Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology


ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Mini-Review Article

Glucose Transporter and Sensor Mechanisms in Fungal Pathogens as Potential Drug Targets

Author(s): Archana Mohit Navale*

Volume 19, Issue 3, 2024

Published on: 10 October, 2023

Page: [250 - 258] Pages: 9

DOI: 10.2174/0127724328263050230923154326

Price: $65


Fungal infections are emerging as major health challenges in recent years. The development of resistance against existing antifungal agents needs urgent attention and action. The limited classes of antifungal drugs available, their tendency to cause adverse effects, lack of effectiveness, etc., are the major limitations of current therapy. Thus, there is a pressing demand for new antifungal drug classes to cope with the present circumstances. Glucose is the key source of energy for all organisms, including fungi. Glucose plays a crucial role as a source of carbon and energy for processes like virulence, growth, invasion, biofilm formation, and resistance development. The glucose transport and sensing mechanisms are well developed in these organisms as an important strategy to sustain survival. Modulating these transport or sensor mechanisms may serve as an important strategy to inhibit fungal growth. Moreover, the structural difference between human and fungal glucose transporters makes them more appealing as drug targets. Limited literature is available for fungal glucose entry mechanisms. This review provides a comprehensive account of sugar transport mechanisms in common fungal pathogens.

Keywords: Hexose transporters, antifungal resistance, novel antifungals, novel drug targets, Hxt, Hgt, Rgt2.

Graphical Abstract
Fisher MC, Alastruey-Izquierdo A, Berman J, et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20(9): 557-71.
[] [PMID: 35352028]
Qadri H, Qureshi MF, Mir MA, Shah AH. Glucose-the X factor for the survival of human fungal pathogens and disease progression in the host. Microbiol Res 2021; 247: 126725.
[] [PMID: 33676311]
Moriya H, Johnston M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci 2004; 101(6): 1572-7.
[] [PMID: 14755054]
Ozcan S, Dover J, Rosenwald AG, Wölfl S, Johnston M. Two glucose transporters in saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci 1996; 93(22): 12428-32.
[] [PMID: 8901598]
Kayikci Ö, Nielsen J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15(6): fov068.
[] [PMID: 26205245]
Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 2004; 16(2): 293-9.
[] [PMID: 15494315]
Horák J. Regulations of sugar transporters: Insights from yeast. Curr Genet 2013; 59(1-2): 1-31.
[] [PMID: 23455612]
Özcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 1999; 63(3): 554-69.
[] [PMID: 10477308]
Nourani A, Wesolowski-Louvel M, Delaveau T, Jacq C, Delahodde A. Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: Involvement of two hexose transporters. Mol Cell Biol 1997; 17(9): 5453-60.
[] [PMID: 9271421]
Jordan P, Choe JY, Boles E, Oreb M. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 2016; 6(1): 23502.
[] [PMID: 26996892]
Parslow BY, Thornton CR. Continuing shifts in epidemiology and antifungal susceptibility highlight the need for improved disease management of invasive candidiasis. Microorganisms 2022; 10(6): 1208.
[] [PMID: 35744725]
Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015; 58(2): 2-13.
[] [PMID: 26033251]
Arendrup MC, Patterson TF. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017; 216(3): S445-51.
[] [PMID: 28911043]
Fan J, Chaturvedi V, Shen SH. Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 2002; 55(3): 336-46.
[] [PMID: 12187386]
Brown V, Sabina J, Johnston M. Specialized sugar sensing in diverse fungi. Curr Biol 2009; 19(5): 436-41.
[] [PMID: 19249212]
Helmerhorst EJ, Murphy MP, Troxler RF, Oppenheim FG. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta Bioenerg 2002; 1556(1): 73-80.
[] [PMID: 12351220]
Brown V, Sexton JA, Johnston M. A glucose sensor in Candida albicans. Eukaryot Cell 2006; 5(10): 1726-37.
[] [PMID: 17030998]
Luo L, Tong X, Farley PC. The Candida albicans gene HGT12 (orf19.7094) encodes a hexose transporter. FEMS Immunol Med Microbiol 2007; 51(1): 14-7.
[] [PMID: 17573928]
Van Ende M, Wijnants S, Van Dijck P. Sugar sensing and signaling in Candida albicans and Candida glabrata. Front Microbiol 2019; 10: 99.
[] [PMID: 30761119]
Cox F. Candida albicans adherence in newborn infants. Med Mycol 1986; 24(2): 121-5.
[] [PMID: 3522839]
Leibovitz E. Neonatal candidosis: Clinical picture, management controversies and consensus, and new therapeutic options. J Antimicrob Chemother 2002; 49(1): 69-73.
[] [PMID: 11801585]
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S. Potential antifungal targets based on glucose metabolism pathways of candida albicans. Front Microbiol 2020; 11: 296.
[] [PMID: 32256459]
Sabina J, Brown V. Glucose sensing network in Candida albicans: A sweet spot for fungal morphogenesis. Eukaryot Cell 2009; 8(9): 1314-20.
[] [PMID: 19617394]
Varma A, Singh BB, Karnani N, et al. Molecular cloning and functional characterisation of a glucose transporter, CaHGT1, of Candida albicans. FEMS Microbiol Lett 2000; 182(1): 15-21.
[] [PMID: 10612724]
Maidan MM, De Rop L, Serneels J, et al. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell 2005; 16(4): 1971-86.
[] [PMID: 15673611]
Maidan MM, Thevelein JM, Van Dijck P. Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans 2005; 33(1): 291-3.
[] [PMID: 15667329]
Schrevens S, Van Zeebroeck G, Riedelberger M, Tournu H, Kuchler K, Van Dijck P. Methionine is required for cAMP-PKA-mediated morphogenesis and virulence of Candida albicans. Mol Microbiol 2018; 108(3): 258-75.
[] [PMID: 29453849]
Ballou ER, Avelar GM, Childers DS, et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol 2016; 2(2): 16238.
[] [PMID: 27941860]
Maidan MM, De Rop L, Relloso M, Diez-Orejas R, Thevelein JM, Van Dijck P. Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infect Immun 2008; 76(4): 1686-94.
[] [PMID: 18268028]
Dijck PV. Nutrient sensing G protein-coupled receptors: Interesting targets for antifungals? Med Mycol 2009; 47(7): 671-80.
[] [PMID: 19888799]
Musa K, A Ahmed M, NM Shahpudin S, et al. Resistance of Candida glabrata to drugs and the host immune system. Clin Microbiol Infect Dis 2018; 3(3): 1-4.
Ng TS, Desa MNM, Sandai D, Chong PP, Than LTL. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations. Infect Genet Evol 2016; 40: 331-8.
[] [PMID: 26358577]
Ng TS, Chew SY, Rangasamy P, et al. SNF3 as high affinity glucose sensor and its function in supporting the viability of Candida glabrata under glucose-limited environment. Front Microbiol 2015; 6: 1334.
[] [PMID: 26648919]
Peng M, Aguilar-Pontes MV, de Vries RP, Mäkelä MR. In Silico analysis of putative sugar transporter genes in Aspergillus niger using phylogeny and comparative transcriptomics. Front Microbiol 2018; 9: 1045.
[] [PMID: 29867914]
vanKUYK PA, Diderich JA, MacCABE AP, Hererro O, Ruijter GJG, Visser J. Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochem J 2004; 379(2): 375-83.
[] [PMID: 14717659]
Sloothaak J, Odoni DI, de Graaff LH, Martins dos Santos VAP, Schaap PJ, Tamayo-Ramos JA. Aspergillus niger membrane-associated proteome analysis for the identification of glucose transporters. Biotechnol Biofuels 2015; 8(1): 150.
[] [PMID: 26388937]
Henriet SSV, Verweij PE, Warris A. Aspergillus nidulans and chronic granulomatous disease: A unique host-pathogen interaction. J Infect Dis 2012; 206(7): 1128-37.
[] [PMID: 22829648]
Wei H, Vienken K, Weber R, Bunting S, Requena N, Fischer R. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet Biol 2004; 41(2): 148-56.
[] [PMID: 14732261]
Forment JV, Flipphi M, Ventura L, González R, Ramón D, MacCabe AP. High-affinity glucose transport in Aspergillus nidulans is mediated by the products of two related but differentially expressed genes. PLoS One 2014; 9(4): e94662.
[] [PMID: 24751997]
dos Reis TF, Menino JF, Bom VLP, et al. Identification of glucose transporters in Aspergillus nidulans. PLoS One 2013; 8(11): e81412.
[] [PMID: 24282591]
dos Reis TF, Nitsche BM, de Lima PBA, et al. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans. Sci Rep 2017; 7(1): 45073.
[] [PMID: 28361917]
Chikamori M, Fukushima K. A new hexose transporter from Cryptococcus neoformans: Molecular cloning and structural and functional characterization. Fungal Genet Biol 2005; 42(7): 646-55.
[] [PMID: 15907385]
Liu TB, Wang Y, Baker GM, Fahmy H, Jiang L, Xue C. The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans. PLoS One 2013; 8(5): e64239.
[] [PMID: 23691177]
Luberto C, Martinez-Mariño B, Taraskiewicz D, et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J Clin Invest 2003; 112(7): 1080-94.
[] [PMID: 14523045]
Williams V, Del Poeta M. Role of glucose in the expression of Cryptococcus neoformans antiphagocytic protein 1, App1. Eukaryot Cell 2011; 10(3): 293-301.
[] [PMID: 21239626]
Price MS, Betancourt-Quiroz M, Price JL, et al. Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio 2011; 2(3): e00103-11.
[] [PMID: 21652778]
Kronstad J, Saikia S, Nielson ED, et al. Adaptation of Cryptococcus neoformans to mammalian hosts: Integrated regulation of metabolism and virulence. Eukaryot Cell 2012; 11(2): 109-18.
[] [PMID: 22140231]
Xue C, Bahn YS, Cox GM, Heitman J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 2006; 17(2): 667-79.
[] [PMID: 16291861]
Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc Natl Acad Sci 2007; 104(4): 1366-70.
[] [PMID: 17227865]
Tavares AHFP, Silva SS, Dantas A, et al. Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. Microbes Infect 2007; 9(5): 583-90.
[] [PMID: 17387029]
Parente-Rocha JA, Parente AFA, Baeza LC, et al. Macrophage interaction with paracoccidioides brasiliensis yeast cells modulates fungal metabolism and generates a response to oxidative stress. PLoS One 2015; 10(9): e0137619.
[] [PMID: 26360774]
Shen Q, Ray SC, Evans HM, Deepe GS Jr, Rappleye CA. Metabolism of gluconeogenic substrates by an intracellular fungal pathogen circumvents nutritional limitations within macrophages. MBio 2020; 11(2): e02712-9.
[] [PMID: 32265333]
Pigosso L, Baeza LC, Tomazett M, et al. Paracoccidioides brasiliensis presents metabolic reprogramming and secretes a serine proteinase during murine infection. Virulence 2017; 8(7): 1417-34.
[] [PMID: 28704618]
Kolbrink B, Scheikholeslami-Sabzewari J, Borzikowsky C, et al. Evolving epidemiology of pneumocystis pneumonia: Findings from a longitudinal population-based study and a retrospective multi-center study in Germany. Lancet Reg Health Eur 2022; 18: 100400.
[] [PMID: 35814339]
Stefano JAD, Myers JD, Pont DD, Foy JM, Theus SA, Walzer PD. Cell wall antigens of Pneumocystis carinii trophozoites and cysts: Purification and carbohydrate analysis of these glycoproteins. J Eukaryot Microbiol 1998; 45(3): 334-43.
[] [PMID: 9627993]
Williams DJ, Radding JA, Dell A, et al. Glucan synthesis in Pneumocystis carinii. J Protozool 1991; 38(4): 427-37.
[] [PMID: 1787429]
Basselin-Eiweida M, Kaneshiro ES. Detection of two distinct transporter systems for 2-deoxyglucose uptake by the opportunistic pathogen Pneumocystis carinii. Biochim Biophys Acta Biomembr 2001; 1515(2): 177-88.
[] [PMID: 11718673]
Cruz AHS, Santos RS, Martins MP, et al. Relevance of nutrient-sensing in the pathogenesis of trichophyton rubrum and trichophyton interdigitale. Front Fung Biol 2022; 3: 858968.
Martinez DA, Oliver BG, Gräser Y, et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio 2012; 3(5): e00259-12.
[] [PMID: 22951933]
dos Santos SC, Tenreiro S, Palma M, Becker J, Sá-Correia I. Transcriptomic profiling of the Saccharomyces cerevisiae response to quinine reveals a glucose limitation response attributable to drug-induced inhibition of glucose uptake. Antimicrob Agents Chemother 2009; 53(12): 5213-23.
[] [PMID: 19805573]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy