Title: Aluminum Induced Immunoexcitotoxicity in Neurodevelopmental and Neurodegenerative Disorders
Volume: 2
Issue: 1
Author(s): Russell L. Blaylock
Affiliation:
Keywords:
Aluminum, aluminofluoride complex, excitotoxicity, immunoexcitotoxicity, microglial activation, nanoscaled aluminum, neurodegeneration, sickness behavior, microglia, basal ganglion
Abstract: A great deal has been learned about the neurotoxicity of aluminum over the past two decades in terms of its
ability to disrupt cellular function. Newer evidence suggests that a more central pathophysiological mechanism may be responsible
for much of the toxicity of aluminum and aluminofluoride compounds on the brain. This mechanism involves
activation of the brain’s innate immune system, primarily the microglia, with a release of neurotoxic concentrations of excitotoxins
and pro-inflammatory cytokines, chemokines and immune mediators. A large number of studies suggest that
excitotoxicity plays a significant role in the neurotoxic action of a number of metals, including aluminum. Recently, researchers
have found that while most of the chronic neurodegenerative effects of these metals are secondary to prolonged
inflammation, it is the enhancement of excitotoxicity by the immune mediators that is responsible for most of the metal’s
toxicity. This enhancement occurs via a crosstalk between cytokine receptors and glutamate receptors. The author coined
the name immunoexcitotoxicity to describe this process. This paper reviews the evidence linking immunoexcitotoxicity to
aluminum’s neurotoxic effects.