Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Coordination Chemistry

Electrospinning Fabrication of PA66 Colloidal Crystal Fibers with Various Morphologies

Author(s): Pei Guangchen, Wu Pingping and Wang Jingxia*

Volume 3, Issue 4, 2023

Published on: 19 June, 2023

Page: [253 - 262] Pages: 10

DOI: 10.2174/2210298103666230516153457

Price: $65

Abstract

Colloidal crystal (CC) fiber has unique light manipulation properties, fiber flexibility, and the potential to be used in the textile industry as an alternative to chemical dyes. Introducing polyamide 66 (PA66) into CC fiber can effectively improve the performance of fibers. In this study, polyamide 66 (PA66) CC fibers with various morphologies were fabricated by electrospinning using high-tensile PA66 and P(St-MMA-AA) latex particles as raw materials, such as closepacked, inlaid, noodle-like, spindle knots, bamboo-like, semi-enclosed, hat-like, etc. The formation mechanism of various fibers was analyzed based on the phase separation and assembly interaction. The prepared PA66 CC fiber film was reported to have unique structural color and enhanced mechanical properties, which can be used as a substrate for drawing various patterns. This work will provide a novel idea for the fabrication of functional CC fiber, which is helpful for the potential applications in the textile industry.

Keywords: Colloidal crystals fibers, electrospinning, structural color, mechanical properties, morphology, chemical dyes.

Graphical Abstract
[1]
Yuan, W.; Zhou, N.; Shi, L.; Zhang, K.Q. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering. ACS Appl. Mater. Interfaces, 2015, 7(25), 14064-14071.
[http://dx.doi.org/10.1021/acsami.5b03289] [PMID: 26066732]
[2]
Yuan, S.J.; Meng, W.H.; Du, A.H.; Cao, X.Y.; Zhao, Y.; Wang, J.X.; Jiang, L. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials. Chin. J. Polym. Sci., 2019, 37(8), 729-736.
[http://dx.doi.org/10.1007/s10118-019-2286-0]
[3]
Li, Q.; Zhang, Y.; Shi, L.; Qiu, H.; Zhang, S.; Qi, N.; Hu, J.; Yuan, W.; Zhang, X.; Zhang, K.Q. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition. ACS Nano, 2018, 12(4), 3095-3102.
[http://dx.doi.org/10.1021/acsnano.7b08259] [PMID: 29438609]
[4]
Finlayson, C.E.; Goddard, C.; Papachristodoulou, E.; Snoswell, D.R.E.; Kontogeorgos, A.; Spahn, P.; Hellmann, G.P.; Hess, O.; Baumberg, J.J. Ordering in stretch-tunable polymeric opal fibers. Opt. Express, 2011, 19(4), 3144-3154.
[http://dx.doi.org/10.1364/OE.19.003144] [PMID: 21369136]
[5]
Sun, X.; Zhang, J.; Lu, X.; Fang, X.; Peng, H. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angew. Chem. Int. Ed., 2015, 54(12), 3630-3634.
[http://dx.doi.org/10.1002/anie.201412475] [PMID: 25728690]
[6]
Zhang, J.; He, S.; Liu, L.; Guan, G.; Lu, X.; Sun, X.; Peng, H. The continuous fabrication of mechanochromic fibers. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(11), 2127-2133.
[http://dx.doi.org/10.1039/C5TC04073F]
[7]
Liu, G.; Zhou, L.; Zhang, G.; Li, Y.; Chai, L.; Fan, Q.; Shao, J. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater. Des., 2017, 114, 10-17.
[http://dx.doi.org/10.1016/j.matdes.2016.09.102]
[8]
Zhao, Z.; Wang, H.; Shang, L.; Yu, Y.; Fu, F.; Zhao, Y.; Gu, Z. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater., 2017, 29(46), 1704569.
[http://dx.doi.org/10.1002/adma.201704569] [PMID: 29044776]
[9]
Li, G.X.; Shen, H.X.; Li, Q.; Tian, Y.; Wang, C.F.; Chen, S. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique. Mater. Lett., 2019, 242, 179-182.
[http://dx.doi.org/10.1016/j.matlet.2019.01.093]
[10]
Yuan, X.; Liu, Z.; Shang, S.; Wang, H.; Zhang, Q.; Li, Y.; Jin, W. Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method. RSC Adv, 2016, 6(20), 16319-16322.
[http://dx.doi.org/10.1039/C5RA09917J]
[11]
Shang, S.; Zhang, Q.; Wang, H.; Li, Y. Facile fabrication of magnetically responsive PDMS fiber for camouflage. J. Colloid Interface Sci., 2016, 483, 11-16.
[http://dx.doi.org/10.1016/j.jcis.2016.08.005] [PMID: 27544444]
[12]
Kolle, M.; Lethbridge, A.; Kreysing, M.; Baumberg, J.J.; Aizenberg, J.; Vukusic, P. Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv. Mater., 2013, 25(15), 2239-2245.
[http://dx.doi.org/10.1002/adma.201203529] [PMID: 23355069]
[13]
Khudiyev, T.; Dogan, T.; Bayindir, M. Biomimicry of multifunctional nanostructures in the neck feathers of mallard drakes. Sci. Rep., 2014, 4(1), 4718.
[http://dx.doi.org/10.1038/srep04718] [PMID: 24751587]
[14]
Lim, J.M.; Yi, G.R.; Moon, J.H.; Heo, C.J.; Yang, S.M. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir, 2007, 23(15), 7981-7989.
[http://dx.doi.org/10.1021/la700392w] [PMID: 17569546]
[15]
Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Bio-inspired intelligent structural color materials. Mater. Horiz., 2019, 6(5), 945-958.
[http://dx.doi.org/10.1039/C9MH00101H]
[16]
Wang, Z.; Guo, Z. Biomimetic photonic structures with tunable structural colours: From natural to biomimetic to applications. J. Bionics Eng., 2018, 15(1), 1-33.
[http://dx.doi.org/10.1007/s42235-017-0001-9]
[17]
Kim, G.H.; An, T.; Lim, G. Fabrication of optical switching patterns with structural colored microfibers. Nanoscale Res. Lett., 2018, 13, 204.
[18]
Yuan, W.; Wu, C.; Zhou, N.; Zhang, K. Fibers with the tunable structure colors based on the ordered and amorphous structures. In: Handbook of Smart Textiles;, 2015, pp. 127-154.
[19]
Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z. Bio-inspired variable structural color materials. Chem. Soc. Rev., 2012, 41(8), 3297-3317.
[http://dx.doi.org/10.1039/c2cs15267c] [PMID: 22302077]
[20]
Gao, B.; He, Z.; He, B.; Gu, Z. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon. Sens. Actuators B Chem., 2019, 288, 734-741.
[http://dx.doi.org/10.1016/j.snb.2019.03.029]
[21]
Kim, S.H.; Hwang, H.; Yang, S.M. Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries. Angew. Chem. Int. Ed., 2012, 51(15), 3601-3605.
[http://dx.doi.org/10.1002/anie.201108324] [PMID: 22383147]
[22]
Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem. Commun., 2011, 47(48), 12801-12803.
[http://dx.doi.org/10.1039/c1cc15588a] [PMID: 22037831]
[23]
Moon, J.H.; Kim, S.; Yi, G.R.; Lee, Y.H.; Yang, S.M. Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir, 2004, 20(5), 2033-2035.
[http://dx.doi.org/10.1021/la0358015]
[24]
Haibin, N.; Ming, W.; Wei, C. Sol-gel co-assembly of hollow cylindrical inverse opals and inverse opal columns. Opt. Express, 2011, 19(27), 25900-25910.
[http://dx.doi.org/10.1364/OE.19.025900] [PMID: 22274178]
[25]
Moon, J.H.; Yi, G.R.; Yang, S.M. Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas. J. Colloid Interface Sci., 2005, 287(1), 173-177.
[http://dx.doi.org/10.1016/j.jcis.2005.01.067] [PMID: 15914163]
[26]
Yuan, W.; Li, Q.; Zhou, N.; Zhang, S.; Ding, C.; Shi, L.; Zhang, K.Q. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties. ACS Appl. Mater. Interfaces, 2019, 11(21), 19388-19396.
[http://dx.doi.org/10.1021/acsami.8b21070] [PMID: 31067026]
[27]
Lai, C.H.; Yang, Y.L.; Chen, L.Y.; Huang, Y.J.; Chen, J.Y.; Wu, P.W.; Cheng, Y.T.; Huang, Y.T. Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals. J. Electrochem. Soc., 2011, 158(3), 37.
[http://dx.doi.org/10.1149/1.3536511]
[28]
Li, K.; Zhang, Q.; Wang, H.; Li, Y. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Appl. Mater. Interfaces, 2014, 6(15), 13043-13050.
[http://dx.doi.org/10.1021/am502929p] [PMID: 25057906]
[29]
Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method. Nanoscale, 2013, 5(15), 6917-6922.
[http://dx.doi.org/10.1039/c3nr01766d] [PMID: 23783532]
[30]
Meng, J.; Li, X.; Gong, Y.; Wang, R.; Zheng, Y.; Zhang, D. Preparation and performance adjustment of graphene-based photonic crystal fibers. Acta Polym Sin, 2018, 2018, 389-394.
[31]
Zhou, N.; Zhang, A.; Shi, L.; Zhang, K.Q. Fabrication of structurally-colored fibers with axial core–shell structure via electrophoretic deposition and their optical properties. ACS Macro Lett., 2013, 2(2), 116-120.
[http://dx.doi.org/10.1021/mz300517n] [PMID: 35581770]
[32]
Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Magnetic field induced formation of visually structural colored fiber in micro-space. J. Colloid Interface Sci., 2013, 406, 18-23.
[http://dx.doi.org/10.1016/j.jcis.2013.05.057] [PMID: 23809861]
[33]
Shang, S.; Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Facile fabrication of a magnetically induced structurally colored fiber and its strain-responsive properties. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(20), 11093-11097.
[http://dx.doi.org/10.1039/C5TA00775E]
[34]
Lim, J.M.; Moon, J.H.; Yi, G.R.; Heo, C.J.; Yang, S.M. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers. Langmuir, 2006, 22(8), 3445-3449.
[http://dx.doi.org/10.1021/la053057d] [PMID: 16584206]
[35]
Yuan, W.; Zhang, K.Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles. Langmuir, 2012, 28(43), 15418-15424.
[http://dx.doi.org/10.1021/la303312q] [PMID: 23039272]
[36]
Zhang, Y.; Tian, Y.; Xu, L.L.; Wang, C.F.; Chen, S. Facile fabrication of structure-tunable bead-shaped hybrid microfibers using a Rayleigh instability guiding strategy. Chem. Commun., 2015, 51(99), 17525-17528.
[http://dx.doi.org/10.1039/C5CC08263C] [PMID: 26489985]
[37]
Kohri, M.; Yanagimoto, K.; Kawamura, A.; Hamada, K.; Imai, Y.; Watanabe, T.; Ono, T.; Taniguchi, T.; Kishikawa, K. Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-like particles with polydopamine shell layers. ACS Appl. Mater. Interfaces, 2018, 10(9), 7640-7648.
[http://dx.doi.org/10.1021/acsami.7b03453] [PMID: 28661653]
[38]
Meng, X.; Pan, H.; Lu, T.; Chen, Z.; Chen, Y.; Zhang, D.; Zhu, S. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection. Nanotechnology, 2018, 29(32), 325604.
[http://dx.doi.org/10.1088/1361-6528/aac44b] [PMID: 29757154]
[39]
Tan, A.T.L.; Beroz, J.; Kolle, M.; Hart, A.J. Direct-write freeform colloidal assembly. Adv Mater, 2018, 30(2018), e1803620.
[40]
Wang, L.; He, H.W.; Yan, X.; Yu, G.F.; Jia, X.S.; Li, J.T.; Xia, L.H.; Ning, X.; Long, Y.Z. Ecofriendly fabrication of ultrathin colorful fibers via UV-assisted solventless electrospinning. RSC Adv, 2016, 6(89), 86597-86601.
[http://dx.doi.org/10.1039/C6RA16268A]
[41]
Li, Z.; Zhu, M.; Shen, J.; Qiu, Q.; Yu, J.; Ding, B. All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater., 2019, 30(6), 1908411.
[42]
Yan, J.; Han, Y.; Xia, S.; Wang, X.; Zhang, Y.; Yu, J.; Ding, B. Polymer template synthesis of flexible batio3 crystal nanofibers. Adv. Funct. Mater., 2019, 29(51), 1907919.
[43]
Lee, H.; Nagaishi, T.; Phan, D.N.; Kim, M.; Zhang, K.Q.; Wei, K.; Kim, I.S. Effect of graphene incorporation in carbon nanofiber decorated with TiO 2 for photoanode applications. RSC Adv, 2017, 7(11), 6574-6582.
[http://dx.doi.org/10.1039/C6RA26301A]
[44]
Han, W.H.; Wang, M.Q.; Yuan, J.X.; Hao, C.C.; Li, C.J.; Long, Y.Z.; Ramakrishna, S. Electrospun aligned nanofibers: A review. Arab. J. Chem., 2022, 15(11), 104193.
[http://dx.doi.org/10.1016/j.arabjc.2022.104193]
[45]
Shao, W.; Liang, H.; Ma, F.; Shi, W. Coaxial dual-core dispersion compensation photonic crystal fiber with wavelength-tunable ultrahigh negative dispersion. J. Opt. Soc. Am. B, 2023, 40(2), 334-340.
[http://dx.doi.org/10.1364/JOSAB.470713]
[46]
Xie, A.Q.; Cui, T.; Cheng, R.; Wu, X.; Guo, J.; Lu, X.; Zhu, L.; Chen, S. Robust nanofiber films prepared by electro-microfluidic spinning for flexible highly stable quantum-dot displays. Adv. Electron. Mater., 2020, 7(1), 2000626.
[47]
Lai, C.F.; Li, J.S. Self-assembly of colloidal Poly(St-MMA-AA) core/shell photonic crystals with tunable structural colors of the full visible spectrum. Opt. Mater., 2019, 88, 128-133.
[http://dx.doi.org/10.1016/j.optmat.2018.11.020]
[48]
Lu, L.; Yang, B.; Liu, J. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem. Eng. J., 2020, 400, 125928.
[http://dx.doi.org/10.1016/j.cej.2020.125928]
[49]
Chen, W.; Guo, Z. Hierarchical fibers for water collection inspired by spider silk. Nanoscale, 2019, 11(33), 15448-15463.
[http://dx.doi.org/10.1039/C9NR04065J] [PMID: 31403148]
[50]
Li, Y.; Chen, F.; Nie, J.; Yang, D. Electrospun poly(lactic acid)/chitosan core–shell structure nanofibers from homogeneous solution. Carbohydr. Polym., 2012, 90(4), 1445-1451.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.013] [PMID: 22944401]
[51]
Koombhongse, S.; Liu, W.; Reneker, D.H. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci., B, Polym. Phys., 2001, 39(21), 2598-2606.
[http://dx.doi.org/10.1002/polb.10015]
[52]
Topuz, F.; Uyar, T. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Mater. Sci. Eng. C, 2017, 80, 371-378.
[http://dx.doi.org/10.1016/j.msec.2017.06.001] [PMID: 28866176]
[53]
Wang, J.; Wen, Y.; Ge, H.; Sun, Z.; Zheng, Y.; Song, Y.; Jiang, L. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol. Chem. Phys., 2006, 207(6), 596-604.
[http://dx.doi.org/10.1002/macp.200500563]
[54]
Zhang, Y.; Dong, B.; Chen, A.; Liu, X.; Shi, L.; Zi, J. Using cuttlefish ink as an additive to produce -non-iridescent structural colors of high color visibility. Adv. Mater., 2015, 27(32), 4719-4724.
[http://dx.doi.org/10.1002/adma.201501936] [PMID: 26175211]
[55]
Song, L.; Chen, X.; Xie, Y.; Zhong, L.; Zhang, X.; Cheng, Z. Non-iridescent, crack-free, conductive structural colors enhanced by flexible nanosheets of reduced graphene oxide. Dyes Pigments, 2019, 164, 222-226.
[http://dx.doi.org/10.1016/j.dyepig.2019.01.037]
[56]
Lee, G.H.; Han, S.H.; Kim, J.B.; Kim, J.H.; Lee, J.M.; Kim, S.H. Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation. Chem. Mater., 2019, 31(19), 8154-8162.
[http://dx.doi.org/10.1021/acs.chemmater.9b02938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy