Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Medical Sciences

Classification and Immune Function of Coelomocytes in Echinoderms

Author(s): Zhuang Xue*, Tingting Peng and Wei Wang*

Volume 4, Issue 1, 2024

Published on: 02 November, 2023

Page: [25 - 43] Pages: 19

DOI: 10.2174/0122102981266814231016051712

Price: $65

Abstract

The top taxonomic position among non-chordate invertebrates, which make up the evolutionary connection between invertebrates and vertebrates, is held by echinoderms. Their immune responses rely on coelomocyte activity functioning concurrently with a range of humoral components that directly interact with invasive pathogens. However, markedly lower numbers of systematic reviews of the classification and immune function of coelomocytes have been performed compared with those of vertebrates. Studying echinoderm coelomocytes continues to be an important evolutionary vantage point for determining the origins of bilaterian immunity as well as the principles behind the adaptive immune system of vertebrates. This article reviews the classifications and immune functions of coelomocytes (sea urchin, sea cucumber and sea star). It summarizes the research progress on immune-related genes/proteins, signal transduction pathways and effector molecules in echinoderms according to the recent literature. This summary provides a theoretical basis for studying coelomocytes and disease control in echinoderms. In the future, a variety of methods and techniques should be used and combined with the surface receptors of cells to study the classification and function of coelomocytes of echinoderms.

Keywords: Coelomocytes, classification, immunity, echinoderm, humoral defense, cellular defense.

Graphical Abstract
[1]
Malagoli, D. The evolution of the immune system: conservation and diversification; Academic Press, 2016.
[2]
Fearon, D.T. Seeking wisdom in innate immunity. Nature, 1997, 388(6640), 323-324.
[http://dx.doi.org/10.1038/40967] [PMID: 9237746]
[3]
Pancer, Z.; Rast, J.P.; Davidson, E.H. Origins of immunity: Transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics, 1999, 49(9), 773-786.
[http://dx.doi.org/10.1007/s002510050551] [PMID: 10398804]
[4]
Smith, L.C.; Clow, L.A.; Terwilliger, D.P. The ancestral complement system in sea urchins. Immunol. Rev., 2001, 180(1), 16-34.
[http://dx.doi.org/10.1034/j.1600-065X.2001.1800102.x] [PMID: 11414357]
[5]
Branco, P.; Figueiredo, D.; da Silva, J. New insights into innate immune system of sea urchin: Coelomocytes as biosensors for environmental stress. OA Biology, 2014, 2, 2.
[6]
Gross, P.S.; Clow, L.A.; Smith, L.C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics, 2000, 51(12), 1034-1044.
[http://dx.doi.org/10.1007/s002510000234] [PMID: 11061288]
[7]
Deveci, R. Şener, E.; İzzetoğlu, S. Morphological and ultrastructural characterization of sea urchin immune cells. J. Morphol., 2015, 276(5), 583-588.
[http://dx.doi.org/10.1002/jmor.20368] [PMID: 25645676]
[8]
Gowda, N.M.; Goswami, U.; Islam Khan, M. T-antigen binding lectin with antibacterial activity from marine invertebrate, sea cucumber (Holothuria scabra): Possible involvement in differential recognition of bacteria. J. Invertebr. Pathol., 2008, 99(2), 141-145.
[http://dx.doi.org/10.1016/j.jip.2008.04.003] [PMID: 18501924]
[9]
Micael, J.; Alves, M.; Costa, A.; Jones, M. Exploitation and conservation of echinoderms. In: Oceanography and marine biology; CRC Press, 2016; pp. 203-220.
[10]
Veno, P.A.; Strumski, M.A.; Kinsey, W.H. Purification and characterization of echinonectin, a carbohydrate-binding protein from sea urchin eggs. (sea urchin/echinodermata/lectin/echinonectin). Dev. Growth Differ., 1990, 32(3), 315-319.
[http://dx.doi.org/10.1111/j.1440-169X.1990.00315.x] [PMID: 37281479]
[11]
Li, C.; Haug, T.; Stensvåg, K. Antimicrobial peptides in Echinoderms. ISJ-Invert Surviv J, 2010, 7, 132-140.
[12]
Beauregard, K.A.; Truong, N.T.; Zhang, H.; Lin, W.; Beck, G. The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa. Adv. Exp. Med. Biol., 2001, 484, 55-62.
[http://dx.doi.org/10.1007/978-1-4615-1291-2_5] [PMID: 11419006]
[13]
Li, C.; Blencke, H.M.; Haug, T.; Stensvåg, K. Antimicrobial peptides in echinoderm host defense. Dev. Comp. Immunol., 2015, 49(1), 190-197.
[http://dx.doi.org/10.1016/j.dci.2014.11.002] [PMID: 25445901]
[14]
Schillaci, D.; Cusimano, M.; Cunsolo, V.; Saletti, R.; Russo, D.; Vazzana, M.; Vitale, M.; Arizza, V. Immune mediators of sea-cucumber Holothuria tubulosa (Echinodermata) as source of novel antimicrobial and anti-staphylococcal biofilm agents. AMB Express, 2013, 3(1), 35.
[http://dx.doi.org/10.1186/2191-0855-3-35] [PMID: 23800329]
[15]
Schillaci, D.; Arizza, V. Echinoderm antimicrobial peptides to contrast human pathogens. Nat. Prod. Chem. Res., 2013, 1, 1-4.
[16]
Li, C.; Haug, T.; Styrvold, O.B.; Jørgensen, T.Ø.; Stensvåg, K. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol., 2008, 32(12), 1430-1440.
[http://dx.doi.org/10.1016/j.dci.2008.06.013] [PMID: 18656496]
[17]
Schillaci, D.; Cusimano, M.G.; Russo, D.; Arizza, V. Antimicrobial peptides from echinoderms as antibiofilm agents: A natural strategy to combat bacterial infections. Ital. J. Zool., 2014, 81(3), 312-321.
[http://dx.doi.org/10.1080/11250003.2014.922128]
[18]
Arizza, V.; Schillaci, D. Echinoderm antimicrobial peptides: The ancient arms of the deuterostome innate immune system. In: Lessons in Immunity; Elsevier, 2016; pp. 159-176.
[http://dx.doi.org/10.1016/B978-0-12-803252-7.00012-6]
[19]
Nappi, A.J.; Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays, 2000, 22(5), 469-480.
[http://dx.doi.org/10.1002/(SICI)1521-1878(200005)22:5<469:AID-BIES9>3.0.CO;2-4] [PMID: 10797487]
[20]
Jacklet, J.W. Nitric oxide signaling in invertebrates. Invert. Neurosci., 1997, 3(1), 1-14.
[http://dx.doi.org/10.1007/BF02481710] [PMID: 9706698]
[21]
Yang, A.F.; Zhou, Z.C.; He, C.B.; Hu, J.J.; Chen, Z.; Gao, X.G.; Dong, Y.; Jiang, B.; Liu, W.D.; Guan, X.Y.; Wang, X.Y. Analysis of expressed sequence tags from body wall, intestine and respiratory tree of sea cucumber (Apostichopus japonicus). Aquaculture, 2009, 296(3-4), 193-199.
[http://dx.doi.org/10.1016/j.aquaculture.2009.08.016]
[22]
Chen, Z.; Zhou, Z.; Yang, A.; Dong, Y.; Guan, X.; Jiang, B.; Wang, B. Characterization and expression analysis of a complement component gene in sea cucumber (Apostichopus japonicus). J. Ocean Univ. China, 2015, 14(6), 1096-1104.
[http://dx.doi.org/10.1007/s11802-015-2696-8]
[23]
Chiaramonte, M.; Russo, R. The echinoderm innate humoral immune response. Ital. J. Zool., 2015, 82(3), 300-308.
[http://dx.doi.org/10.1080/11250003.2015.1061615]
[24]
Jiang, J.; Zhou, Z.; Dong, Y.; Sun, H.; Chen, Z.; Yang, A.; Gao, S.; Wang, B.; Jiang, B.; Guan, X. Phenoloxidase from the sea cucumber Apostichopus japonicus: cDNA cloning, expression and substrate specificity analysis. Fish Shellfish Immunol., 2014, 36(2), 344-351.
[http://dx.doi.org/10.1016/j.fsi.2013.12.001] [PMID: 24355405]
[25]
Jiang, J.; Zhou, Z.; Dong, Y.; Guan, X.; Wang, B.; Jiang, B.; Yang, A.; Chen, Z.; Gao, S.; Sun, H. Characterization of phenoloxidase from the sea cucumber Apostichopus japonicus. Immunobiology, 2014, 219(6), 450-456.
[http://dx.doi.org/10.1016/j.imbio.2014.02.006] [PMID: 24631331]
[26]
Vazzana, M.; Celi, M.; Chiaramonte, M.; Inguglia, L.; Russo, D.; Ferrantelli, V.; Battaglia, D.; Arizza, V. Cytotoxic activity of Holothuria tubulosa (Echinodermata) coelomocytes. Fish Shellfish Immunol., 2018, 72, 334-341.
[http://dx.doi.org/10.1016/j.fsi.2017.11.021] [PMID: 29138098]
[27]
Lin, W.; Zhang, H.; Beck, G. Phylogeny of natural cytotoxicity: Cytotoxic activity of coelomocytes of the purple sea urchin, Arbacia punctulata. J. Exp. Zool., 2001, 290(7), 741-750.
[http://dx.doi.org/10.1002/jez.1124] [PMID: 11748622]
[28]
Arizza, V.; Giaramita, F.T.; Parrinello, D.; Cammarata, M.; Parrinello, N. Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, 147(2), 389-394.
[http://dx.doi.org/10.1016/j.cbpa.2007.01.022] [PMID: 17329136]
[29]
Dong, Y.; Sun, H.; Zhou, Z.; Yang, A.; Chen, Z.; Guan, X.; Gao, S.; Wang, B.; Jiang, B.; Jiang, J. Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge. Int. J. Mol. Sci., 2014, 15(11), 19472-19486.
[http://dx.doi.org/10.3390/ijms151119472] [PMID: 25421239]
[30]
Jobson, S.; Hamel, J.F.; Mercier, A. Rainbow bodies: Revisiting the diversity of coelomocyte aggregates and their synthesis in echinoderms. Fish Shellfish Immunol., 2022, 122, 352-365.
[http://dx.doi.org/10.1016/j.fsi.2022.02.009] [PMID: 35167932]
[31]
Caulier, G.; Hamel, J.F.; Mercier, A. From coelomocytes to colored aggregates: Cellular components and processes involved in the immune response of the holothuroid cucumaria frondosa. Biol. Bull., 2020, 239(2), 95-114.
[http://dx.doi.org/10.1086/710355] [PMID: 33151755]
[32]
Pagliara, P.; Carnevali, C.; Burighel, P.; Ballarin, L. The spherule cells of Holothuria polii Delle Chiaie, 1823 (Aspidochirota, Holothuroidea) during brown body formation: An ultrastructural study. J. Submicrosc. Cytol. Pathol., 2003, 35(3), 295-301.
[PMID: 14690178]
[33]
Pinsino, A.; Thorndyke, M.C.; Matranga, V. Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones, 2007, 12(4), 331-341.
[http://dx.doi.org/10.1379/CSC-288.1] [PMID: 18229452]
[34]
Smith, L.C.; Ghosh, J.; Buckley, K.M.; Clow, L.A.; Dheilly, N.M.; Haug, T.; Henson, J.H.; Li, C.; Lun, C.M.; Majeske, A.J. Echinoderm immunity. In: Invertebrate immunity; Springer, 2010; pp. 260-301.
[http://dx.doi.org/10.1007/978-1-4419-8059-5_14]
[35]
Franco, C.F.; Santos, R.; Coelho, A.V. Proteome characterization of sea star coelomocytes - The innate immune effector cells of echinoderms. Proteomics, 2011, 11(17), 3587-3592.
[http://dx.doi.org/10.1002/pmic.201000745] [PMID: 21751360]
[36]
Hamel, J.F.; Jobson, S.; Caulier, G.; Mercier, A. Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm. Sci. Rep., 2021, 11(1), 10691.
[http://dx.doi.org/10.1038/s41598-021-89805-0] [PMID: 34021182]
[37]
Kudriavtsev, I.V.; Polevshchikov, A.V. Comparative immunological analysis of echinoderm cellular and humoral defense factors. Zh. Obshch. Biol., 2004, 65(3), 218-231.
[PMID: 15329012]
[38]
Li, Q.; Qi, R.; Wang, Y.; Ye, S.; Qiao, G.; Li, H. Comparison of cells free in coelomic and water-vascular system of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol., 2013, 35(5), 1654-1657.
[http://dx.doi.org/10.1016/j.fsi.2013.07.020] [PMID: 23911653]
[39]
Gianasi, B.L.; Hamel, J.F.; Montgomery, E.M.; Sun, J.; Mercier, A. Current knowledge on the biology, ecology, and commercial exploitation of the sea cucumber cucumaria frondosa. Rev. Fish. Sci. Aquacult., 2021, 29(4), 582-653.
[http://dx.doi.org/10.1080/23308249.2020.1839015]
[40]
Matranga, V.; Toia, G.; Bonaventura, R.; Müller, W.E.G. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones, 2000, 5(2), 113-120.
[http://dx.doi.org/10.1379/1466-1268(2000)005<0113:CABRTE>2.0.CO;2] [PMID: 11147962]
[41]
Xing, K.; Yang, H.S.; Chen, M.Y. Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicus. Aquat. Biol., 2008, 2, 85-92.
[http://dx.doi.org/10.3354/ab00038]
[42]
Ramírez-Gómez, F.; García-Arrarás, J. Echinoderm immunity. ISJ-Invert Surviv J, 2010, 7, 211-220.
[43]
Chia, F.S.; Xing, J. Echinoderm coelomocytes. Zool. Stud., 1996, 35, 231-254.
[44]
Kanungo, K. In vitro studies on the effects of cell-free coelomic fluid, calcium, and/or magnesium on clumping of coelomocytes of the sea star Asterias forbesi (Echinodermata: Asteroidea). Biol. Bull., 1982, 163(3), 438-452.
[http://dx.doi.org/10.2307/1541455]
[45]
Eliseikina, M.G.; Magarlamov, T.Y. Coelomocyte morphology in the Holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russ. J. Mar. Biol., 2002, 28(3), 197-202.
[http://dx.doi.org/10.1023/A:1016801521216]
[46]
Kanungo, K. The coelomocytes of asteroid echinoderms. In: Invertebrate Blood; Springer, 1984; pp. 7-39.
[http://dx.doi.org/10.1007/978-1-4684-4766-8_2]
[47]
Johnson, P.T. The coelomic elements of sea urchins (Strongylocentrotus) I. The normal coelomocytes; Their morphology and dynamics in hanging drops. J. Invertebr. Pathol., 1969, 13(1), 25-41.
[http://dx.doi.org/10.1016/0022-2011(69)90236-5] [PMID: 5775463]
[48]
Queiroz, V.; Arizza, V.; Vazzana, M.; Rozas, E-E.; Custódio, M-R. Cytocentrifugation as an additional method to study echinoderm coelomocytes: A comparative approach combining living cells, stained preparations, and energy-dispersive x-ray spectroscopy. Rev. Biol. Trop., 2021, 69(Suppl. 1), 171-184.
[http://dx.doi.org/10.15517/rbt.v69iSuppl.1.46348]
[49]
Smith, L.C.; Hawley, T.S.; Henson, J.H.; Majeske, A.J.; Oren, M.; Rosental, B. Methods for collection, handling, and analysis of sea urchin coelomocytes. Methods Cell Biol., 2019, 150, 357-389.
[http://dx.doi.org/10.1016/bs.mcb.2018.11.009] [PMID: 30777184]
[50]
Brockton, V.; Henson, J.H.; Raftos, D.A.; Majeske, A.J.; Kim, Y.O.; Smith, L.C. Localization and diversity of 185/333 proteins from the purple sea urchin – unexpected protein-size range and protein expression in a new coelomocyte type. J. Cell Sci., 2008, 121(3), 339-348.
[http://dx.doi.org/10.1242/jcs.012096] [PMID: 18198192]
[51]
Queiroz, V.; Mauro, M.; Arizza, V.; Custódio, M.R.; Vazzana, M. The use of an integrative approach to identify coelomocytes in three species of the genus Holothuria (Echinodermata). Invertebr. Biol., 2022, 141(1), e12357.
[http://dx.doi.org/10.1111/ivb.12357]
[52]
Liao, W.Y.; Fugmann, S.D. Lectins identify distinct populations of coelomocytes in Strongylocentrotus purpuratus. PLoS One, 2017, 12(11), e0187987.
[http://dx.doi.org/10.1371/journal.pone.0187987] [PMID: 29125863]
[53]
Andrade, C.; Oliveira, B.; Guatelli, S.; Martinez, P.; Simões, B.; Bispo, C.; Ferrario, C.; Bonasoro, F.; Rino, J.; Sugni, M.; Gardner, R.; Zilhão, R.; Coelho, A.V. Characterization of coelomic fluid cell types in the starfish marthasterias glacialis using a flow cytometry/imaging combined approach. Front. Immunol., 2021, 12, 641664.
[http://dx.doi.org/10.3389/fimmu.2021.641664] [PMID: 33815394]
[54]
Barela Hudgell, M.A.; Grayfer, L.; Smith, L.C. A flow cytometry based approach to identify distinct coelomocyte subsets of the purple sea urchin, Strongylocentrotus purpuratus. Dev. Comp. Immunol., 2022, 130, 104352.
[http://dx.doi.org/10.1016/j.dci.2022.104352] [PMID: 35065955]
[55]
Barela Hudgell, M.A.; Grayfer, L.; Smith, L.C. Coelomocyte populations in the sea urchin, Strongylocentrotus purpuratus, undergo dynamic changes in response to immune challenge. Front. Immunol., 2022, 13, 940852.
[http://dx.doi.org/10.3389/fimmu.2022.940852] [PMID: 36119116]
[56]
Pinsino, A.; Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol., 2015, 49(1), 198-205.
[http://dx.doi.org/10.1016/j.dci.2014.11.013] [PMID: 25463510]
[57]
Queiroz, V.; Arizza, V.; Vazzana, M.; Custódio, M.R. Comparative evaluation of coelomocytes in Paracentrotus sea urchins: Description of new cell types and insights on spherulocyte maturation and sea urchin physiology. Zool. Anz., 2022, 300, 27-40.
[http://dx.doi.org/10.1016/j.jcz.2022.06.008]
[58]
Smith, L.C.; Rast, J.P.; Brockton, V.; Terwilliger, D.P.; Nair, S.V.; Buckley, K.M.; Majeske, A.J. The sea urchin immune system. ISJ-Invert Surviv J, 2006, 3, 25-39.
[PMID: 22566951]
[59]
Golconda, P.; Buckley, K.M.; Reynolds, C.R.; Romanello, J.P.; Smith, L.C. The axial organ and the pharynx are sites of hematopoiesis in the sea urchin. Front. Immunol., 2019, 10, 870.
[http://dx.doi.org/10.3389/fimmu.2019.00870] [PMID: 31105697]
[60]
Li, Q.; Ren, Y.; Luan, L.; Zhang, J.; Qiao, G.; Wang, Y.; Ye, S.; Li, R. Localization and characterization of hematopoietic tissues in adult sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol., 2019, 84, 1-7.
[http://dx.doi.org/10.1016/j.fsi.2018.09.058] [PMID: 30253179]
[61]
García-Arrarás, J.E.; Bello, S.A.; Malavez, S. The mesentery as the epicenter for intestinal regeneration. Semin. Cell Dev. Biol., 2019, 92, 45-54.
[http://dx.doi.org/10.1016/j.semcdb.2018.09.001]
[62]
Li, Q.; Li, Y.; Li, H.; Wang, Y.N.; Xu, D.H. Production, characterization and application of monoclonal antibody to spherulocytes: A subpopulation of coelomocytes of Apostichopus japonicus. Fish Shellfish Immunol., 2010, 29(5), 832-838.
[http://dx.doi.org/10.1016/j.fsi.2010.07.024] [PMID: 20659565]
[63]
Hernroth, B.; Farahani, F.; Brunborg, G.; Dupont, S.; Dejmek, A.; Nilsson Sköld, H. Possibility of mixed progenitor cells in sea star arm regeneration. J. Exp. Zoolog. B Mol. Dev. Evol., 2010, 314B(6), 457-468.
[http://dx.doi.org/10.1002/jez.b.21352] [PMID: 20700890]
[64]
Wang, Y.; Meng, S.; Zhang, J.; Ding, J.; Li, Q. Production, characterization and application of monoclonal antibodies to the coelomocytes of sea urchin Strongylocentrotus intermedius. Fish Shellfish Immunol., 2018, 75, 301-307.
[http://dx.doi.org/10.1016/j.fsi.2018.01.048] [PMID: 29407619]
[65]
Lv, Z.; Guo, M.; Zhao, X.; Shao, Y.; Zhang, W.; Li, C. IL-17/IL-17 Receptor pathway-mediated inflammatory response in Apostichopus japonicus supports the conserved functions of cytokines in invertebrates. J. Immunol., 2022, 208(2), 464-479.
[http://dx.doi.org/10.4049/jimmunol.2100047] [PMID: 34965964]
[66]
Boolootian, R.A.; Giese, A.C. Coelomic corpuscles of echinoderms. Biol. Bull., 1958, 115(1), 53-63.
[http://dx.doi.org/10.2307/1539092]
[67]
Gross, P.S.; Al-Sharif, W.Z.; Clow, L.A.; Smith, L.C. Echinoderm immunity and the evolution of the complement system. Dev. Comp. Immunol., 1999, 23(4-5), 429-442.
[http://dx.doi.org/10.1016/S0145-305X(99)00022-1] [PMID: 10426433]
[68]
Matranga, V.; Pinsino, A.; Celi, M.; Natoli, A.; Bonaventura, R.; Schröder, H.C.; Müller, W.E.G. Monitoring chemical and physical stress using sea urchin immune cells. Prog. Mol. Subcell. Biol., 2005, 39, 85-110.
[http://dx.doi.org/10.1007/3-540-27683-1_5] [PMID: 17152695]
[69]
Smith, L.C.; Davidson, E.H. The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny. Ann. N. Y. Acad. Sci., 1994, 712(1), 213-226.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb33575.x] [PMID: 8192333]
[70]
CH Ho, E.; Buckley, K.M.; Schrankel, C.S.; Schuh, N.W.; Hibino, T.; Solek, C.M.; Bae, K.; Wang, G.; Rast, J.P. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol. Cell Biol., 2016, 94(9), 861-874.
[http://dx.doi.org/10.1038/icb.2016.51] [PMID: 27192936]
[71]
Hirano, M. Echinoderm immunity: is the larval immune system immature? Immunol. Cell Biol., 2016, 94(9), 809-811.
[http://dx.doi.org/10.1038/icb.2016.67] [PMID: 27527904]
[72]
Queiroz, V.; Muxel, S.M.; Inguglia, L.; Chiaramonte, M.; Custódio, M.R. Comparative study of coelomocytes from Arbacia lixula and Lythechinus variegatus: Cell characterization and in vivo evidence of the physiological function of vibratile cells. Fish Shellfish Immunol., 2021, 110, 1-9.
[http://dx.doi.org/10.1016/j.fsi.2020.12.014] [PMID: 33378698]
[73]
Taguchi, M.; Tsutsui, S.; Nakamura, O. Differential count and time-course analysis of the cellular composition of coelomocyte aggregate of the Japanese sea cucumber Apostichopus japonicus. Fish Shellfish Immunol., 2016, 58, 203-209.
[http://dx.doi.org/10.1016/j.fsi.2016.06.060] [PMID: 27633669]
[74]
Vazzana, M.; Siragusa, T.; Arizza, V.; Buscaino, G.; Celi, M. Cellular responses and HSP70 expression during wound healing in Holothuria tubulosa (Gmelin, 1788). Fish Shellfish Immunol., 2015, 42(2), 306-315.
[http://dx.doi.org/10.1016/j.fsi.2014.11.010] [PMID: 25463287]
[75]
Yu, K.; Zhao, X.; Xiang, Y.; Li, C. Phenotypic and functional characterization of two coelomocyte subsets in Apostichopus japonicus. Fish Shellfish Immunol., 2023, 132, 108453.
[http://dx.doi.org/10.1016/j.fsi.2022.108453] [PMID: 36471560]
[76]
Taguchi, M.; Tanaka, C.; Tsutsui, S.; Nakamura, O. Galactose-binding C-type lectin promotes cellular aggregation of coelomocytes in Sea Cucumber. Front. Immunol., 2021, 12, 783798.
[http://dx.doi.org/10.3389/fimmu.2021.783798] [PMID: 34970266]
[77]
Li, H.; Chen, J.; Lu, J.; Li, Q.; Soo, I.P. Type and quantity of blood cells and coelomocytes in Apostichopus japonicus. Shui Sheng Sheng Wu Hsueh Bao, 2009, 33(2), 207-213.
[http://dx.doi.org/10.3724/SP.J.1035.2009.00207]
[78]
Ramírez-Gómez, F.; Aponte-Rivera, F.; Méndez-Castaner, L.; García-Arrarás, J.E. Changes in holothurian coelomocyte populations following immune stimulation with different molecular patterns. Fish Shellfish Immunol., 2010, 29(2), 175-185.
[http://dx.doi.org/10.1016/j.fsi.2010.03.013] [PMID: 20412860]
[79]
Li, Q.; Ren, Y.; Liang, C.; Qiao, G.; Wang, Y.; Ye, S.; Li, R. Regeneration of coelomocytes after evisceration in the sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol., 2018, 76, 266-271.
[http://dx.doi.org/10.1016/j.fsi.2018.03.013] [PMID: 29526698]
[80]
Chen, T.; Tian, J.; Ding, Y.; Sui, L.; Song, L. Analysis on categories fo coelomocytes in sea cucumber Apostichopus japonicus and its mortality with relation to temperature. Dalian Gongye Daxue Xuebao, 2016, 35, 407-410.
[81]
Gorshkov, A.N.; Blinova, M.I.; Pinaev, G.P. Ultrastructure of coelomic epithelium and coelomocytes of the starfish Asterias rubens L. in norm and after wounding. Cell Tissue Biol., 2009, 3(5), 477-490.
[http://dx.doi.org/10.1134/S1990519X09050113]
[82]
Yu, M.; Wang, T.; Zhang, F. Preliminary study on the function of coelomocyte of the Roche sea jigger (Asterias rollestoni Bell). Xiandai Shengwu Yixue Jinzhan, 2008, 8, 1452-1456.
[83]
Sharlaimova, N.S.; Petukhova, O.A. Characteristics of populations of the coelomic fluid and coelomic epithelium cells from the starfish Asterias rubens L. able attach to and spread on various substrates. Cell Tissue Biol., 2012, 6(2), 176-188.
[http://dx.doi.org/10.1134/S1990519X12020113]
[84]
Leclerc, M. Cell-mediated immune responses in the sea-star asterias rubens (echinoderm). Am. J. Immunol., 2012, 8(4), 191-195.
[http://dx.doi.org/10.3844/ajisp.2012.191.195]
[85]
Leclerc, M. Innate and adaptative immunity in the sea-star Asterias rubens. Am. J. Immunol., 2012, 8(3), 78-83.
[http://dx.doi.org/10.3844/ajisp.2012.78.83]
[86]
Coteur, G.; DeBecker, G.; Warnau, M.; Jangoux, M.; Dubois, P. Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata). Eur. J. Cell Biol., 2002, 81(7), 413-418.
[http://dx.doi.org/10.1078/0171-9335-00254] [PMID: 12160149]
[87]
Holm, K.; Hernroth, B.; Thorndyke, M. Coelomocyte numbers and expression of HSP70 in wounded sea stars during hypoxia. Cell Tissue Res., 2008, 334(2), 319-325.
[http://dx.doi.org/10.1007/s00441-008-0674-9] [PMID: 18766381]
[88]
Karetin, Y.; Pushchin, I.I. Analysis of the shapes of coelomocytes of Aphelasterias japonica in vitro (Echinodermata: Asteroidea). Protoplasma, 2017, 254(4), 1805-1811.
[http://dx.doi.org/10.1007/s00709-017-1078-z] [PMID: 28124741]
[89]
Smith, V. The echinoderms. In: Invertebrate Blood Cells; Academic Press: London, 1981; Vol. 2, pp. 513-562.
[90]
Holm, K.; Dupont, S.; Sköld, H.; Stenius, A.; Thorndyke, M.; Hernroth, B. Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). J. Exp. Biol., 2008, 211(16), 2551-2558.
[http://dx.doi.org/10.1242/jeb.018507] [PMID: 18689408]
[91]
Bossche, J.P.V.; Jangoux, M. Epithelial origin of starfish coelomocytes. Nature, 1976, 261(5557), 227-228.
[http://dx.doi.org/10.1038/261227a0] [PMID: 1272394]
[92]
Ratcliffe, N.; Rowley, A. Invertebrate blood cells; Academic Press: London, New York, 1981.
[93]
Lebestky, T.; Chang, T.; Hartenstein, V.; Banerjee, U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science, 2000, 288(5463), 146-149.
[http://dx.doi.org/10.1126/science.288.5463.146] [PMID: 10753120]
[94]
Li, Q.; Qi, R.; Wang, Y.; Qiao, G.; Ye, S.; Li, H. Ontogenesis of coelomocytes in sea cucumber (Apostichopus japonicus) studied with probes of monoclonal antibody. Fish Shellfish Immunol., 2014, 41(2), 260-263.
[http://dx.doi.org/10.1016/j.fsi.2014.09.005] [PMID: 25218682]
[95]
Smith, L.C.; Arizza, V.; Hudgell, M.A.B.; Barone, G.; Bodnar, A.G.; Buckley, K.M.; Cunsolo, V.; Dheilly, N.M.; Franchi, N.; Fugmann, S.D. Echinodermata: The complex immune system in echinoderms. In: Advances in comparative immunology; Springer, 2018; pp. 409-501.
[http://dx.doi.org/10.1007/978-3-319-76768-0_13]
[96]
Heyland, A.; Schuh, N.; Rast, J. Sea urchin larvae as a model for postembryonic development. Results Probl. Cell Differ., 2018, 65, 137-161.
[http://dx.doi.org/10.1007/978-3-319-92486-1_8] [PMID: 30083919]
[97]
Schrankel, C.S.; Solek, C.M.; Buckley, K.M.; Anderson, M.K.; Rast, J.P. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev. Biol., 2016, 416(1), 149-161.
[http://dx.doi.org/10.1016/j.ydbio.2016.05.034] [PMID: 27265865]
[98]
Hetzel, H.R. Studies on holothurian coelomocytes. II. The origin of coelomocytes and the formation of brown bodies. Biol. Bull., 1965, 128(1), 102-111.
[http://dx.doi.org/10.2307/1539393]
[99]
Fontaine, A.R.; Lambert, P. The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can. J. Zool., 1977, 55(9), 1530-1544.
[http://dx.doi.org/10.1139/z77-198] [PMID: 907933]
[100]
Sharlaimova, N.; Shabelnikov, S.; Petukhova, O. Small coelomic epithelial cells of the starfish Asterias rubens L. that are able to proliferate in vivo and in vitro. Cell Tissue Res., 2014, 356(1), 83-95.
[http://dx.doi.org/10.1007/s00441-013-1766-8] [PMID: 24408073]
[101]
Bachmann, S.; Goldschmid, A. The echinoid axial complex and Tiedemann bodies–the different pathways and accumulation sites of coelomocytes with regard to waste disposal in the organism; CRC Press, 1980.
[102]
Maes, P.; Jangoux, M. Occurrence of a well-developed pericentriolar complex within the cytoplasm of asteroid coelomocytes (Echinodermata). Dev. Comp. Immunol., 1983, 7(4), 691-694.
[http://dx.doi.org/10.1016/0145-305X(83)90095-2]
[103]
Guatelli, S.; Ferrario, C.; Bonasoro, F.; Anjo, S.I.; Manadas, B.; Candia Carnevali, M.D.; Varela Coelho, A.; Sugni, M. More than a simple epithelial layer: Multifunctional role of echinoderm coelomic epithelium. Cell Tissue Res., 2022, 390(2), 207-227.
[http://dx.doi.org/10.1007/s00441-022-03678-x] [PMID: 36083358]
[104]
Chiaramonte, M.; Arizza, V.; La Rosa, S.; Queiroz, V.; Mauro, M.; Vazzana, M.; Inguglia, L. Allograft inflammatory factor AIF-1: Early immune response in the Mediterranean sea urchin Paracentrotus lividus. Zoology, 2020, 142, 125815.
[http://dx.doi.org/10.1016/j.zool.2020.125815] [PMID: 32683241]
[105]
Li, H.; Chen, J.; Li, Q.; Zhang, M.M.; Piao, S.Y. Phagocytosis and agglutination of coelomocytes in sea cucumber Apostichopus japonicus with relation to water temperature. J Dalian Fisheries Uni, 2009, 24, 189-194.
[106]
Silva, J.R.M.C.; Peck, L. Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler 1906) at 0°C. Polar Biol., 2000, 23(4), 225-230.
[http://dx.doi.org/10.1007/s003000050438]
[107]
Silva, J.R.M.C.; Hernandez-Blazquez, F.J.; Porto-Neto, L.R.; Borges, J.C.S. Comparative study of in vivo and in vitro phagocytosis including germicidal capacity in Odontaster validus (Koehler, 1906) at 0°C. J. Invertebr. Pathol., 2001, 77(3), 180-185.
[http://dx.doi.org/10.1006/jipa.2001.5016] [PMID: 11356053]
[108]
Dupont, S.; Thorndyke, M. Relationship between CO2-driven changes in extracellular acid–base balance and cellular immune response in two polar echinoderm species. J. Exp. Mar. Biol. Ecol., 2012, 424-425, 32-37.
[http://dx.doi.org/10.1016/j.jembe.2012.05.007]
[109]
DeFilippo, J.; Ebersole, J.; Beck, G. Comparison of phagocytosis in three Caribbean Sea urchins. Dev. Comp. Immunol., 2018, 78, 14-25.
[http://dx.doi.org/10.1016/j.dci.2017.09.007] [PMID: 28916267]
[110]
Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol., 2002, 32(10), 1295-1309.
[http://dx.doi.org/10.1016/S0965-1748(02)00092-9] [PMID: 12225920]
[111]
Karp, R.D.; Coffaro, K.A. Cellular defense systems of the Echinodermata. In: Phylogeny and Ontogeny; Springer, 1982; pp. 257-282.
[http://dx.doi.org/10.1007/978-1-4684-4166-6_7]
[112]
Gliński, Z.; Jarosz, J. Immune phenomena in echinoderms. Arch. Immunol. Ther. Exp. (Warsz.), 2000, 48(3), 189-193.
[PMID: 10912624]
[113]
Bertheussen, K.; Seljelid, R. Echinoid phagocytes in vitro. Exp. Cell Res., 1978, 111(2), 401-412.
[http://dx.doi.org/10.1016/0014-4827(78)90185-4] [PMID: 627244]
[114]
Marino, R.; Kimura, Y.; De Santis, R.; Lambris, J.D.; Pinto, M. Complement in urochordates: Cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics, 2002, 53(12), 1055-1064.
[http://dx.doi.org/10.1007/s00251-001-0421-9] [PMID: 11904683]
[115]
Majeske, A.J.; Bayne, C.J.; Smith, L.C. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide. PLoS One, 2013, 8(4), e61419.
[http://dx.doi.org/10.1371/journal.pone.0061419] [PMID: 23613847]
[116]
Bertheussen, K. Receptors for complement on echinoid phagocytes. II. Purified human complement mediates echinoid phagocytosis. Dev. Comp. Immunol., 1982, 6(4), 635-642.
[PMID: 7160510]
[117]
Dan-Sohkawa, M.; Suzuki, J.; Towa, S.; Kaneko, H. A comparative study on the fusogenic nature of echinoderm and nonechinoderm phagocytes in vitro. J. Exp. Zool., 1993, 267(1), 67-75.
[http://dx.doi.org/10.1002/jez.1402670110]
[118]
Metchnikoff, E. Lectures on the comparative pathology of inflammation: Delivered at the Pasteur Institute in 1891 Рипол Классик, 1893.
[119]
Jans, D.; Dubois, P.; Jangoux, M. Defensive mechanisms of holothuroids (Echinodermata): Formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa. Cell Tissue Res., 1995, 283(1), 99-106.
[http://dx.doi.org/10.1007/s004410050517]
[120]
Clow, L.A.; Raftos, D.A.; Gross, P.S.; Smith, L.C. The sea urchin complement homologue, SpC3, functions as an opsonin. J. Exp. Biol., 2004, 207(12), 2147-2155.
[http://dx.doi.org/10.1242/jeb.01001] [PMID: 15143147]
[121]
Boolootian, R.A.; Giese, A.C. Clotting of echinoderm coelomic fluid. J. Exp. Zool., 1959, 140(2), 207-229.
[http://dx.doi.org/10.1002/jez.1401400203] [PMID: 13802664]
[122]
Canicattí, C.; Farina-Lipari, E. Dynamic and morphological aspects of coelomocyte clotting in Holothuria polii. J. Invertebr. Pathol., 1990, 56(1), 63-69.
[http://dx.doi.org/10.1016/0022-2011(90)90145-V]
[123]
Edds, K.T. Dynamic aspects of filopodial formation by reorganization of microfilaments. J. Cell Biol., 1977, 73(2), 479-491.
[http://dx.doi.org/10.1083/jcb.73.2.479] [PMID: 558198]
[124]
Jobson, S.; Hamel, J.F.; Hughes, T.; Mercier, A. Cellular, hormonal, and behavioral responses of the Holothuroid cucumaria frondosa to environmental stressors. Front. Mar. Sci., 2021, 8, 695753.
[http://dx.doi.org/10.3389/fmars.2021.695753]
[125]
Romero, A.; Novoa, B.; Figueras, A. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation. Dev. Comp. Immunol., 2016, 62, 29-38.
[http://dx.doi.org/10.1016/j.dci.2016.04.018] [PMID: 27113124]
[126]
Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Angerer, L.M.; Arnone, M.I.; Burgess, D.R.; Burke, R.D.; Coffman, J.A.; Dean, M.; Elphick, M.R.; Ettensohn, C.A.; Foltz, K.R.; Hamdoun, A.; Hynes, R.O.; Klein, W.H.; Marzluff, W.; McClay, D.R.; Morris, R.L.; Mushegian, A.; Rast, J.P.; Smith, L.C.; Thorndyke, M.C.; Vacquier, V.D.; Wessel, G.M.; Wray, G.; Zhang, L.; Elsik, C.G.; Ermolaeva, O.; Hlavina, W.; Hofmann, G.; Kitts, P.; Landrum, M.J.; Mackey, A.J.; Maglott, D.; Panopoulou, G.; Poustka, A.J.; Pruitt, K.; Sapojnikov, V.; Song, X.; Souvorov, A.; Solovyev, V.; Wei, Z.; Whittaker, C.A.; Worley, K.; Durbin, K.J.; Shen, Y.; Fedrigo, O.; Garfield, D.; Haygood, R.; Primus, A.; Satija, R.; Severson, T.; Gonzalez-Garay, M.L.; Jackson, A.R.; Milosavljevic, A.; Tong, M.; Killian, C.E.; Livingston, B.T.; Wilt, F.H.; Adams, N.; Bellé, R.; Carbonneau, S.; Cheung, R.; Cormier, P.; Cosson, B.; Croce, J.; Fernandez-Guerra, A.; Genevière, A.M.; Goel, M.; Kelkar, H.; Morales, J.; Mulner-Lorillon, O.; Robertson, A.J.; Goldstone, J.V.; Cole, B.; Epel, D.; Gold, B.; Hahn, M.E.; Howard-Ashby, M.; Scally, M.; Stegeman, J.J.; Allgood, E.L.; Cool, J.; Judkins, K.M.; McCafferty, S.S.; Musante, A.M.; Obar, R.A.; Rawson, A.P.; Rossetti, B.J.; Gibbons, I.R.; Hoffman, M.P.; Leone, A.; Istrail, S.; Materna, S.C.; Samanta, M.P.; Stolc, V.; Tongprasit, W.; Tu, Q.; Bergeron, K.F.; Brandhorst, B.P.; Whittle, J.; Berney, K.; Bottjer, D.J.; Calestani, C.; Peterson, K.; Chow, E.; Yuan, Q.A.; Elhaik, E.; Graur, D.; Reese, J.T.; Bosdet, I.; Heesun, S.; Marra, M.A.; Schein, J.; Anderson, M.K.; Brockton, V.; Buckley, K.M.; Cohen, A.H.; Fugmann, S.D.; Hibino, T.; Loza-Coll, M.; Majeske, A.J.; Messier, C.; Nair, S.V.; Pancer, Z.; Terwilliger, D.P.; Agca, C.; Arboleda, E.; Chen, N.; Churcher, A.M.; Hallböök, F.; Humphrey, G.W.; Idris, M.M.; Kiyama, T.; Liang, S.; Mellott, D.; Mu, X.; Murray, G.; Olinski, R.P.; Raible, F.; Rowe, M.; Taylor, J.S.; Tessmar-Raible, K.; Wang, D.; Wilson, K.H.; Yaguchi, S.; Gaasterland, T.; Galindo, B.E.; Gunaratne, H.J.; Juliano, C.; Kinukawa, M.; Moy, G.W.; Neill, A.T.; Nomura, M.; Raisch, M.; Reade, A.; Roux, M.M.; Song, J.L.; Su, Y.H.; Townley, I.K.; Voronina, E.; Wong, J.L.; Amore, G.; Branno, M.; Brown, E.R.; Cavalieri, V.; Duboc, V.; Duloquin, L.; Flytzanis, C.; Gache, C.; Lapraz, F.; Lepage, T.; Locascio, A.; Martinez, P.; Matassi, G.; Matranga, V.; Range, R.; Rizzo, F.; Röttinger, E.; Beane, W.; Bradham, C.; Byrum, C.; Glenn, T.; Hussain, S.; Manning, G.; Miranda, E.; Thomason, R.; Walton, K.; Wikramanayke, A.; Wu, S.Y.; Xu, R.; Brown, C.T.; Chen, L.; Gray, R.F.; Lee, P.Y.; Nam, J.; Oliveri, P.; Smith, J.; Muzny, D.; Bell, S.; Chacko, J.; Cree, A.; Curry, S.; Davis, C.; Dinh, H.; Dugan-Rocha, S.; Fowler, J.; Gill, R.; Hamilton, C.; Hernandez, J.; Hines, S.; Hume, J.; Jackson, L.; Jolivet, A.; Kovar, C.; Lee, S.; Lewis, L.; Miner, G.; Morgan, M.; Nazareth, L.V.; Okwuonu, G.; Parker, D.; Pu, L.L.; Thorn, R.; Wright, R. The genome of the sea urchin Strongylocentrotus purpuratus. Science, 2006, 314(5801), 941-952.
[http://dx.doi.org/10.1126/science.1133609] [PMID: 17095691]
[127]
Hibino, T.; Loza-Coll, M.; Messier, C.; Majeske, A.J.; Cohen, A.H.; Terwilliger, D.P.; Buckley, K.M.; Brockton, V.; Nair, S.V.; Berney, K.; Fugmann, S.D.; Anderson, M.K.; Pancer, Z.; Cameron, R.A.; Smith, L.C.; Rast, J.P. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol., 2006, 300(1), 349-365.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.065] [PMID: 17027739]
[128]
Areschoug, T.; Gordon, S. Scavenger receptors: Role in innate immunity and microbial pathogenesis. Cell. Microbiol., 2009, 11(8), 1160-1169.
[http://dx.doi.org/10.1111/j.1462-5822.2009.01326.x] [PMID: 19388903]
[129]
Rast, J.P.; Smith, L.C.; Loza-Coll, M.; Hibino, T.; Litman, G.W. Genomic insights into the immune system of the sea urchin. Science, 2006, 314(5801), 952-956.
[http://dx.doi.org/10.1126/science.1134301] [PMID: 17095692]
[130]
Mariko, K.; Koji, A. Current status of echinoderm genome analysis - what do we know? Curr. Genomics, 2012, 13(2), 134-143.
[http://dx.doi.org/10.2174/138920212799860643] [PMID: 23024605]
[131]
Gowda, N.M.; Goswami, U.; Khan, M.I. Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate, sea cucumber (Holothuria scabra). Fish Shellfish Immunol., 2008, 24(4), 450-458.
[http://dx.doi.org/10.1016/j.fsi.2008.01.002] [PMID: 18282768]
[132]
Hatakeyama, T.; Kohzaki, H.; Nagatomo, H.; Yamasaki, N. Purification and characterization of four Ca(2+)-dependent lectins from the marine invertebrate, Cucumaria echinata. J. Biochem., 1994, 116(1), 209-214.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124495] [PMID: 7798179]
[133]
Bulgakov, A.A.; Nazarenko, E.L.; Petrova, I.Y.; Eliseikina, M.G.; Vakhrusheva, N.M.; Zubkov, V.A. Isolation and properties of a mannan-binding lectin from the coelomic fluid of the holothurian Cucumaria japonica. Biochemistry, 2000, 65(8), 933-939.
[PMID: 11002186]
[134]
Mojica, E.R.E.; Merca, F.E. Biological properties of lectin from sea cucumber (Holothuria scabra Jaeger). J. Biol. Sci., 2005, 5(4), 472-477.
[http://dx.doi.org/10.3923/jbs.2005.472.477]
[135]
Mojica, E-R.E.; Merca, F.E. Lectin from the body walls of black sea cucumber (Holothuria atra Jaeger). Philipp. J. Sci., 2004, 133, 77-85.
[136]
Hatakeyama, T.; Shiba, K.; Matsuo, N.; Fujimoto, T.; Oda, T.; Sugawara, H.; Aoyagi, H. Characterization of recombinant CEL-I, a GalNAc-specific C-type lectin, expressed in Escherichia coli using an artificial synthetic gene. J. Biochem., 2004, 135(1), 101-107.
[http://dx.doi.org/10.1093/jb/mvh012] [PMID: 14999015]
[137]
Kuramoto, T.; Uzuyama, H.; Hatakeyama, T.; Tamura, T.; Nakashima, T.; Yamaguchi, K.; Oda, T. Cytotoxicity of a GalNAc-specific C-type lectin CEL-I toward various cell lines. J. Biochem., 2005, 137(1), 41-50.
[http://dx.doi.org/10.1093/jb/mvi005] [PMID: 15713882]
[138]
Jiang, Z.; Kim, D.; Yamasaki, Y.; Yamanishi, T.; Hatakeyama, T.; Yamaguchi, K.; Oda, T. Mitogenic activity of CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, isolated from the marine invertebrate Cucumaria echinata (Holothuroidea). Biosci. Biotechnol. Biochem., 2010, 74(8), 1613-1616.
[http://dx.doi.org/10.1271/bbb.100207] [PMID: 20699569]
[139]
Kamiya, H.; Muramoto, K.; Goto, R.; Sakai, M. Lectins in the hemolymph of a starfish, Asterina pectinifera: Purification and characterization. Dev. Comp. Immunol., 1992, 16(2-3), 243-250.
[http://dx.doi.org/10.1016/0145-305X(92)90023-6] [PMID: 1499841]
[140]
Canicattì, C.; Parrinello, N. Hemagglutinin and hemolysin levels in the coelomic fluid from Holothuria polii (Echinodermata) following sheep erythrocyte injection. Biol. Bull., 1985, 168(1), 175-182.
[http://dx.doi.org/10.2307/1541182]
[141]
Ryoyama, K. Studies on the biological properties of coelomic fluid of sea urchin. II. Naturally occurring hemagglutinin in sea urchin. Biol. Bull., 1974, 146(3), 404-414.
[http://dx.doi.org/10.2307/1540414] [PMID: 4854477]
[142]
Canicattì, C.; Pagliara, P.; Stabili, L. Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur. J. Cell Biol., 1992, 58(2), 291-295.
[PMID: 1425767]
[143]
Ryoyama, K. Studies on the biological properties of coelomic fluid of sea urchin 1. Naturally occurring hemolysin in sea urchin. Biochim. Biophys. Acta, Gen. Subj., 1973, 320(1), 157-165.
[http://dx.doi.org/10.1016/0304-4165(73)90175-X] [PMID: 4201236]
[144]
Canicatti, C. Binding properties of Paracentrotus lividus (Echinoidea) hemolysin. Comp. Biochem. Physiol. A Comp. Physiol., 1991, 98(3-4), 463-468.
[http://dx.doi.org/10.1016/0300-9629(91)90432-C] [PMID: 1674457]
[145]
Canicattí, C.; Rizzo, A.A. 220 kDa coelomocyte aggregating factor involved in Holothuria polii cellular clotting. Eur. J. Cell Biol., 1991, 56(1), 79-83.
[PMID: 1800115]
[146]
Xue, Z.; Li, H.; Wang, X.; Li, X.; Liu, Y.; Sun, J.; Liu, C. A review of the immune molecules in the sea cucumber. Fish Shellfish Immunol., 2015, 44(1), 1-11.
[http://dx.doi.org/10.1016/j.fsi.2015.01.026] [PMID: 25655326]
[147]
Shao, Y.; Li, C.; Che, Z.; Zhang, P.; Zhang, W.; Duan, X.; Li, Y. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability–increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production. Dev. Comp. Immunol., 2015, 52(1), 88-97.
[http://dx.doi.org/10.1016/j.dci.2015.04.015] [PMID: 25956196]
[148]
Zhang, F.; Gong, J.; Wang, H. Determination of activity of complement-like in sea cucumber, Apostichopus japonicus. Dalian Haiyang Daxue Xuebao, 2007, 22, 246-248.
[149]
Zhou, Z.; Sun, D.; Yang, A.; Dong, Y.; Chen, Z.; Wang, X.; Guan, X.; Jiang, B.; Wang, B. Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol., 2011, 31(4), 540-547.
[http://dx.doi.org/10.1016/j.fsi.2011.06.023] [PMID: 21752342]
[150]
Courtney Smith, L. Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev. Comp. Immunol., 2002, 26(7), 603-614.
[http://dx.doi.org/10.1016/S0145-305X(02)00017-4] [PMID: 12074925]
[151]
Xing, J.; Chia, F.S. Opsonin-like molecule found in coelomic fluid of a sea cucumber, Holothuria leucospilota. Mar. Biol., 2000, 136(6), 979-986.
[http://dx.doi.org/10.1007/s002270000305]
[152]
Beck, G.; Habicht, G.S. Isolation and characterization of a primitive interleukin-1-like protein from an invertebrate, Asterias forbesi. Proc. Natl. Acad. Sci. USA, 1986, 83(19), 7429-7433.
[http://dx.doi.org/10.1073/pnas.83.19.7429] [PMID: 3489938]
[153]
Burke, R.D.; Watkins, R.F. Stimulation of starfish coelomocytes by interleukin-1. Biochem. Biophys. Res. Commun., 1991, 180(2), 579-584.
[http://dx.doi.org/10.1016/S0006-291X(05)81104-0] [PMID: 1953727]
[154]
Prendergast, R.A.; Suzuki, M. Invertebrate protein simulating mediators of delayed hypersensitivity. Nature, 1970, 227(5255), 277-279.
[http://dx.doi.org/10.1038/227277a0] [PMID: 5428194]
[155]
Prendergast, R.A.; Liu, S.H. Isolation and characterization of sea star factor. Scand. J. Immunol., 1976, 5(6-7), 873-880.
[http://dx.doi.org/10.1111/j.1365-3083.1976.tb03037.x] [PMID: 824720]
[156]
Kerlin, R.L.; Cebra, J.J.; Weinstein, P.D.; Prendergast, R.A. Sea star factor blocks development of T-dependent antibody secreting clones by preventing lymphokine secretion. Cell. Immunol., 1994, 156(1), 62-76.
[http://dx.doi.org/10.1006/cimm.1994.1153] [PMID: 8200043]
[157]
Beck, G.; Ellis, T.W.; Habicht, G.S.; Schluter, S.F.; Marchalonis, J.J. Evolution of the acute phase response: Iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev. Comp. Immunol., 2002, 26(1), 11-26.
[http://dx.doi.org/10.1016/S0145-305X(01)00051-9] [PMID: 11687259]
[158]
Che, Z.; Shao, Y.; Zhang, W.; Zhao, X.; Guo, M.; Li, C. Cloning and functional analysis of scavenger receptor B gene from the sea cucumber Apostichopus japonicus. Dev. Comp. Immunol., 2019, 99, 103404.
[http://dx.doi.org/10.1016/j.dci.2019.103404] [PMID: 31152761]
[159]
Pancer, Z. Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc. Natl. Acad. Sci., 2000, 97(24), 13156-13161.
[http://dx.doi.org/10.1073/pnas.230096397] [PMID: 11069281]
[160]
Furukawa, R.; Matsumoto, M.; Kaneko, H. Characterization of a scavenger receptor cysteine-rich-domain-containing protein of the starfish, Asterina pectinifera: ApSRCR1 acts as an opsonin in the larval and adult innate immune systems. Dev. Comp. Immunol., 2012, 36(1), 51-61.
[http://dx.doi.org/10.1016/j.dci.2011.06.005] [PMID: 21703301]
[161]
Nair, S.V.; Del Valle, H.; Gross, P.S.; Terwilliger, D.P.; Smith, L.C. Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol. Genomics, 2005, 22(1), 33-47.
[http://dx.doi.org/10.1152/physiolgenomics.00052.2005] [PMID: 15827237]
[162]
Lun, C.M.; Bishop, B.M.; Smith, L.C. Multitasking immune Sp185/333 Protein, rSpTransformer-E1, and its recombinant fragments undergo secondary structural transformation upon binding targets. J. Immunol., 2017, 198(7), 2957-2966.
[http://dx.doi.org/10.4049/jimmunol.1601795] [PMID: 28242650]
[163]
Smith, L.C.; Lun, C.M. The SpTransformer gene family (formerly Sp185/333) in the purple sea urchin and the functional diversity of the anti-pathogen rSpTransformer-E1 protein. Front. Immunol., 2017, 8, 725.
[http://dx.doi.org/10.3389/fimmu.2017.00725] [PMID: 28713368]
[164]
Wang, Z. Shao, Y.; Li, C.; Lv, Z.; Wang, H.; Zhang, W.; Zhao, X. A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis. Fish Shellfish Immunol., 2016, 52, 103-110.
[http://dx.doi.org/10.1016/j.fsi.2016.03.031] [PMID: 26994670]
[165]
Wang, Z.; Lv, Z.; Li, C.; Shao, Y.; Zhang, W.; Zhao, X. An invertebrate β-integrin mediates coelomocyte phagocytosis via activation of septin2 and 7 but not septin10. Int. J. Biol. Macromol., 2018, 113, 1167-1181.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.033] [PMID: 29526576]
[166]
Beck, G.; Habicht, G.S. Purification and biochemical characterization of an invertebrate interleukin 1. Mol. Immunol., 1991, 28(6), 577-584.
[http://dx.doi.org/10.1016/0161-5890(91)90126-5] [PMID: 1861678]
[167]
Beck, G.; O’Brien, R.F.; Habicht, G.S.; Stillman, D.L.; Cooper, E.L.; Raftos, D.A. Invertebrate cytokines. III: Invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell. Immunol., 1993, 146(2), 284-299.
[http://dx.doi.org/10.1006/cimm.1993.1027] [PMID: 8174171]
[168]
Beck, G.; Habicht, G.S. Characterization of an IL-6-like molecule from an echinoderm (Asterias forbesi). Cytokine, 1996, 8(7), 507-512.
[http://dx.doi.org/10.1006/cyto.1996.0069] [PMID: 8891431]
[169]
Jo, J.; Oh, J.; Lee, H.G.; Hong, H.H.; Lee, S.G.; Cheon, S.; Kern, E.M.A.; Jin, S.; Cho, S.J.; Park, J.K.; Park, C. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants. Gigascience, 2017, 6, 1-6.
[170]
Zhang, X.; Sun, L.; Yuan, J.; Sun, Y.; Gao, Y.; Zhang, L.; Li, S.; Dai, H.; Hamel, J.F.; Liu, C.; Yu, Y.; Liu, S.; Lin, W.; Guo, K.; Jin, S.; Xu, P.; Storey, K.B.; Huan, P.; Zhang, T.; Zhou, Y.; Zhang, J.; Lin, C.; Li, X.; Xing, L.; Huo, D.; Sun, M.; Wang, L.; Mercier, A.; Li, F.; Yang, H.; Xiang, J. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol., 2017, 15(10), e2003790.
[http://dx.doi.org/10.1371/journal.pbio.2003790] [PMID: 29023486]
[171]
Wu, X.; Chen, T.; Huo, D.; Yu, Z.; Ruan, Y.; Cheng, C.; Jiang, X.; Ren, C. Transcriptomic analysis of sea cucumber (Holothuria leucospilota) coelomocytes revealed the echinoderm cytokine response during immune challenge. BMC Genomics, 2020, 21(1), 306.
[http://dx.doi.org/10.1186/s12864-020-6698-6] [PMID: 32299355]
[172]
Coteur, G.; Mellroth, P.; Lefortery, C.D.; Gillan, D.; Dubois, P.; Communi, D.; Steiner, H. Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Dev. Comp. Immunol., 2007, 31(8), 790-804.
[http://dx.doi.org/10.1016/j.dci.2006.11.006] [PMID: 17240448]
[173]
Dziarski, R.; Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol., 2006, 7(8), 232.
[http://dx.doi.org/10.1186/gb-2006-7-8-232] [PMID: 16930467]
[174]
Sun, H.; Zhou, Z.; Dong, Y.; Yang, A.; Jiang, B.; Gao, S.; Chen, Z.; Guan, X.; Wang, B.; Wang, X. Identification and expression analysis of two Toll-like receptor genes from sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol., 2013, 34(1), 147-158.
[http://dx.doi.org/10.1016/j.fsi.2012.10.014] [PMID: 23103635]
[175]
Lu, Y.; Li, C.; Zhang, P.; Shao, Y.; Su, X.; Li, Y.; Li, T. Two adaptor molecules of MyD88 and TRAF6 in Apostichopus japonicus Toll signaling cascade: Molecular cloning and expression analysis. Dev. Comp. Immunol., 2013, 41(4), 498-504.
[http://dx.doi.org/10.1016/j.dci.2013.07.009] [PMID: 23886491]
[176]
Wang, T.; Sun, Y.; Jin, L.; Thacker, P.; Li, S.; Xu, Y. Aj-rel and Aj-p105, two evolutionary conserved NF-κB homologues in sea cucumber (Apostichopus japonicus) and their involvement in LPS induced immunity. Fish Shellfish Immunol., 2013, 34(1), 17-22.
[http://dx.doi.org/10.1016/j.fsi.2012.09.006] [PMID: 23022054]
[177]
Rowley, A.F.; Powell, A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J. Immunol., 2007, 179(11), 7209-7214.
[http://dx.doi.org/10.4049/jimmunol.179.11.7209] [PMID: 18025161]
[178]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[179]
Lim, K.H.; Staudt, L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a011247.
[http://dx.doi.org/10.1101/cshperspect.a011247] [PMID: 23284045]
[180]
Pinsino, A.; Russo, R.; Bonaventura, R.; Brunelli, A.; Marcomini, A.; Matranga, V. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci. Rep., 2015, 5(1), 14492.
[http://dx.doi.org/10.1038/srep14492] [PMID: 26412401]
[181]
Dettleff, P.; Villagra, M.; González, J.; Fuentes, M.; Estrada, J.M.; Valenzuela, C.; Molina, A.; Valdés, J.A. Effect of bacterial LPS, poly I:C and temperature on the immune response of coelomocytes in short term cultures of red sea urchin (Loxechinus albus). Fish Shellfish Immunol., 2020, 107(Pt A), 187-193.
[http://dx.doi.org/10.1016/j.fsi.2020.09.028] [PMID: 32971271]
[182]
Oweson, C.; Hernroth, B. A comparative study on the influence of manganese on the bactericidal response of marine invertebrates. Fish Shellfish Immunol., 2009, 27(3), 500-507.
[http://dx.doi.org/10.1016/j.fsi.2009.07.001] [PMID: 19615449]
[183]
Yui, M.A.; Bayne, C.J. Echinoderm immunology: bacterial clearance by the sea urchin Strongylocentrotus purpuratus. Biol. Bull., 1983, 165(2), 473-486.
[http://dx.doi.org/10.2307/1541213] [PMID: 28368229]
[184]
Oweson, C.; Li, C.; Söderhäll, I.; Hernroth, B. Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm, Asterias rubens (L.). Aquat. Toxicol., 2010, 100(1), 84-90.
[http://dx.doi.org/10.1016/j.aquatox.2010.07.012] [PMID: 20678812]
[185]
Dybas, L.; Fankboner, P.V. Holothurian survival strategies: Mechanisms for the maintenance of a bacteriostatic environment in the coelomic cavity of the sea cucumber. Parastichopuscalifornicus. Dev. Comp. Immunol., 1986, 10(3), 311-330.
[http://dx.doi.org/10.1016/0145-305X(86)90022-4] [PMID: 3770267]
[186]
Cerenius, L.; Söderhäll, K. The prophenoloxidase-activating system in invertebrates. Immunol. Rev., 2004, 198(1), 116-126.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00116.x] [PMID: 15199959]
[187]
Canicatti, C.; Seymour, J. Evidence for phenoloxidase activity in Holothuria tubulosa (Echinodermata) brown bodies and cells. Z. Parasitenkd., 1991, 77(1), 50-53.
[http://dx.doi.org/10.1007/BF00934385]
[188]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander, H.M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[189]
Conrad, M.; Angeli, J.P.F.; Vandenabeele, P.; Stockwell, B.R. Regulated necrosis: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov., 2016, 15(5), 348-366.
[http://dx.doi.org/10.1038/nrd.2015.6] [PMID: 26775689]
[190]
Weinlich, R.; Oberst, A.; Beere, H.M.; Green, D.R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol., 2017, 18(2), 127-136.
[http://dx.doi.org/10.1038/nrm.2016.149] [PMID: 27999438]
[191]
Fuchs, Y.; Steller, H. Live to die another way: Modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol., 2015, 16(6), 329-344.
[http://dx.doi.org/10.1038/nrm3999] [PMID: 25991373]
[192]
Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature, 2015, 517(7534), 311-320.
[http://dx.doi.org/10.1038/nature14191] [PMID: 25592536]
[193]
Galluzzi, L.; Bravo-San Pedro, J.M.; Kepp, O.; Kroemer, G. Regulated cell death and adaptive stress responses. Cell. Mol. Life Sci., 2016, 73(11-12), 2405-2410.
[http://dx.doi.org/10.1007/s00018-016-2209-y] [PMID: 27048813]
[194]
Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell, 2011, 147(4), 742-758.
[http://dx.doi.org/10.1016/j.cell.2011.10.033] [PMID: 22078876]
[195]
Galluzzi, L.; López-Soto, A.; Kumar, S.; Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity, 2016, 44(2), 221-231.
[http://dx.doi.org/10.1016/j.immuni.2016.01.020] [PMID: 26885855]
[196]
Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol., 2017, 17(3), 151-164.
[http://dx.doi.org/10.1038/nri.2016.147] [PMID: 28138137]
[197]
Nagata, S.; Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol., 2017, 17(5), 333-340.
[http://dx.doi.org/10.1038/nri.2016.153] [PMID: 28163302]
[198]
Yina, S.; Zhongjie, C.; Chenghua, L.; Weiwei, Z.; Xuelin, Z.; Ming, G. A novel caspase-1 mediates inflammatory responses and pyroptosis in sea cucumber Apostichopus japonicus. Aquaculture, 2019, 513, 734399.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734399]
[199]
Ye, S.; Gao, Y.; Wang, S.; Li, Q.; Li, R.; Li, H. Characterization and expression analysis of a caspase-2 in an invertebrate echinoderm sea cumber Apostichopus japonicus. Fish Shellfish Immunol., 2016, 48, 266-272.
[http://dx.doi.org/10.1016/j.fsi.2015.12.004] [PMID: 26687532]
[200]
Ren, C.; Chen, T.; Sun, H.; Jiang, X.; Hu, C.; Qian, J.; Wang, Y. The first echinoderm poly-U-binding factor 60 kDa (PUF60) from sea cucumber (Stichopus monotuberculatus): Molecular characterization, inducible expression and involvement of apoptosis. Fish Shellfish Immunol., 2015, 47(1), 196-204.
[http://dx.doi.org/10.1016/j.fsi.2015.09.001] [PMID: 26362209]
[201]
Zhao, L.; Ren, C.; Chen, T.; Sun, H.; Wu, X.; Jiang, X.; Huang, W. The first cloned sea cucumber FADD from Holothuria leucospilota: Molecular characterization, inducible expression and involvement of apoptosis. Fish Shellfish Immunol., 2019, 89, 548-554.
[http://dx.doi.org/10.1016/j.fsi.2019.04.030] [PMID: 30991146]
[202]
Dolmatova, L.S.; Zaika, O.A. Apoptosis-modulating effect of prostaglandin E2 in coelomocytes of holothurian Eupentacta fraudatrix depends on the cell antioxidant enzyme status. Biol. Bull. Russ. Acad. Sci., 2007, 34(3), 221-229.
[http://dx.doi.org/10.1134/S1062359007030028] [PMID: 17853688]
[203]
Zhang, X.; Zhang, P.; Li, C.; Li, Y.; Jin, C.; Zhang, W. Characterization of two regulators of the TNF-α signaling pathway in Apostichopus japonicus: LPS-induced TNF-α factor and baculoviral inhibitor of apoptosis repeat-containing 2. Dev. Comp. Immunol., 2015, 48(1), 138-142.
[http://dx.doi.org/10.1016/j.dci.2014.10.001] [PMID: 25307203]
[204]
Agnello, M.; Roccheri, M.C. Apoptosis: Focus on sea urchin development. Apoptosis, 2010, 15(3), 322-330.
[http://dx.doi.org/10.1007/s10495-009-0420-0] [PMID: 19876739]
[205]
Robertson, A.J.; Croce, J.; Carbonneau, S.; Voronina, E.; Miranda, E.; McClay, D.R.; Coffman, J.A. The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev. Biol., 2006, 300(1), 321-334.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.053] [PMID: 17010332]
[206]
Bender, C.E.; Fitzgerald, P.; Tait, S.W.G.; Llambi, F.; McStay, G.P.; Tupper, D.O.; Pellettieri, J.; Alvarado, A.S.; Salvesen, G.S.; Green, D.R. Mitochondrial pathway of apoptosis is ancestral in metazoans. Proc. Natl. Acad. Sci., 2012, 109(13), 4904-4909.
[http://dx.doi.org/10.1073/pnas.1120680109] [PMID: 22416118]
[207]
Zhu, B.; Zheng, J.; Zhang, Z.; Dong, X.; Zhao, L.; Tada, M. Autophagy plays a potential role in the process of sea cucumber body wall “melting” induced by UV irradiation. Wuhan Univ. J. Nat. Sci., 2008, 13(2), 232-238.
[http://dx.doi.org/10.1007/s11859-008-0220-3]
[208]
Ramos-Martínez, E.; Hernández-González, L.; Ramos-Martínez, I.; Pérez-Campos Mayoral, L.; López-Cortés, G.I.; Pérez-Campos, E.; Mayoral Andrade, G.; Hernández-Huerta, M.T.; José, M.V. Multiple origins of extracellular DNA traps. Front. Immunol., 2021, 12, 621311.
[http://dx.doi.org/10.3389/fimmu.2021.621311] [PMID: 33717121]
[209]
Hartenstein, V. Blood cells and blood cell development in the animal kingdom. Annu. Rev. Cell Dev. Biol., 2006, 22(1), 677-712.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010605.093317] [PMID: 16824014]
[210]
Robb, C.T.; Dyrynda, E.A.; Gray, R.D.; Rossi, A.G.; Smith, V.J. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat. Commun., 2014, 5(1), 4627.
[http://dx.doi.org/10.1038/ncomms5627] [PMID: 25115909]
[211]
Marzluff, W.F.; Sakallah, S.; Kelkar, H. The sea urchin histone gene complement. Dev. Biol., 2006, 300(1), 308-320.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.067] [PMID: 17078943]
[212]
D’Alessio, S.; Buckley, K.M.; Kraev, I.; Hayes, P.; Lange, S. Extracellular vesicle signatures and post-translational protein deimination in purple sea urchin (strongylocentrotus purpuratus) coelomic fluid-novel insights into echinodermata biology. Biology, 2021, 10(9), 866.
[http://dx.doi.org/10.3390/biology10090866] [PMID: 34571743]
[213]
Burgener, S.S.; Schroder, K. Neutrophil extracellular traps in host defense. Cold Spring Harb. Perspect. Biol., 2020, 12(7), a037028.
[http://dx.doi.org/10.1101/cshperspect.a037028] [PMID: 31767647]
[214]
Cui, C.; Wang, P.; Cui, N.; Song, S.; Liang, H.; Ji, A. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicas promotes the SDF-1α/CXCR4 axis-induced NSC migration via the PI3K/Akt/FOXO3a, ERK/MAPK, and NF-κB signaling pathways. Neurosci. Lett., 2016, 616, 57-64.
[http://dx.doi.org/10.1016/j.neulet.2016.01.041] [PMID: 26827717]
[215]
Himaya, S.W.A.; Ryu, B.; Qian, Z.J.; Kim, S.K. Sea cucumber, Stichopus japonicus ethyl acetate fraction modulates the lipopolysaccharide induced iNOS and COX-2 via MAPK signaling pathway in murine macrophages. Environ. Toxicol. Pharmacol., 2010, 30(1), 68-75.
[http://dx.doi.org/10.1016/j.etap.2010.03.019] [PMID: 21787631]
[216]
Stabili, L.; Pagliara, P.; Roch, P. Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1996, 113(3), 639-644.
[http://dx.doi.org/10.1016/0305-0491(95)02080-2] [PMID: 8829813]
[217]
Li, C.; Blencke, H.M.; Haug, T.; Jørgensen, Ø.; Stensvåg, K. Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis). Dev. Comp. Immunol., 2014, 43(1), 106-113.
[http://dx.doi.org/10.1016/j.dci.2013.10.013] [PMID: 24239709]
[218]
de Melo, A.A.; Carneiro, R.F.; de Melo Silva, W.; Moura, R.M.; Silva, G.C.; de Sousa, O.V.; de Sousa Saboya, J.P.; Nascimento, K.S.; Saker-Sampaio, S.; Nagano, C.S.; Cavada, B.S.; Sampaio, A.H. HGA-2, a novel galactoside-binding lectin from the sea cucumber Holothuria grisea binds to bacterial cells. Int. J. Biol. Macromol., 2014, 64, 435-442.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.035] [PMID: 24393613]
[219]
Prompoon, Y.; Weerachatyanukul, W.; Withyachumnarnkul, B.; Vanichviriyakit, R.; Wongprasert, K.; Asuvapongpatana, S. Lectin-based profiling of coelomocytes in Holothuria scabra and expression of superoxide dismutase in purified coelomocytes. Zool. Sci., 2015, 32(4), 345-351.
[http://dx.doi.org/10.2108/zs140285] [PMID: 26245221]
[220]
Reeves, E.P.; Lu, H.; Jacobs, H.L.; Messina, C.G.M.; Bolsover, S.; Gabella, G.; Potma, E.O.; Warley, A.; Roes, J.; Segal, A.W. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature, 2002, 416(6878), 291-297.
[http://dx.doi.org/10.1038/416291a] [PMID: 11907569]
[221]
Parsons, J.T. Focal adhesion kinase: The first ten years. J. Cell Sci., 2003, 116(8), 1409-1416.
[http://dx.doi.org/10.1242/jcs.00373] [PMID: 12640026]
[222]
Tydell, C.C.; Yuan, J.; Tran, P.; Selsted, M.E. Bovine peptidoglycan recognition protein-S: Antimicrobial activity, localization, secretion, and binding properties. J. Immunol., 2006, 176(2), 1154-1162.
[http://dx.doi.org/10.4049/jimmunol.176.2.1154] [PMID: 16394004]
[223]
Zhang, P.; Li, C.; Li, Y.; Zhang, P.; Shao, Y.; Jin, C.; Li, T. Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection. Dev. Comp. Immunol., 2014, 44(2), 370-377.
[http://dx.doi.org/10.1016/j.dci.2014.01.013] [PMID: 24468075]
[224]
Beauregard, K.A.; Truong, N.T.; Zhang, H.; Lin, W.; Beck, G. The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa. In: Phylogenetic Perspectives on the Vertebrate Immune System; Beck, G.; Sugumaran, M.; Cooper, E.L., Eds.; , 2001; Vol. 484, p. 55.
[http://dx.doi.org/10.1007/978-1-4615-1291-2_5]
[225]
Ren, C.; Chen, T.; Jiang, X.; Luo, X.; Wang, Y.; Hu, C. The first echinoderm gamma-interferon-inducible lysosomal thiol reductase (GILT) identified from sea cucumber (Stichopus monotuberculatus). Fish Shellfish Immunol., 2015, 42(1), 41-49.
[http://dx.doi.org/10.1016/j.fsi.2014.10.024] [PMID: 25449705]
[226]
Yuan, J.; Gao, Y.; Sun, L.; Jin, S.; Zhang, X.; Liu, C.; Li, F.; Xiang, J. Wnt signaling pathway linked to intestinal regeneration via evolutionary patterns and gene expression in the sea cucumber Apostichopus japonicus. Front. Genet., 2019, 10, 112.
[http://dx.doi.org/10.3389/fgene.2019.00112] [PMID: 30838034]
[227]
Croce, J.C.; Wu, S.Y.; Byrum, C.; Xu, R.; Duloquin, L.; Wikramanayake, A.H.; Gache, C.; McClay, D.R. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev. Biol., 2006, 300(1), 121-131.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.045] [PMID: 17069790]
[228]
Coates, C.J.; McCulloch, C.; Betts, J.; Whalley, T.; Echinochrome, A. Echinochrome a release by red spherule cells is an iron-withholding strategy of sea urchin innate immunity. J. Innate Immun., 2018, 10(2), 119-130.
[http://dx.doi.org/10.1159/000484722] [PMID: 29212075]
[229]
Li, Y.; Wang, R.; Xun, X.; Wang, J.; Bao, L.; Thimmappa, R.; Ding, J.; Jiang, J.; Zhang, L.; Li, T.; Lv, J.; Mu, C.; Hu, X.; Zhang, L.; Liu, J.; Li, Y.; Yao, L.; Jiao, W.; Wang, Y.; Lian, S.; Zhao, Z.; Zhan, Y.; Huang, X.; Liao, H.; Wang, J.; Sun, H.; Mi, X.; Xia, Y.; Xing, Q.; Lu, W.; Osbourn, A.; Zhou, Z.; Chang, Y.; Bao, Z.; Wang, S. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation. Cell Discov., 2018, 4(1), 29.
[http://dx.doi.org/10.1038/s41421-018-0030-5] [PMID: 29951224]
[230]
Medina-Feliciano, J.G.; Pirro, S.; García-Arrarás, J.E.; Mashanov, V.; Ryan, J.F. Draft genome of the sea cucumber holothuria glaberrima, a model for the study of regeneration. Front. Mar. Sci., 2021, 8, 603410.
[http://dx.doi.org/10.3389/fmars.2021.603410]
[231]
Yuasa, H.; Kajitani, R.; Nakamura, Y.; Takahashi, K.; Okuno, M.; Kobayashi, F.; Shinoda, T.; Toyoda, A.; Suzuki, Y.; Thongtham, N.; Forsman, Z.; Bronstein, O.; Seveso, D.; Montalbetti, E.; Taquet, C.; Eyal, G.; Yasuda, N.; Itoh, T. Elucidation of the speciation history of three sister species of crown-of-thorns starfish (Acanthaster spp.) based on genomic analysis. DNA Res., 2021, 28(4), dsab012.
[http://dx.doi.org/10.1093/dnares/dsab012] [PMID: 34387305]
[232]
Hall, M.R.; Kocot, K.M.; Baughman, K.W.; Fernandez-Valverde, S.L.; Gauthier, M.E.A.; Hatleberg, W.L.; Krishnan, A.; McDougall, C.; Motti, C.A.; Shoguchi, E.; Wang, T.; Xiang, X.; Zhao, M.; Bose, U.; Shinzato, C.; Hisata, K.; Fujie, M.; Kanda, M.; Cummins, S.F.; Satoh, N.; Degnan, S.M.; Degnan, B.M. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature, 2017, 544(7649), 231-234.
[http://dx.doi.org/10.1038/nature22033] [PMID: 28379940]
[233]
Xylander, W. Hemocytes in Myriapoda (Arthropoda): A review. ISJ-Invert Surviv J, 2009, 6, 114-124.
[234]
Strand, M.R. Insect hemocytes and their role in immunity. In: Insect Biochemistry and Molecular Biology; Elsevier, 2008; 32, p. 1295-1309.
[http://dx.doi.org/10.1016/B978-012373976-6.50004-5]
[235]
Bello, S.A.; Torres-Gutiérrez, V.; Rodríguez-Flores, E.J.; Toledo-Román, E.J.; Rodríguez, N.; Díaz-Díaz, L.M.; Vázquez-Figueroa, L.D.; Cuesta, J.M.; Grillo-Alvarado, V.; Amador, A.; Reyes-Rivera, J.; García-Arrarás, J.E. Insights into intestinal regeneration signaling mechanisms. Dev. Biol., 2020, 458(1), 12-31.
[http://dx.doi.org/10.1016/j.ydbio.2019.10.005] [PMID: 31605680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy