Review Article

瞄准脑中的水:水通道蛋白-4在缺血性脑水肿中的作用

卷 20, 期 7, 2019

页: [748 - 755] 页: 8

弟呕挨: 10.2174/1389450120666190214115309

价格: $65

摘要

脑水肿主要是由于各种脑损伤(包括缺血性中风)引起的。 脑水含量的过度积累导致脑实质的逐渐扩张,血流量减少和颅内压增加,最终导致脑疝和死亡。 目前对缺血性水肿的临床治疗非常有限,因此迫切需要开发新的治疗策略。 越来越多的证据表明,AQP4是一种水通道蛋白,与脑水肿密切相关,可能是减少缺血性脑水肿的最佳治疗靶点。 AQP4主要分布在中枢神经系统中,主要调节正常和病理条件下脑细胞的水通量。 本综述重点介绍AQP4与其在水肿形成和消除中的双重作用相关的潜在机制。

关键词: 水通道蛋白-4,脑水肿,中枢神经系统,中风,治疗目标,水通道。

图形摘要
[1]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the american heart association. Circulation 2016; 133(4): e38-e360.
[2]
Zador Z, Stiver S, Wang V, Manley GT. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 2009; 190(2): 159-70.
[3]
Xu X, Wang B, Ren C, et al. Recent progress in vascular aging: mechanisms and its role in age-related diseases. Aging Dis 2017; 8(4): 486-505.
[4]
Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2015; 40(2): 317-28.
[5]
Gomes D, Agasse A, Thiébaud P, et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 2009; 1788(6): 1213-28.
[6]
Takata K, Matsuzaki T, Tajika Y. Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 2004; 39(1): 1-83.
[7]
Vella J, Zammit C, Di Giovanni G, Muscat R, Valentino M. The central role of aquaporins in the pathophysiology of ischemic stroke. Front Cell Neurosci 2015; 8(9): 108.
[8]
Igarashi H, Huber VJ, Tsujita M, Nakada T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci 2011; 32(1): 113-6.
[9]
Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 1994; 269(8): 5497-500.
[10]
Yang B, Ma T, Verkman A. cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel evidence for distinct transcriptional units. J Biochem 1995; 270(39): 22907-13.
[11]
Wspalz T, Fujiyoshi Y, Engel A. The AQP structure and functional implications. Handb Exp Pharmacol 2009; 190: 31-56.
[12]
Cui Y, Bastien DA. Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem Biophys Res Commun 2011; 412(4): 654-9.
[13]
Hub JS, Grubmüller H, Groot BL. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol 2009; 190: 57-76.
[14]
Chu H, Huang C, Ding H, et al. Aquaporin-4 and cerebrovascular diseases. Int J Mol Sci 2016; 17(8): 1249.
[15]
Papadopoulos MC, Verkman A. Aquaporin 4 and neuromyelitis optica. Lancet Neurol 2012; 11(6): 535-44.
[16]
Lu M, Lee MD, Smith BL, et al. The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc Natl Acad Sci USA 1996; 93(20): 10908-12.
[17]
Hinson SR, Romero MF, Popescu BF, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci USA 2012; 109(4): 1245-50.
[18]
Neely JD, Christensen BM, Nielsen S, Agre P. Heterotetrameric composition of aquaporin-4 water channels. Biochem 1999; 38(34): 11156-63.
[19]
Tajima M, Crane JM, Verkman A. Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 2010; 285(11): 8163-70.
[20]
Verkman A, Phuan WP, Asavapanumas N, Tradtrantip L. Biology of AQP4 and Anti‐AQP4 antibody: Therapeutic implications for NMO. Brain Pathol 2013; 23(6): 684-95.
[21]
Yang B, Brown D, Verkman A. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 1996; 271(9): 4577-80.
[22]
Verbavatz JM, Ma T, Gobin R, Verkman AS. Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 1997; 110(22): 2855-60.
[23]
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 2011; 287: 1-41.
[24]
Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 1998; 95(20): 11981-6.
[25]
Rossi A, Moritz TJ, Ratelade J, Verkman AS. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J Cell Sci 2012; 125(18): 4405-12.
[26]
Fenton RA, Moeller HB, Zelenina M, et al. Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 2010; 67(5): 829-40.
[27]
Silberstein C, Bouley R, Huang Y, et al. Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol 2004; 287(3): F501-11.
[28]
Hiroaki Y, Tani K, Kamegawa A, et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 2006; 355(4): 628-39.
[29]
Ho JD, Yeh R, Sandstrom A, et al. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proc Natl Acad Sci USA 2009; 106(18): 7437-42.
[30]
Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA 2006; 103(36): 13532-6.
[31]
Noell S, Fallier-Becker P, Deutsch U, Mack AF, Wolburg H. Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell Tissue Res 2009; 337(2): 185-95.
[32]
Solenov E, Watanabe H, Manley GT, Verkman AS. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 2004; 286(2): C426-32.
[33]
Barbara B. Aquaporin biology and nervous system. Curr Neuropharmacol 2010; 8(2): 97-104.
[34]
Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 2004; 18(11): 1291-3.
[35]
Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord. Neurosci 2004; 127(3): 685-93.
[36]
Nagelhus EA, Veruki ML, Torp R, et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 1998; 18(7): 2506-19.
[37]
Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997; 17(1): 171-80.
[38]
Noell S, Fallier-Becker P, Beyer C, et al. Effects of agrin on the expression and distribution of the water channel protein aquaporin‐4 and volume regulation in cultured astrocytes. Eur J Neurosci 2007; 26(8): 2109-18.
[39]
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 2009; 15(2): 180-93.
[40]
Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 2002; 72(2): 262-5.
[41]
Nicchia GP, Frigeri A, Liuzzi GM, et al. Aquaporin-4-containing astrocytes sustain a temperature-and mercury-insensitive swelling in vitro. Glia 2000; 31(1): 29-38.
[42]
Hsu MS, Seldin M, Lee DJ, et al. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus. Neurosc 2011; 178: 21-32.
[43]
Binder DK, Yao X, Zador Z, et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin‐4 water channels. Glia 2006; 53(6): 631-6.
[44]
Papadopoulos MC, Verkman A. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 2005; 280(14): 13906-12.
[45]
Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc Natl Acad Sci 2003; 100(23): 13615-20.
[46]
Li J, Patil RV, Verkman A. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 2002; 43(2): 573-9.
[47]
Bloch O, Papadopoulos MC, Manley GT, Verkman AS. Aquaporin‐4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 2005; 95(1): 254-62.
[48]
Saadoun S, Tait MJ, Reza A, et al. AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience 2009; 161(3): 764-72.
[49]
Ikeshima-Kataoka H, Abe Y, Yasui M. Aquaporin 4‐dependent expression of glial fibrillary acidic protein and tenascin‐C in activated astrocytes in stab wound mouse brain and in primary culture. J Neurosci Res 2015; 93(1): 121-9.
[50]
Saadoun S, Papadopoulos MC, Watanabe H, et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 2005; 118(24): 5691-8.
[51]
Auguste KI, Jin S, Uchida K, et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 2007; 21(1): 108-16.
[52]
Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta (BBA)-. Biomembranes 2006; 1758(8): 1085-93.
[53]
Huang J, Li Y, Tang Y, et al. CXCR4 antagonist AMD3100 protects blood–brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 2013; 44(1): 190-7.
[54]
Liu Y, Tang GH, Sun YH, et al. The protective role of Tongxinluo on blood–brain barrier after ischemia–reperfusion brain injury. J Ethnopharmacol 2013; 148(2): 632-9.
[55]
Han X, Fink MP, Delude RL. Proinflammatory cytokines cause NO·-dependent and-independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 2003; 19(3): 229-37.
[56]
Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007; 28(1): 12-8.
[57]
Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett 2011; 585(23): 3798-805.
[58]
Tang G, Liu Y, Zhang Z, et al. Mesenchymal stem cells maintain blood‐brain barrier integrity by inhibiting aquaporin‐4 upregulation after cerebral ischemia. Stem Cells 2014; 32(12): 3150-62.
[59]
Tomás-Camardiel M, Venero JL, de Pablos RM, et al. In vivo expression of aquaporin‐4 by reactive microglia. J Neurochem 2004; 91(4): 891-9.
[60]
Ikeshima-Kataoka H, Abe Y, Abe T, Yasui M. Immunological function of aquaporin-4 in stab-wounded mouse brain in concert with a pro-inflammatory cytokine inducer, osteopontin. Mol Cell Neurosci 2013; 56: 65-75.
[61]
Sun H, Liang R, Yang B, et al. Aquaporin-4 mediates communication between astrocyte and microglia: Implications of neuroinflammation in experimental Parkinson’s disease. Neurosci 2016; 317: 65-75.
[62]
Thrane AS, Rappold PM, Fujita T, et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci USA 2011; 108(2): 846-51.
[63]
Szu JI, Binder DK. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory. Front Integr Neurosci 2016; p. 10.
[64]
Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013; 14(4): 265-77.
[65]
Walberer M, Ritschel N, Nedelmann M, et al. Aggravation of infarct formation by brain swelling in a large territorial stroke: a target for neuroprotection? 2008; 109: 287-93.
[66]
Kahle KT, Simard JM, Staley KJ, et al. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiol 2009; 24(4): 257-65.
[67]
Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol 2007; 22(6): 778-84.
[68]
Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the brain: role of aquaporins. Trends Neurosci 2008; 31(1): 37-43.
[69]
Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 2003; 100(4): 2106-11.
[70]
Bloch O, Manley GT. The role of aquaporin-4 in cerebral water transport and edema. Neurosurg Focus 2007; 22(5): 1-7.
[71]
Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res 2000; 78(1): 131-7.
[72]
Wang WW, Xie CL, Zhou LL, Wang GS. The function of aquaporin4 in ischemic brain edema. Clin Neurol Neurosurg 2014; 127: 5-9.
[73]
Fu X, Li Q, Feng Z, Mu D. The roles of aquaporin‐4 in brain edema following neonatal hypoxia ischemia and reoxygenation in a cultured rat astrocyte model. Glia 2007; 55(9): 935-41.
[74]
Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 2007; 22(5): 1-9.
[75]
Araque A. Astrocyte-neuron signaling in the brain--implications for disease. Curr Opin Investig Drugs (London, England: 2000), 2006; 7(7): 619-24.
[76]
de Castro Ribeiro M, Hirt L, Bogousslavsky J, Regli L, Badaut J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 2006; 83(7): 1231-40.
[77]
Meng S, Qiao M, Foniok T, Tuor UI. White matter damage precedes that in gray matter despite similar magnetic resonance imaging changes following cerebral hypoxia-ischemia in neonatal rats. Exp Brain Res 2005; 166(1): 56-60.
[78]
Li Q, Li Z, Mei Y, Guo Y. Neuregulin attenuated cerebral ischemia–Creperfusion injury via inhibiting apoptosis and upregulating aquaporin-4. Neurosci Lett 2008; 443(3): 155-9.
[79]
Betz A, Iannotti F, Hoff J. Brain edema: a classification based on blood-brain barrier integrity. Cerebrovasc Brain Metab Rev 1989; 1(2): 133-54.
[80]
Rash JE, Yasumura T. Direct immunogold labeling of connexins and aquaporin-4 in freeze-fracture replicas of liver, brain, and spinal cord: factors limiting quantitative analysis. Cell Tissue Res 1999; 296(2): 307-21.
[81]
Dobrivojević M, Špiranec K, Sinđić A. Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 2015; 467(2): 201-12.
[82]
Teng Z, Wang A, Wang P, et al. The effect of aquaporin-4 knockout on interstitial fluid flow and the structure of the extracellular space in the deep brain. Aging Dis 2018; 9(5): 808-16.
[83]
Manley GT, Binder DK, Papadopoulos MC, Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neurosci 2004; 129(4): 981-9.
[84]
Bond MR. Assessment of outcome following severe closed head injury. Scott Med J 1978; 23(1): 105-6.
[85]
Huber VJ, Tsujita M, Yamazaki M, Sakimura K, Nakada T. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg Med Chem Lett 2007; 17(5): 1270-3.
[86]
Huber VJ, Tsujita M, Kwee IL, Nakada T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem 2009; 17(1): 418-24.
[87]
Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005; 6(6): 484-94.
[88]
Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 2001; 412(6847): 641-7.
[89]
Juul S. Neuroprotective role of erythropoietin in neonates. The J Matern Fetal Neonatal Med 2012; 25(sup4): 97-9.
[90]
Nichol A, French C, Little L, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 2015; 386(10012): 2499-506.
[91]
Wang R, Li J, Duan Y, et al. Effects of erythropoietin on gliogenesis during cerebral ischemic/reperfusion recovery in adult mice. Aging Dis 2017; 8(4): 410-9.
[92]
Gunnarson E, Song Y, Kowalewski JM, et al. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proc Natl Acad Sci USA 2009; 106(5): 1602-7.
[93]
Tang G, Yang GY. Aquaporin-4: a potential therapeutic target for cerebral edema. Int J Mol Sci 2016; 17(10): 1413.
[94]
Higashida T, Kreipke CW, Rafols JA, et al. The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 2011; 114(1): 92-101.
[95]
Wang Z, Meng CJ, Shen XM, et al. Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood–brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J Mol Neurosci 2012; 48(1): 273-80.
[96]
Higashida T, Peng C, Li J, et al. Hypoxia-inducible factor-1alpha contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res 2011; 8(1): 44-51.
[97]
Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27(4): 697-709.
[98]
Lee JH, Cui HS, Shin SK, et al. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats. Neurochem Res 2013; 38(11): 2276-86.
[99]
Cruz-Orengo L, Holman DW, Dorsey D, et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med 2011; 208: 327-39.
[100]
Xie B, Gu P, Wang W, et al. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy. Am J Transl Res 2016; 8(7): 3241-50.
[101]
Bartel DP. MicroRNAs: target recognition and regulatory functions. cell 2009; 136(2): 215-33.
[102]
Wang Y, Huang J, Ma Y, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 2015; 35(12): 1977-84.
[103]
Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 2012; 20(1): 14-20.
[104]
Arthur FE, Shivers RR, Bowman PD. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 1987; 36(1): 155-9.
[105]
Gan C, Wang C, Tan K. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res 2012; 11(1): 147-52.
[106]
Zheng L, Cheng W, Wang X, et al. Overexpression of microRNA-145 ameliorates astrocyte injury by targeting aquaporin 4 in cerebral ischemic stroke. BioMed Res Int 2017; 2017: 1-9.
[107]
Sepramaniam S, Armugam A, Lim KY, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010; 285(38): 29223-30.
[108]
Zheng Y, Wang L, Chen M, et al. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res 2017; 9(7): 3452-61.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy