Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Review on the Use of Gold Nanoparticles in Cancer Treatment

Author(s): Razia Sultana, Dhananjay Yadav, Nidhi Puranik, Vishal Chavda, Jeongyeon Kim* and Minseok Song*

Volume 23, Issue 20, 2023

Published on: 11 October, 2023

Page: [2171 - 2182] Pages: 12

DOI: 10.2174/0118715206268664231004040210

Price: $65

Abstract

According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.

Keywords: Gold nanoparticles, photothermal therapy, photodynamic therapy, cancer therapy, immunotherapy, diagnosis.

Next »
Graphical Abstract
[1]
Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Varghese, C. Cancer prevention and control in India. In: National cancer registry programme, fifty years of cancer control in India,; , 2001, pp. 48-59.
[5]
Mayor, S. NHS should bring in measures to reduce its carbon footprint, BMA says. BMJ, 2008, 2008336.
[6]
Ni Chleirigh, R.; Gray, S.; Mitchell, C.C. Management of oncological emergencies on the acute take. Br. J. Hosp. Med. , 2018, 79(7), 384-388.
[http://dx.doi.org/10.12968/hmed.2018.79.7.384] [PMID: 29995539]
[7]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[8]
Liu, Y.; Wu, W.; Wang, Y.; Han, S.; Yuan, Y.; Huang, J.; Shuai, X.; Zhao, P. Correction: Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci., 2021, 9(20), 6966-6969.
[http://dx.doi.org/10.1039/D1BM90082J]
[9]
Liu, Y.; Meng, X.; Bu, W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev., 2019, 379, 82-98.
[http://dx.doi.org/10.1016/j.ccr.2017.09.006]
[10]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine , 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[11]
Yadav, D.; Kwak, M.; Chauhan, P.S.; Puranik, N.; Lee, P.C.; Jin, J-O. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin. Cancer Biol., 2022, 86(Pt 2), 909-922.
[12]
Fogli, S.; Montis, C.; Paccosi, S.; Silvano, A.; Michelucci, E.; Berti, D.; Bosi, A.; Parenti, A.; Romagnoli, P. Inorganic nanoparticles as potential regulators of immune response in dendritic cells. Nanomedicine , 2017, 12(14), 1647-1660.
[http://dx.doi.org/10.2217/nnm-2017-0061] [PMID: 28635380]
[13]
Joga, S.; Koyyala, V. Nanotechnology in oncology. Indian J. Med. Paediatr. Oncol.,, 2021, 42, 093-095.
[http://dx.doi.org/10.1055/s-0041-1729727]
[14]
Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[15]
Jha, S.; Trivedi, V. Manikya Bhasma is a nanomedicine to affect cancer cell viability through induction of apoptosis. J. Ayurveda Integr. Med., 2021, 12(2), 302-311.
[http://dx.doi.org/10.1016/j.jaim.2020.11.001] [PMID: 33358658]
[16]
Sharma, C.P.; Paul, W. Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. Int. J. Ayurveda Res., 2011, 2(1), 14-22.
[http://dx.doi.org/10.4103/0974-7788.83183] [PMID: 21897638]
[17]
Singh, R.; Goel, S.; Bourgeade, P.; Aleya, L.; Tewari, D. Ayurveda Rasayana as antivirals and immunomodulators: Potential applications in COVID-19. Environ. Sci. Pollut. Res. Int., 2021, 28(40), 55925-55951.
[http://dx.doi.org/10.1007/s11356-021-16280-5] [PMID: 34491498]
[18]
Carone, A.; Emilsson, S.; Mariani, P.; Désert, A.; Parola, S. Gold nanoparticle shape dependence of colloidal stability domains. Nanoscale Adv., 2023, 5(7), 2017-2026.
[http://dx.doi.org/10.1039/D2NA00809B] [PMID: 36998666]
[19]
Jin, J.O.; Yadav, D.; Madhwani, K.; Puranik, N.; Chavda, V.; Song, M. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a drug—a review. Molecules, 2022, 27(18), 6032.
[http://dx.doi.org/10.3390/molecules27186032] [PMID: 36144768]
[20]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[21]
Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer, 2023, 22(1), 98.
[http://dx.doi.org/10.1186/s12943-023-01798-8] [PMID: 37344887]
[22]
Ediriwickrema, A.; Saltzman, W.M. Nanotherapy for Cancer: Targeting and multifunctionality in the future of cancer therapies. ACS Biomater. Sci. Eng., 2015, 1(2), 64-78.
[http://dx.doi.org/10.1021/ab500084g] [PMID: 25984571]
[23]
Vo-Dinh, T.; Liu, Y.; Crawford, B.M.; Wang, H.N.; Yuan, H.; Register, J.K.; Khoury, C.G. Shining gold nanostars: From cancer diagnostics to photothermal treatment and immunotherapy. J Immunol Sci., 2018, 2(1), 1-8.
[24]
Deng, G.; Zha, H.; Luo, H.; Zhou, Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front. Bioeng. Biotechnol., 2023, 11, 1118546.
[http://dx.doi.org/10.3389/fbioe.2023.1118546] [PMID: 36741760]
[25]
Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett., 2021, 16(1), 88.
[http://dx.doi.org/10.1186/s11671-021-03489-z] [PMID: 34014432]
[26]
Samadian, H.; Hosseini-Nami, S.; Kamrava, S.K.; Ghaznavi, H.; Shakeri-Zadeh, A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2217-2229.
[http://dx.doi.org/10.1007/s00432-016-2179-3] [PMID: 27209529]
[27]
Tepale, N.; Fernández-Escamilla, V.V.A.; Carreon-Alvarez, C.; González-Coronel, V.J.; Luna-Flores, A.; Aguilar, J. Nanoengineering of gold nanoparticles: Green synthesis, characterization, and applications. Crystals , 2019, 9(12), 612.
[http://dx.doi.org/10.3390/cryst9120612]
[28]
Mahmoud, M.A.; El-Sayed, M.A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc., 2010, 132(36), 12704-12710.
[http://dx.doi.org/10.1021/ja104532z] [PMID: 20722373]
[29]
Skrabalak, S.E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C.M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res., 2008, 41(12), 1587-1595.
[http://dx.doi.org/10.1021/ar800018v] [PMID: 18570442]
[30]
Hong, S.; Li, X. Optimal size of gold nanoparticles for surfaceenhanced Raman spectroscopy under different conditions J. Nanomater.,, 2013, 2013
[http://dx.doi.org/ 10.1155/2013/790323]
[31]
Ouabbas, Y. (9c) surface modification of silica particles by drycoating. 2006 AIChE Spring Meeting & Global Congress on Process Safety, April 23-27, 2006 Orlando, FL 2006.
[32]
Mao, W.; Son, Y.J.; Yoo, H.S. Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments. Nanoscale, 2020, 12(28), 14996-15020.
[http://dx.doi.org/10.1039/D0NR01690J] [PMID: 32666990]
[33]
Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold nanoparticles functionalized with 2-thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules, 2023, 28(11), 4453.
[http://dx.doi.org/10.3390/molecules28114453] [PMID: 37298929]
[34]
Freitas de Freitas, L.; Varca, G.; dos Santos Batista, J.; Benévolo Lugão, A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials , 2018, 8(11), 939.
[http://dx.doi.org/10.3390/nano8110939] [PMID: 30445694]
[35]
Ghassan, A.A.; Mijan, N.A.; Taufiq-Yap, Y. H. Nanomaterials: An overview of nanorods synthesis and optimization. Nanorods and nanocomposites, 2019, 11, 8-33.
[36]
De Matteis, V.; Cascione, M.; Toma, C.C.; Rinaldi, R. Engineered gold nanoshells killing tumor cells: New perspectives. Curr. Pharm. Des., 2019, 25(13), 1477-1489.
[http://dx.doi.org/10.2174/1381612825666190618155127] [PMID: 31258061]
[37]
Huang, S.; Liu, Y.; Xu, X.; Ji, M.; Li, Y.; Song, C.; Duan, S.; Hu, Y. Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(15), 2217-2229.
[http://dx.doi.org/10.1039/C8TB00224J] [PMID: 32254562]
[38]
Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev., 2020, 52(2), 299-318.
[http://dx.doi.org/10.1080/03602532.2020.1734021] [PMID: 32150480]
[39]
Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2020, 2(9), 3764-3787.
[http://dx.doi.org/10.1039/D0NA00472C] [PMID: 36132791]
[40]
Zhang, R.; Kiessling, F.; Lammers, T.; Pallares, R.M. Clinical translation of gold nanoparticles. Drug Deliv. Transl. Res., 2023, 13(2), 378-385.
[http://dx.doi.org/10.1007/s13346-022-01232-4] [PMID: 36045273]
[41]
Curry, T.; Kopelman, R.; Shilo, M.; Popovtzer, R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol. Imaging, 2014, 9(1), 53-61.
[http://dx.doi.org/10.1002/cmmi.1563] [PMID: 24470294]
[42]
Banstola, A.; Emami, F.; Jeong, J.H.; Yook, S. Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromol. Res., 2018, 26(11), 955-964.
[http://dx.doi.org/10.1007/s13233-018-6139-4]
[43]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[44]
Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv., 2010, 7(6), 753-763.
[http://dx.doi.org/10.1517/17425241003777010] [PMID: 20408736]
[45]
Ibrahim, K.; Al-Mutary, M.; Bakhiet, A.; Khan, H. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules, 2018, 23(8), 1848.
[http://dx.doi.org/10.3390/molecules23081848] [PMID: 30044410]
[46]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine , 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[47]
Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine , 2018, 14(1), 1-12.
[http://dx.doi.org/10.1016/j.nano.2017.08.011] [PMID: 28882675]
[48]
Li, X.; Wang, B.; Zhou, S.; Chen, W.; Chen, H.; Liang, S.; Zheng, L.; Yu, H.; Chu, R.; Wang, M.; Chai, Z.; Feng, W. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J. Nanobiotechnol., 2020, 18(1), 45.
[http://dx.doi.org/10.1186/s12951-020-00599-1] [PMID: 32169073]
[49]
Mironava, T.; Hadjiargyrou, M.; Simon, M.; Jurukovski, V.; Rafailovich, M.H. Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology, 2010, 4(1), 120-137.
[http://dx.doi.org/10.3109/17435390903471463] [PMID: 20795906]
[50]
Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select, 2022, 3(4), 792-828.
[http://dx.doi.org/10.1002/nano.202100255]
[51]
Yahyaei, B.; Nouri, M.; Bakherad, S.; Hassani, M.; Pourali, P. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection. AMB Express, 2019, 9(1), 38.
[http://dx.doi.org/10.1186/s13568-019-0762-0] [PMID: 30888557]
[52]
Izci, M.; Maksoudian, C.; Gonçalves, F.; Aversa, L.; Salembier, R.; Sargsian, A.; Pérez, G.I.; Chu, T.; Rios, L.C.; Bolea-Fernandez, E.; Nittner, D.; Vanhaecke, F.; Manshian, B.B.; Soenen, S.J. Gold nanoparticle delivery to solid tumors: A multiparametric study on particle size and the tumor microenvironment. J. Nanobiotechnol., 2022, 20(1), 518.
[http://dx.doi.org/10.1186/s12951-022-01727-9] [PMID: 36494816]
[53]
Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.073] [PMID: 21782236]
[54]
Mahalunkar, S.; Yadav, A.S.; Gorain, M.; Pawar, V.; Braathen, R.; Weiss, S.; Bogen, B.; Gosavi, S.W.; Kundu, G.C. Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int. J. Nanomed., 2019, 14, 8285-8302.
[http://dx.doi.org/10.2147/IJN.S215142] [PMID: 31802866]
[55]
Li, T.; Zhang, M.; Wang, J.; Wang, T.; Yao, Y.; Zhang, X.; Zhang, C.; Zhang, N. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J., 2016, 18(1), 146-155.
[http://dx.doi.org/10.1208/s12248-015-9828-3] [PMID: 26381779]
[56]
Xu, H.; Niu, M.; Yuan, X.; Wu, K.; Liu, A. CD44 as a tumor biomarker and therapeutic target. Exp. Hematol. Oncol., 2020, 9(1), 36.
[http://dx.doi.org/10.1186/s40164-020-00192-0] [PMID: 33303029]
[57]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[http://dx.doi.org/10.1016/bs.acr.2017.11.003] [PMID: 29405974]
[58]
Kim, S.J.; Kim, H.S.; Seo, Y.R. Understanding of ROS-inducing strategy in anticancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 538169.
[http://dx.doi.org/10.1155/2019/5381692]
[59]
Lo, C.Y.; Tsai, S.W.; Niu, H.; Chen, F.H.; Hwang, H.C.; Chao, T.C.; Hsiao, I.T.; Liaw, J.W. Gold-Nanoparticles-enhanced production of reactive oxygen species in cells at spread-out bragg peak under proton beam radiation. ACS Omega, 2023, 8(20), 17922-17931.
[http://dx.doi.org/10.1021/acsomega.3c01025] [PMID: 37251180]
[60]
Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
[61]
Girigoswami, A.; Girigoswami, K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes , 2023, 14(7), 1370.
[http://dx.doi.org/10.3390/genes14071370] [PMID: 37510275]
[62]
Alhussan, A.; Bromma, K.; Perez, M.M.; Beckham, W.; Alexander, A.S.; Howard, P.L.; Chithrani, D.B. Docetaxel-mediated uptake and retention of gold nanoparticles in tumor cells and in cancer-associated fibroblasts. Cancers , 2021, 13(13), 3157.
[http://dx.doi.org/10.3390/cancers13133157] [PMID: 34202574]
[63]
Li, B.; Hao, G.; Sun, B.; Gu, Z.; Xu, Z.P. Engineering a therapy‐induced “immunogenic cancer cell death” amplifier to boost systemic tumor elimination. Adv. Funct. Mater., 2020, 30(22), 1909745.
[http://dx.doi.org/10.1002/adfm.201909745]
[64]
Salimi, M.; Mosca, S.; Gardner, B.; Palombo, F.; Matousek, P.; Stone, N. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials , 2022, 12(6), 922.
[http://dx.doi.org/10.3390/nano12060922] [PMID: 35335735]
[65]
Lee, J.H.; Cho, H.Y.; Choi, H.; Lee, J.Y.; Choi, J.W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci., 2018, 19(7), 2021.
[http://dx.doi.org/10.3390/ijms19072021] [PMID: 29997363]
[66]
Liu, Y.; Ashton, J.R.; Moding, E.J.; Yuan, H.; Register, J.K.; Fales, A.M.; Choi, J.; Whitley, M.J.; Zhao, X.; Qi, Y.; Ma, Y.; Vaidyanathan, G.; Zalutsky, M.R.; Kirsch, D.G.; Badea, C.T.; Vo-Dinh, T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics, 2015, 5(9), 946-960.
[http://dx.doi.org/10.7150/thno.11974] [PMID: 26155311]
[67]
Han, H.S.; Choi, K.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines, 2021, 9(3), 305.
[http://dx.doi.org/10.3390/biomedicines9030305] [PMID: 33809691]
[68]
Mukherjee, P.; Tripathy, S.; Matsabisa, M.G.; Sahu, S.K. Development of upconversion-NMOFs nanocomposite conjugated with gold nanoparticles for NIR light-triggered combinational chemo-photothermal therapy. J. Photochem. Photobiol. Chem., 2023, 437, 114426.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114426]
[69]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[70]
Broekgaarden, M.; Weijer, R.; van Gulik, T.M.; Hamblin, M.R.; Heger, M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev., 2015, 34(4), 643-690.
[http://dx.doi.org/10.1007/s10555-015-9588-7] [PMID: 26516076]
[71]
Baskaran, R.; Lee, J.; Yang, S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res., 2018, 22(1), 25.
[http://dx.doi.org/10.1186/s40824-018-0140-z] [PMID: 30275968]
[72]
Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B, 2016, 6(4), 297-307.
[http://dx.doi.org/10.1016/j.apsb.2016.01.007] [PMID: 27471670]
[73]
Zhou, Z.; Zhang, L.; Zhang, Z.; Liu, Z. Advances in photosensitizer-related design for photodynamic therapy. Asian J. Pharm. Sci., 2021, 16(6), 668-686.
[http://dx.doi.org/10.1016/j.ajps.2020.12.003] [PMID: 35027948]
[74]
Chadwick, S.J.; Salah, D.; Livesey, P.M.; Brust, M.; Volk, M. Singlet oxygen generation by laser irradiation of gold nanoparticles. J. Phys. Chem. C, 2016, 120(19), 10647-10657.
[http://dx.doi.org/10.1021/acs.jpcc.6b02005] [PMID: 27239247]
[75]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[76]
García, C.P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552.
[http://dx.doi.org/10.1039/c8pp00271a] [PMID: 30118115]
[77]
Bromma, K.; Chithrani, D.B. Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials , 2020, 10(9), 1671.
[http://dx.doi.org/10.3390/nano10091671] [PMID: 32858957]
[78]
Wei, X.; Chen, H.; Tham, H.P.; Zhang, N.; Xing, P.; Zhang, G.; Zhao, Y. Combined photodynamic and photothermal therapy using cross-linked polyphosphazene nanospheres decorated with gold nanoparticles. ACS Appl. Nano Mater., 2018, 1(7), 3663-3672.
[http://dx.doi.org/10.1021/acsanm.8b00776]
[79]
Gupta, N.; Sharma, R.K.; Maitra, A.; Shrivastava, A. In-vitro and in-vivo efficacy of hollow gold nanoparticles encapsulating horseradish peroxidase: Oxidative stress-mediated tumor cell killing. J. Drug Deliv. Sci. Technol., 2023, 79, 103979.
[http://dx.doi.org/10.1016/j.jddst.2022.103979]
[80]
Wu, X.; Gu, Z.; Chen, Y.; Chen, B.; Chen, W.; Weng, L.; Liu, X. Application of PD-1 blockade in cancer immunotherapy. Comput. Struct. Biotechnol. J., 2019, 17, 661-674.
[http://dx.doi.org/10.1016/j.csbj.2019.03.006] [PMID: 31205619]
[81]
Sanmamed, M.F.; Chen, L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J., 2014, 20(4), 256-261.
[http://dx.doi.org/10.1097/PPO.0000000000000061] [PMID: 25098285]
[82]
Han, J.; Duan, J.; Bai, H.; Wang, Y.; Wan, R.; Wang, X.; Chen, S.; Tian, Y.; Wang, D.; Fei, K.; Yao, Z.; Wang, S.; Lu, Z.; Wang, Z.; Wang, J. TCR repertoire diversity of peripheral PD-1+CD8+ T cells predicts clinical outcomes after immunotherapy in patients with non–small cell lung cancer. Cancer Immunol. Res., 2020, 8(1), 146-154.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0398] [PMID: 31719056]
[83]
Liu, Y.; Maccarini, P.; Palmer, G.M.; Etienne, W.; Zhao, Y.; Lee, C.T.; Ma, X.; Inman, B.A.; Vo-Dinh, T. Synergistic immuno photothermal nanotherapy (symphony) for the treatment of unresectable and metastatic cancers. Sci. Rep., 2017, 7(1), 8606.
[http://dx.doi.org/10.1038/s41598-017-09116-1] [PMID: 28819209]
[84]
Ashrafizadeh, M.; Farhood, B.; Eleojo, M.A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[85]
Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomed., 2021, 16, 1083-1102.
[http://dx.doi.org/10.2147/IJN.S290438] [PMID: 33603370]
[86]
Candelaria, M.; Garcia-Arias, A.; Cetina, L.; Dueñas-Gonzalez, A. Radiosensitizers in cervical cancer. Cisplatin and beyond. Radiat. Oncol., 2006, 1(1), 15.
[http://dx.doi.org/10.1186/1748-717X-1-15] [PMID: 16722549]
[87]
Varzandeh, M.; Sabouri, L.; Mansouri, V.; Gharibshahian, M.; Beheshtizadeh, N.; Hamblin, M.R.; Rezaei, N. Application of nano radiosensitizers in combination cancer therapy. Bioeng. Transl. Med., 2023, 8(3), e10498.
[http://dx.doi.org/10.1002/btm2.10498] [PMID: 37206240]
[88]
Shen, H.; Huang, H.; Jiang, Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front. Pharmacol., 2023, 14, 1145551.
[http://dx.doi.org/10.3389/fphar.2023.1145551] [PMID: 36873996]
[89]
Bhat, V.; Pellizzari, S.; Allan, A.L.; Wong, E.; Lock, M.; Brackstone, M.; Lohmann, A.E.; Cescon, D.W.; Parsyan, A. Radiotherapy and radiosensitization in breast cancer: Molecular targets and clinical applications. Crit. Rev. Oncol. Hematol., 2022, 169, 103566.
[http://dx.doi.org/10.1016/j.critrevonc.2021.103566] [PMID: 34890802]
[90]
Scher, N.; Bonvalot, S.; Le Tourneau, C.; Chajon, E.; Verry, C.; Thariat, J.; Calugaru, V. Review of clinical applications of radiation-enhancing nanoparticles. Biotechnol. Rep. , 2020, 28, e00548.
[http://dx.doi.org/10.1016/j.btre.2020.e00548] [PMID: 33204660]
[91]
Dobešová, L.; Gier, T.; Kopečná, O.; Pagáčová, E.; Vičar, T.; Bestvater, F.; Toufar, J.; Bačíková, A.; Kopel, P.; Fedr, R.; Hildenbrand, G.; Falková, I.; Falk, M.; Hausmann, M. Incorporation of low concentrations of gold nanoparticles: Complex effects on radiation response and fate of cancer cells. Pharmaceutics, 2022, 14(1), 166.
[http://dx.doi.org/10.3390/pharmaceutics14010166] [PMID: 35057061]
[92]
Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomed., 2020, 15, 9407-9430.
[http://dx.doi.org/10.2147/IJN.S272902] [PMID: 33262595]
[93]
Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z. Gold nanoparticle mediated phototherapy for cancer. J. Nanomater., 2016, 2016, 1-29.
[http://dx.doi.org/10.1155/2016/5497136]
[94]
Cunningham, C.; de Kock, M.; Engelbrecht, M.; Miles, X.; Slabbert, J.; Vandevoorde, C. Radiosensitization effect of gold nanoparticles in proton therapy. Front. Public Health, 2021, 9, 699822.
[http://dx.doi.org/10.3389/fpubh.2021.699822] [PMID: 34395371]
[95]
Kempson, I. Mechanisms of nanoparticle radiosensitization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(1), e1656.
[http://dx.doi.org/10.1002/wnan.1656] [PMID: 32686321]
[96]
Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K.T.; Prise, K.M. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol., 2017, 8(1), 2.
[http://dx.doi.org/10.1186/s12645-017-0026-0] [PMID: 28217176]
[97]
Egorova, E.A.; van Rijt, M.M.J.; Sommerdijk, N.; Gooris, G.S.; Bouwstra, J.A.; Boyle, A.L.; Kros, A. One peptide for them all: Gold nanoparticles of different sizes are stabilized by a common peptide amphiphile. ACS Nano, 2020, 14(5), 5874-5886.
[http://dx.doi.org/10.1021/acsnano.0c01021] [PMID: 32348119]
[98]
Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J.A.; Atala, A.; Mukhopadhyay, D.; Soker, S. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res., 2005, 11(9), 3530-3534.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2482] [PMID: 15867256]
[99]
Liang, P.; Mao, L.; Dong, Y.; Zhao, Z.; Sun, Q.; Mazhar, M.; Ma, Y.; Yang, S.; Ren, W. Design and application of near-infrared nanomaterial-liposome hybrid nanocarriers for cancer photothermal therapy. Pharmaceutics, 2021, 13(12), 2070.
[http://dx.doi.org/10.3390/pharmaceutics13122070] [PMID: 34959351]
[100]
Mahan, M.M.; Doiron, A.L. Gold nanoparticles as x-ray, CT, and multimodal imaging contrast agents: Formulation, targeting, and methodology. J. Nanomater., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/5837276]
[101]
Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep., 2018, 8(1), 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[102]
Kim, H.M.; Park, J.H.; Choi, Y.J.; Oh, J.M.; Park, J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Advances, 2023, 13(8), 5529-5537.
[http://dx.doi.org/10.1039/D2RA07276A] [PMID: 36798609]
[103]
Bi, Y.; Hao, F.; Yan, G.; Teng, L.; Lee, R.J.; Xie, J. Actively targeted nanoparticles for drug delivery to tumor. Curr. Drug Metab., 2016, 17(8), 763-782.
[http://dx.doi.org/10.2174/1389200217666160619191853] [PMID: 27335116]
[104]
Liu, Y.; He, M.; Niu, M.; Zhao, Y.; Zhu, Y.; Li, Z.; Feng, N. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: A light-responsive nanocarrier with enhanced antitumor efficiency. Int. J. Nanomed., 2015, 10, 3081-3095.
[PMID: 25960649]
[105]
Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.; Pall, E.; Aldea, M.; Kacso, G.; Cristea, V.; Berindan-Neagoe, I.; Irimie, A. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastrointestin. Liver Dis., 2012, 21(2), 187-196.
[PMID: 22720309]
[106]
Ali, M.M.; Rajab, N.A.; Abdulrasool, A.A. Etoposide-loaded gold nanoparticles: Preparation, characterization, optimization and cytotoxicity assay. Systematic Rev. Pharm., 2020, 11, 372-381.
[107]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[108]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[109]
Shen, N.; Zhang, R.; Zhang, H-R.; Luo, H-Y.; Shen, W.; Gao, X.; Guo, D-Z.; Shen, J. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int. J. Ophthalmol., 2018, 11(8), 1269-1276.
[PMID: 30140628]
[110]
Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[111]
Abdal Dayem, A.; Hossain, M.; Lee, S.; Kim, K.; Saha, S.; Yang, G.M.; Choi, H.; Cho, S.G. The Role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[112]
Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed. Pharmacother., 2018, 105, 440-448.
[http://dx.doi.org/10.1016/j.biopha.2018.05.151] [PMID: 29879628]
[113]
Shrestha, B.; Wang, L.; Brey, E.M.; Uribe, G.R.; Tang, L. Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics, 2021, 13(6), 853.
[http://dx.doi.org/10.3390/pharmaceutics13060853] [PMID: 34201333]
[114]
Yang, Y.; Zheng, X.; Chen, L.; Gong, X.; Yang, H.; Duan, X.; Zhu, Y. Multifunctional gold nanoparticles in cancer diagnosis and treatment. Int. J. Nanomed., 2022, 17, 2041-2067.
[http://dx.doi.org/10.2147/IJN.S355142] [PMID: 35571258]
[115]
Jelveh, S.; Chithrani, D.B. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers (Basel), 2011, 3(1), 1081-1110.
[http://dx.doi.org/10.3390/cancers3011081] [PMID: 24212654]
[116]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in chemo-, immuno-, and combined therapy. Biomed. Opt. Express, 2019, 10(7), 3152-3182.
[http://dx.doi.org/10.1364/BOE.10.003152] [PMID: 31467774]
[117]
Cetin Ersen, B.; Goncu, B.; Dag, A.; Birlik Demirel, G. GLUT-targeting phototherapeutic nanoparticles for synergistic triple combination cancer therapy. ACS Appl. Mater. Interfaces, 2023, 15(7), 9080-9098.
[http://dx.doi.org/10.1021/acsami.2c21180] [PMID: 36780418]
[118]
Li, R.T.; Chen, M.; Yang, Z.C.; Chen, Y.J.; Huang, N.H.; Chen, W.H.; Chen, J.; Chen, J.X. AIE-based gold nanostar-berberine dimer nanocomposites for PDT and PTT combination therapy toward breast cancer. Nanoscale, 2022, 14(27), 9818-9831.
[http://dx.doi.org/10.1039/D2NR03408E] [PMID: 35771232]
[119]
Zhang, W.; Zang, Y.; Lu, Y.; Han, J.; Xiong, Q.; Xiong, J. Photodynamic therapy of up-conversion nanomaterial doped with gold nanoparticles. Int. J. Mol. Sci., 2022, 23(8), 4279.
[http://dx.doi.org/10.3390/ijms23084279] [PMID: 35457097]
[120]
Xie, J.; Liang, R.; Li, Q.; Wang, K.; Hussain, M.; Dong, L.; Shen, C.; Li, H.; Shen, G.; Zhu, J.; Tao, J. Photosensitizer-loaded gold nanocages for immunogenic phototherapy of aggressive melanoma. Acta Biomater., 2022, 142, 264-273.
[http://dx.doi.org/10.1016/j.actbio.2022.01.051] [PMID: 35101580]
[121]
Saw, W.S.; Anasamy, T.; Do, T.T.A.; Lee, H.B.; Chee, C.F.; Isci, U.; Misran, M.; Dumoulin, F.; Chong, W.Y.; Kiew, L.V.; Imae, T.; Chung, L.Y. Nanoscaled PAMAM dendrimer spacer improved the photothermal‒photodynamic treatment efficiency of photosensitizer‐decorated confeito‐like gold nanoparticles for cancer therapy. Macromol. Biosci., 2022, 22(8), 2200130.
[http://dx.doi.org/10.1002/mabi.202200130] [PMID: 35579182]
[122]
Gong, B.; Shen, Y.; Li, H.; Li, X.; Huan, X.; Zhou, J.; Chen, Y.; Wu, J.; Li, W. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J. Nanobiotechnol., 2021, 19(1), 41.
[http://dx.doi.org/10.1186/s12951-020-00754-8] [PMID: 33557807]
[123]
Liu, Z.; Xie, F.; Xie, J.; Chen, J.; Li, Y.; Lin, Q.; Luo, F.; Yan, J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic–photothermal therapy. Drug Deliv., 2021, 28(1), 1769-1784.
[http://dx.doi.org/10.1080/10717544.2021.1960923] [PMID: 34470548]
[124]
Nam, J.; Son, S.; Ochyl, L.J.; Kuai, R.; Schwendeman, A.; Moon, J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun., 2018, 9(1), 1074.
[http://dx.doi.org/10.1038/s41467-018-03473-9] [PMID: 29540781]
[125]
Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P.K. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.038] [PMID: 26454052]
[126]
Wang, B.; Wang, J.H.; Liu, Q.; Huang, H.; Chen, M.; Li, K.; Li, C.; Yu, X.F.; Chu, P.K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials, 2014, 35(6), 1954-1966.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.066] [PMID: 24331707]
[127]
Popp, M.K.; Oubou, I.; Shepherd, C.; Nager, Z.; Anderson, C.; Pagliaro, L. Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume. J. Nanomater., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/450670]
[128]
Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N.; Khlebtsov, B. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res., 2014, 7(3), 325-337.
[http://dx.doi.org/10.1007/s12274-013-0398-3]
[129]
Black, K.C.L.; Yi, J.; Rivera, J.G.; Zelasko-Leon, D.C.; Messersmith, P.B. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine , 2013, 8(1), 17-28.
[http://dx.doi.org/10.2217/nnm.12.82] [PMID: 22891865]
[130]
Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M.I.; Zhang, K.; Altman, M.B.; Chen, Y.; Zhu, Z.; Huang, C.Z.; Tan, W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 2012, 6(6), 5070-5077.
[http://dx.doi.org/10.1021/nn300694v] [PMID: 22631052]
[131]
Kuo, W.S.; Chang, Y.T.; Cho, K.C.; Chiu, K.C.; Lien, C.H.; Yeh, C.S.; Chen, S.J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials, 2012, 33(11), 3270-3278.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.035] [PMID: 22289264]
[132]
Arellano-Galindo, L.; Villar-Alvarez, E.; Varela, A.; Figueroa, V.; Fernandez-Vega, J.; Cambón, A.; Prieto, G.; Barbosa, S.; Taboada, P. Hybrid gold nanorod-based nanoplatform with chemo and photothermal activities for bimodal cancer therapy. Int. J. Mol. Sci., 2022, 23(21), 13109.
[http://dx.doi.org/10.3390/ijms232113109] [PMID: 36361892]
[133]
Zhan, H.; Song, W.; Gu, M.; Zhao, H.; Liu, Y.; Liu, B.; Wang, J. A new gold nanoparticles and paclitaxel co-delivery system for enhanced anti-cancer effect through chemo-photothermal combination. J. Biomed. Nanotechnol., 2022, 18(4), 957-975.
[http://dx.doi.org/10.1166/jbn.2022.3309] [PMID: 35854456]
[134]
Faid, A.H.; Shouman, S.A.; Badr, Y.A.; Sharaky, M.; Mostafa, E.M.; Sliem, M.A. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chem., 2022, 16(1), 94.
[http://dx.doi.org/10.1186/s13065-022-00892-0] [PMID: 36371236]
[135]
Bhattacharya, K.; Das, S.; Kundu, M.; Singh, S.; Kalita, U.; Mandal, M.; Singha, N.K. Gold nanoparticle embedded stimuli‐responsive functional glycopolymer: A potential material for synergistic chemo‐photodynamic therapy of cancer cells. Macromol. Biosci., 2022, 22(9), 2200069.
[http://dx.doi.org/10.1002/mabi.202200069] [PMID: 35797485]
[136]
He, J.; Yu, S.; Ma, Z.; Sun, H.; Yang, Q.; Liu, Z.; Wang, X.; Zhang, X.; Wang, L. Polymyxin E biomineralized and doxorubicin-loaded gold nanoflowers nanodrug for chemo-photothermal therapy. Int. J. Pharm., 2022, 625, 122082.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122082] [PMID: 35934168]
[137]
Wang, J.; Zhao, H.; Song, W.; Gu, M.; Liu, Y.; Liu, B.; Zhan, H. Gold nanoparticle-decorated drug nanocrystals for enhancing anticancer efficacy and reversing drug resistance through chemo-/photothermal therapy. Mol. Pharm., 2022, 19(7), 2518-2534.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00150] [PMID: 35549267]
[138]
Liu, J.; Song, Y.; Wang, Y.; Han, M.; Wang, C.; Yan, F. Cyclodextrin-functionalized gold nanorods loaded with meclofenamic acid for improving n6 -methyladenosine-mediated second near-infrared photothermal immunotherapy. ACS Appl. Mater. Interfaces, 2022, 14(36), 40612-40623.
[http://dx.doi.org/10.1021/acsami.2c09978] [PMID: 36053499]
[139]
He, J.; Liu, S.; Zhang, Y.; Chu, X.; Lin, Z.; Zhao, Z.; Qiu, S.; Guo, Y.; Ding, H.; Pan, Y.; Pan, J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol., 2021, 12, 687399.
[http://dx.doi.org/10.3389/fphar.2021.687399] [PMID: 34163367]
[140]
Di Pietro, P.; Strano, G.; Zuccarello, L.; Satriano, C. Gold and silver nanoparticles for applications in theranostics. Curr. Top. Med. Chem., 2016, 16(27), 3069-3102.
[http://dx.doi.org/10.2174/1568026616666160715163346] [PMID: 27426869]
[141]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol., 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy