.; Zoghbi, H.Y.; Orr, H.T. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell, 1998, 95, 41-53.
[195]
Bichelmeier, U.; Schmidt, T.; Hubener, J.; Boy, J.; Ruttiger, L.; Habig, K.; Poths, S.; Bonin, M.; Knipper, M.; Schmidt, W.J.; Wilbertz, J.; Wolburg, H.; Laccone, F.; Riess, O. Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: in vivo evidence. J. Neurosci., 2007, 27, 7418-7428.
[196]
Montie, H.L.; Cho, M.S.; Holder, L.; Liu, Y.; Tsvetkov, A.S.; Finkbeiner, S.; Merry, D.E. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 2009, 18, 1937-1950.
[197]
Nedelsky, N.B.; Pennuto, M.; Smith, R.B.; Palazzolo, I.; Moore, J.; Nie, Z.; Neale, G.; Taylor, J.P. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron, 2010, 67, 936-952.
[198]
Young, J.E.; Garden, G.A.; Martinez, R.A.; Tanaka, F.; Sandoval, C.M.; Smith, A.C.; Sopher, B.L.; Lin, A.; Fischbeck, K.H.; Ellerby, L.M.; Morrison, R.S.; Taylor, J.P.; La Spada, A.R. Polyglutamine-expanded androgen receptor truncation fragments activate a Bax-dependent apoptotic cascade mediated by DP5/Hrk. J. Neurosci., 2009, 29, 1987-1997.
[199]
Borgia, D.; Malena, A.; Spinazzi, M.; Desbats, M.A.; Salviati, L.; Russell, A.P.; Miotto, G.; Tosatto, L.; Pegoraro, E.; Soraru, G.; Pennuto, M.; Vergani, L. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum. Mol. Genet., 2017, 26, 1087-1103.
[200]
Palazzolo, I.; Burnett, B.G.; Young, J.E. Akt blocks ligand binding and protects against expanded polyglutamine androgen receptortoxicity. Hum. Mol. Genet., 2007, 16, 1593-1603.
[201]
Palazzolo, I.; Stack, C.; Kong, L. Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbarmuscular atrophy. Neuron, 2009, 63, 316-328.
[202]
Guler, H.P.; Zapf, J.; Schmid, C.; Froesch, E.R. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol., 1989, 121, 753-758.
[203]
Yakar, S.; Rosen, C.J.; Beamer, W.G. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest., 2002, 110, 771-781.
[204]
Sumner, C.J.; Fischbeck, K.H. Jaw drop in Kennedy’s disease. Neurology, 2002, 59, 1471-1472.
[205]
Sinclair, R.; Greenland, K.J.; Egmond, S.; Hoedemaker, C.; Chapman, A.; Zajac, J.D. Men with Kennedy disease have a reduced risk of androgenetic alopecia. Br. J. Dermatol., 2007, 157, 290-294.
[206]
Bailey, C.K.; Andriola, I.F.; Kampinga, H.H.; Merry, D.E. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 2002, 11, 515-523.
[207]
Ishihara, K.; Yamagishi, N.; Saito, Y.; Adachi, H.; Kobayashi, Y.; Sobue, G.; Ohtsuka, K.; Hatayama, T. Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J. Biol. Chem., 2003, 278, 25143-25150.
[208]
Howarth, J.L.; Kelly, S.; Keasey, M.P.; Glover, C.P.; Lee, Y.B.; Mitrophanous, K.; Chapple, J.P.; Gallo, J.M.; Cheetham, M.E.; Uney, J.B. Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol. Ther., 2007, 15, 1100-1105.
[209]
Katsuno, M.; Adachi, H.; Doyu, M.; Minamiyama, M.; Sang, C.; Kobayashi, Y.; Inukai, A.; Sobue, G. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat. Med., 2003, 9, 768-773.
[210]
Chevalier-Larsen, E.S.; O’Brien, C.J.; Wang, H.; Jenkins, S.C.; Holder, L.; Lieberman, A.P.; Merry, D.E. Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci., 2004, 24, 4778-4786.
[211]
Katsuno, M.; Sang, C.; Adachi, H.; Minamiyama, M.; Waza, M.; Tanaka, F.; Doyu, M.; Sobue, G. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc. Natl. Acad. Sci. USA, 2005, 102, 16801-16806.
[212]
Tokui, K.; Adachi, H.; Waza, M.; Katsuno, M.; Minamiyama, M.; Doi, H.; Tanaka, K.; Hamazaki, J.; Murata, S.; Tanaka, F.; Sobue, G. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum. Mol. Genet., 2009, 18, 898-910.
[213]
Rinaldi, C.; Malik, B.; Greensmith, L. 2016. Targeted molecular therapies for SBMA. J. Mol. Neurosci., 2016, 58, 335-342.
[214]
Pennuto, M.; Palazzolo, I.; Poletti, A. Post-translational modifications of expanded polyglutamine proteins: Impact on neurotoxicity. Hum. Mol. Genet., 2009, 18, 40-47.
[215]
Montie, H.L.; Pestell, R.G.; Merry, D.E. SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. J. Neurosci., 2011, 31, 17425-17436.
[216]
Scaramuzzino, C.; Casci, I.; Parodi, S.; Lievens, P.M.; Polanco, M.J.; Milioto, C.; Chivet, M.; Monaghan, J.; Mishra, A.; Badders, N.; Aggarwal, T.; Grunseich, C.; Sambataro, F.; Basso, M.; Fackelmayer, F.O.; Taylor, J.P.; Pandey, U.B.; Pennuto, M. Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy. Neuron, 2015, 85, 88-100.
[217]
Grunseich, C.; Kats, I.R.; Bott, L.C.; Rinaldi, C.; Kokkinis, A.; Fox, D.; Chen, K.L.; Schindler, A.B.; Mankodi, A.K.; Shrader, J.A.; Schwartz, D.P.; Lehky, T.J.; Liu, C.Y.; Fischbeck, K.H. Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat. Neuromuscul. Disord., 2014, 24, 978-981.
[218]
Milioto, C.; Malena, A.; Maiano, E.; Polanco, M.J.; Marchioretti, C.; Borgia, D.; Pereira, M.G.; Blaauw, B.; Lieberman, A.P.; Venturini, R.; Plebani, M.; Sambataro, F.; Vergani, L.; Pegoraro, E.; Soraru, G.; Pennuto, M. Beta-agonist stimulationameliorates the phenotype ofspinal and bulbar muscular atrophymice and patient-derived myotubes. Scientific Reports, 2016, 7(41046), 1-14.
[219]
Hijikata, Y.; Katsuno, M.; Suzuki, K.; Hashizume, A.; Araki, A.; Yamada, S. Impaired muscle uptake of creatine in spinal and bulbar muscular atrophy. Ann. Clin. Transl. Neurol., 2016, 7, 537-546.
[220]
Rinaldi, C.; Bott, L.C.; Chen, K.L.; Harmison, G.G.; Katsuno, M.; Sobue, G.; Pennuto, M.; Fischbeck, K.H. IGF-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol. Med., 2012, 18, 1261-1268.
[221]
Qiang, Q.; Adachi, H.; Huang, Z.; Jiang, Y.M.; Katsuno, M.; Minamiyama, M.; Doi, H.; Matsumoto, S.; Kondo, N.; Miyazaki, Y.; Iida, M.; Tohnai, G.; Sobue, G. Genistein, a natural product derived from soybeans, ameliorates polyglutamine-mediated motor neuron disease. J. Neurochem., 2013, 126, 122-130.
[222]
Tee, B.L.; Longoria Ibarrola, E.M.; Geschwind, M.D. Prion Diseases. Neurol. Clin., 2018, 36(4), 865-897.
[223]
Joyner, P.M.; Cichewicz, R.H. Bringing natural products into the fold - exploring the therapeutic lead potential of secondary metabolites for the treatment of protein-misfolding-related neurodegenerative diseases. Nat. Prod. Rep., 2011, 28(1), 26-47.
[224]
Sitammagari, K.K.; Masood, W. Creutzfeldt Jakob Disease; StatPearls Publishing [Internet]: Treasure Island, 2018.
[225]
Mackenzie, G.; Will, R. Creutzfeldt-Jakob disease: Recent developments. F1000 Res., 2017, 6, 2053.
[226]
Manix, M.; Kalakoti, P.; Henry, M.; Thakur, J.; Menger, R.; Guthikonda, B.; Nanda, A. Creutzfeldt-Jakob disease: Updated diagnostic criteria, treatment algorithm, and the utility of brain biopsy. Neurosurg. Focus, 2015, 39(5), E2.
[227]
Guest, W.C.; Silverman, J.M.; Pokrishevsky, E.; O’Neill, M.A.; Grad, L.I.; Cashman, N.R. Generalization of the prion hypothesis to other. neurodegenerative diseases: an imperfect fit. J. Toxicol. Environ. Health A, 2011, 74(22-24), 1433-1459.
[228]
Dirikoc, S.; Priola, S.A.; Marella, M.; Zsurger, N.; Chabry, J. Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. J. Neurosci., 2007, 27(36), 9537-9544.
[229]
Iuvone, T.; Esposito, G.; De Filippis, D.; Scuderi, C.; Steardo, L. Cannabidiol: A promising drug for neurodegenerative disorders? CNS Neurosci. Ther., 2009, 15(1), 65-75.
[230]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[231]
Caughey, B.; Raymond, L.D.; Raymond, G.J.; Maxson, L.; Silveira, J.; Baron, G.S. Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J. Virol., 2003, 77(9), 5499-5502.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy