Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Physicochemical Properties of Cetrimonium Bromide in Electrolytes and Nonelectrolyte Environments

Author(s): Riddhi H. Joshi, Nikunj N. Dave and Tejas P. Joshi*

Volume 14, Issue 1, 2024

Published on: 29 August, 2023

Page: [32 - 46] Pages: 15

DOI: 10.2174/1877946813666230720164941

Price: $65

Abstract

Background: The physicochemical properties, including the thermodynamics of micellization studies, received much attention. Cationic surfactant cetrimonium bromide (C16TABr) in electrolytes (sodium chloride and sodium salicylate) and nonelectrolyte (Ethylene glycol) in an aqueous solution were examined, and interesting results were obtained. The present investigation aims to identify a suitable combination of cationic surfactant cetrimonium bromide + electrolytes and nonelectrolytes having the ability to alter the size or shape of the micellar system using available methods.

Methods: Surface tension, conductivity, viscosity, ultrasonic velocity, and dynamic light scattering (DLS) methods at different temperatures (303-323K) were used during the experimental research work.

Results: The experimental results pointed out that the incorporation of electrolytes and nonelectrolyte into the cationic surfactant affects the physicochemical properties such as critical micelle concentration (CMC), surface tension (ST), degree of ionization (α), degree of counterion binding (β), standard Gibbs free energy of micellization (ΔGo m), standard entropy of micellization (ΔSo m), standard heat of micellization (ΔHo m), viscosities, and acoustic parameters. Dynamic light scattering (DLS) measurements reveal exciting facts related to the size and shape transformation of the mixed micellar assembly. Structure modification can be obtained by choosing right the combination of cationic surfactant cetrimonium bromide + electrolytes (sodium chloride and sodium salicylate) and nonelectrolyte (Ethylene glycol) ratio.

Conclusion: It concluded that, over a threshold level, an electrolyte such as NaCl concentration causes the micelle size to rise. The entropy of micellization goes down when a structure-breaker (EG) is added to the water phase, and this is because the structure of the water is changed near hydrophobic groups. The physicochemical features of cetrimonium bromide (C16TABr) show unique behaviour under the influence of micelle-driven and micelle- forbidden systems.

Keywords: Cetrimonium bromide, micellization, CMC, cationic surfactant, electrolyte, dynamic light scattering.

Graphical Abstract
[1]
Hayes, D.G.; Solaiman, D.K.Y.; Ashby, R.D. Biobased Surfactants, 2nd ed; Elsevier, 2019.
[http://dx.doi.org/10.1016/C2016-0-03179-0]
[2]
Zakharova, L.Y.; Pashirova, T.N.; Doktorovova, S.; Fernandes, A.R.; Sanchez-Lopez, E.; Silva, A.M.; Souto, S.B.; Souto, E.B. Cationic surfactants: self-assembly, structure-activity correlation and their biological applications. Int. J. Mol. Sci., 2019, 20(22), 5534.
[http://dx.doi.org/10.3390/ijms20225534] [PMID: 31698783]
[3]
Yuli, I.; Tzafrir, I.; Salama, P. Compatibility investigation of cationic surfactants with anionic species. Cosmetics, 2023, 10(2), 45.
[http://dx.doi.org/10.3390/cosmetics10020045]
[4]
Varade, D.; Joshi, T.; Aswal, V.K.; Goyal, P.S. Effect of salt on the micelles of cetyl pyridinium chloride. olloids Surf. A Physicochem., 2005, 259(1-3), 95-101.
[http://dx.doi.org/10.1134/S1061933X06020013]
[5]
Kuperkar, K. Viscoelastic micellar water/CTAB/NaNO3 solutions: Rheology, SANS, and cryo-TEM analysis. J. Colloid Interface Sci., 2008, 323(2), 403-409.
[http://dx.doi.org/10.1016/j.jcis.2008.04.040]
[6]
Akbaş H.; Kartal, Ç. Conductometric studies of hexadecyltrimethylammonium bromide in aqueous solutions of ethanol and ethylene glycol. Colloid J., 2006, 68(2), 125-130.
[http://dx.doi.org/10.1134/S1061933X06020013]
[7]
Joshi, T. Interaction of bile salts with Cetylpyridinium chloride: Surface tension and viscosity measurements. Curr. Phys. Chem., 2018, 8(2), 86-94.
[http://dx.doi.org/10.2174/1877946808666180320115014]
[8]
Joshi, T.; Bharatiya, B.; Kuperkar, K. Micellization and interaction properties of aqueous solutions of mixed cationic and nonionic surfactants. J. Dispers. Sci. Technol., 2008, 29(3), 351-357.
[http://dx.doi.org/10.1080/01932690701716069]
[9]
Khan, Z.; Malik, M.A. Micellization and thermodynamic properties of cationic surfactant cetyltrimethylammonium bromide in non-aqueous mixture of lauric acid. Int. J. Electrochem. Sci., 2017, 1(12), 4528-4542.
[http://dx.doi.org/10.20964/2017.05.53]
[10]
Haq, Z.I.; Rehman, N.; Ali, F.; Khan, N.M.; Ullah, H. Effect of electrolyte (NaCl) and temperature on the mechanism of cetyl trimethylammonium bromide micelles. Sains Malays., 2017, 46(5), 733-741.
[http://dx.doi.org/10.17576/jsm-2017-4605-08]
[11]
Aguiar, J.; Carpena, P. Molina-Bolıvar, J.A.; Ruiz, C.C. On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method. J. Colloid Interface Sci., 2003, 258(1), 116-122.
[http://dx.doi.org/10.1016/S0021-9797(02)00082-6]
[12]
Qazi, M.J.; Schlegel, S.J.; Backus, E.H.; Bonn, M.; Bonn, D.; Shahidzadeh, N. Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir, 2020, 36(27), 7956-7964.
[http://dx.doi.org/10.1021/acs.langmuir.0c01211]
[13]
Abedin, J.; Mahbub, S.; Rahman, M.M.; Hoque, A.; Kumar, D.; Khan, J.M.; El-Sherbeeny, A.M. Interaction of tetradecyltrimethylammonium bromide with bovine serum albumin in different compositions: Effect of temperatures and electrolytes/urea. Chin. J. Chem. Eng., 2021, 29, 279-287.
[http://dx.doi.org/10.1016/j.cjche.2020.07.062]
[14]
Cookey, G.A.; Obunwo, C.C. Effects of sodium bromide salt and temperature on the behaviour of aqueous solution of cetyltrimethylammonium bromide. IOSR J. Appl. Chem, 2014, 7, 34-38.
[http://dx.doi.org/10.9790/5736-071213438]
[15]
Tennouga, L.; Medjahed, K.; Mansri, A.; Grassl, B. Conductometric study of the complex system polyelectrolyte/surfactant in aqueous solution. Res. Chem. Intermed., 2013, 39(6), 2527-2536.
[http://dx.doi.org/10.1007/s11164-012-0778-4]
[16]
Bhattarai, A.; Shrivastav, G.; Adhikari, C.N. Study of critical micelle concentration of cetyltrimethylammonium bromide (CTAB) in pure water in presence and absence of magnesium sulphate and sodium sulphae by measuring conductivity meter. BIBECHANA, 2014, 11(11), 123-127.
[http://dx.doi.org/10.3126/bibechana.v11i0.10390]
[17]
George, J.; Sudheesh, P.; Reddy, P.N.; Sreejith, L. Influence of salt on cationic surfactant-biopolymer interactions in aqueous media. J. Solution Chem., 2009, 38(3), 373-381.
[http://dx.doi.org/10.1007/s10953-009-9370-y]
[18]
Cieśla, J.; Koczańska, M.; Narkiewicz-Michałek, J.; Szymula, M.; Bieganowski, A. The physicochemical properties of CTAB solutions in the presence of α-tocopherol. J. Mol. Liq., 2016, 222(222), 463-470.
[http://dx.doi.org/10.1016/j.molliq.2016.07.058]
[19]
Ahmed, M.F.; Abdul Rub, M.; Joy, M.T.R.; Molla, M.R.; Azum, N.; Anamul Hoque, M. Influences of NaCl and Na2SO4 on the micellization behavior of the mixture of cetylpyridinium chloride + polyvinyl pyrrolidone at several temperatures. Gels, 2022, 8(1), 62.
[http://dx.doi.org/10.3390/gels8010062] [PMID: 35049597]
[20]
Bales, B.L. A definition of the degree of ionization of a micelle based on its aggregation number. J. Phys. Chem. B, 2001, 105(29), 6798-6804.
[http://dx.doi.org/10.1021/jp004576m]
[21]
Kamil, M.; Khan, M. Rheological studies on interactions between CTAB and PEG in aqueous solution using RSM. Iranian J. Chem. Chem. Eng., 2022, 41, 3858-3872.
[http://dx.doi.org/10.30492/IJCCE.2022.530958.4756]
[22]
Andreatta, G.; Bostrom, N.; Mullins, O.C. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants. Langmuir, 2005, 21(7), 2728-2736.
[http://dx.doi.org/10.1021/la048640t]
[23]
Berne, B.J.; Pecora, R. Dynamic light scattering: With applications to chemistry, biology, and physics; Courier Corporation, 2000.
[http://dx.doi.org/10.1002/pi.4980090216]
[24]
Kumar, V.; Padsala, S.; Mayursing, G.; Ray, D.; Aswal, V.K.; Kuperkar, K.; Bahadur, P. Self-assembly and solution behavior of cationic surfactants in water- trifluoroethanol environment: An experimental and theoretical approach. Res. Square 2023, 2023.
[http://dx.doi.org/10.21203/rs.3.rs-2771406/v1]
[25]
Gracia, C.A.; Gómez-Barreiro, S.; González-Pérez, A.; Nimo, J.; Rodríguez, J.R. Static and dynamic light-scattering studies on micellar solutions of alkyldimethylbenzylammonium chlorides. J. Colloid Interface Sci., 2004, 276(2), 408-413.
[http://dx.doi.org/10.1016/j.jcis.2004.04.002] [PMID: 15271569]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy