Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Bioactive Pentacyclic Triterpenes Trigger Multiple Signalling Pathways for Selective Apoptosis Leading to Anticancer Efficacy: Recent Updates and Future Perspectives

Author(s): Jhimli Banerjee, Sovan Samanta, Rubai Ahmed and Sandeep Kumar Dash*

Volume 24, Issue 10, 2023

Published on: 16 May, 2023

Page: [820 - 842] Pages: 23

DOI: 10.2174/1389203724666230418123409

Price: $65

Abstract

Nowadays, discovering an effective and safe anticancer medication is one of the major challenges. Premature death due to the unidirectional toxicity of conventional therapy is common in cancer patients with poor health status. Plants have been used as medicine since prehistoric times, and extensive research on the anticancer properties of various bioactive phytomolecules is ongoing. Pentacyclic triterpenoids are secondary metabolites of plants with well-known cytotoxic and chemopreventive properties established in numerous cancer research studies. The lupane, oleanane, and ursane groups of these triterpenoids have been well-studied in recent decades for their potential antitumor activity. This review delves into the molecular machinery governing plant-derived triterpenes' anticancer efficacy. The highlighted mechanisms are antiproliferative activity, induction of apoptosis through regulation of BCL-2 and BH3 family proteins, modulation of the inflammatory pathway, interference with cell invagination and inhibition of metastasis. Lack of solubility in mostly used biological solvents is the major barrier to the therapeutic progress of these triterpenoids. This review also highlights some probable ways to mitigate this issue with the help of nanotechnology and the modification of their physical forms.

Keywords: Pentacyclic triterpenes, apoptosis, BCL-2 family proteins, inflammation, metastasis, triterpenoids.

Graphical Abstract
[1]
Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol.Res, 2016, 113(Pt A), 600-609.
[http://dx.doi.org/10.1016/j.phrs.2016.09.040] [PMID: 27697647]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Trendowski, M. The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy. Crit. Rev. Oncol. Hematol., 2015, 94(2), 149-163.
[http://dx.doi.org/10.1016/j.critrevonc.2014.12.013] [PMID: 25604499]
[4]
Patel, B.K.; Hilal, T.; Covington, M.; Zhang, N.; Kosiorek, H.E.; Lobbes, M.; Northfelt, D.W.; Pockaj, B.A. Contrast-enhanced spectral mammography is comparable to MRI in the assessment of residual breast cancer following neoadjuvant systemic therapy. Ann. Surg. Oncol., 2018, 25(5), 1350-1356.
[http://dx.doi.org/10.1245/s10434-018-6413-x] [PMID: 29516362]
[5]
Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch. Pharm. Res., 2014, 37(1), 4-15.
[http://dx.doi.org/10.1007/s12272-013-0276-2] [PMID: 24272889]
[6]
Abd El-Hack, M.E.; Abdelnour, S.; Alagawany, M.; Abdo, M.; Sakr, M.A.; Khafaga, A.F.; Mahgoub, S.A.; Elnesr, S.S.; Gebriel, M.G. Microalgae in modern cancer therapy: Current knowledge. Biomed. Pharmacother., 2019, 111, 42-50.
[http://dx.doi.org/10.1016/j.biopha.2018.12.069] [PMID: 30576933]
[7]
Meng, L.L.; Huang, C.S.; Liu, H.X. Advances in research on natural triterpenoids with bioactivities. Guangxi Zhi Wu, 2008, 28, 856-860.
[8]
Bhatla, S.C. Secondary matabolites.Plant Physiology, Development and Metabolism; Bhatla, S.C; Lal, M.A., Ed.; Springer: Singapore, 2018, pp. 1099-1166.
[http://dx.doi.org/10.1007/978-981-13-2023-1_33]
[9]
Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep., 2020, 37(7), 962-998.
[http://dx.doi.org/10.1039/C9NP00067D] [PMID: 32055816]
[10]
Kang, S.Y.; Seo, J.K.; Lim, J.W. Antiviral pentacyclic triterpenoids isolated from Sanguisorba officinalis roots against viral hemorrhagic septicemia virus and simultaneous quantification by LC-MS/MS. Planta Medica., 2016, 82(S01), P1013.
[11]
Madureira, A.M.; Ascenso, J.R.; Valdeira, L.; Duarte, A.; Frade, J.P.; Freitas, G.; Ferreira, M.J.U. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis. Nat. Prod. Res., 2003, 17(5), 375-380.
[http://dx.doi.org/10.1080/14786410310001605841] [PMID: 14526920]
[12]
Bourjot, M.; Leyssen, P.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M. Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia, 2012, 83(6), 1076-1080.
[http://dx.doi.org/10.1016/j.fitote.2012.05.004] [PMID: 22613073]
[13]
Xu, F.; Wu, H.; Wang, X.; Wei, X.; Chen, T. Explore the active ingredients and mechanisms in Musa basjoo pseudostem juice against diabetes based on animal experiment, gas chromatography-mass spectrometer and network pharmacology. Comb. Chem. High Throughput Screen., 2022, 25(10), 1756-1766.
[http://dx.doi.org/10.2174/1386207324666210827112233] [PMID: 34455960]
[14]
Dubey, K.; Dubey, R.; Gupta, R.A.; Gupta, A.K. Anti-diabetic and antioxidant potential of saponin extract of leaves of Ziziphus mauritiana. J. Drug Deliv. Ther., 2019, 9(2-A), 75-77.
[15]
Huang, X.; He, D.; Pan, Z.; Luo, G.; Deng, J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio, 2021, 11, 100124.
[http://dx.doi.org/10.1016/j.mtbio.2021.100124] [PMID: 34458716]
[16]
Khan, F.B.; Singh, P.; Jamous, Y.F.; Ali, S.A. Abdullah; Uddin, S.; Zia, Q.; Jena, M.K.; Khan, M.; Owais, M.; Huang, C.Y.; Chanukuppa, V.; Ardianto, C.; Ming, L.C.; Alam, W.; Khan, H.; Ayoub, M.A. Multifaceted pharmacological potentials of curcumin, genistein, and tanshinone IIA through proteomic approaches: An in-depth review. Cancers, 2022, 15(1), 249.
[http://dx.doi.org/10.3390/cancers15010249] [PMID: 36612248]
[17]
Ghorbanzadeh, B.; Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol., 2015, 47(3), 292-298.
[http://dx.doi.org/10.4103/0253-7613.157127] [PMID: 26069367]
[18]
Tri, M.D.; Phat, N.T.; Minh, P.N.; Chi, M.T.; Hao, B.X.; Minh An, T.N.; Alam, M.; Van Kieu, N.; Dang, V.S.; Mai, T.T.N.; Duong, T.H. In vitro anti-inflammatory, in silico molecular docking and molecular dynamics simulation of oleanane-type triterpenes from aerial parts of Mussaenda recurvata. RSC Advances, 2023, 13(8), 5324-5336.
[http://dx.doi.org/10.1039/D2RA06870B] [PMID: 36793303]
[19]
Mosa, R.A.; Hlophe, N.B.; Ngema, N.T.; Penduka, D.; Lawal, O.A.; Opoku, A.R. Cardioprotective potential of a lanosteryl triterpene from Protorhus longifolia. Pharm. Biol., 2016, 54(12), 3244-3248.
[http://dx.doi.org/10.1080/13880209.2016.1223144] [PMID: 27572517]
[20]
Chen, F.; Li, L.; Peng, M.; Yan, Y.; Wang, L.; Li, L.; Yang, L.; Wang, Y.; Yang, J.; Yang, Y.; Fan, Y.; Yang, X. Identification of triterpenoids and hepatoprotective property of Fructus Rosa roxburghii against alcohol-induced liver injury by regulating keap1- Nrf2 signaling. Phytomedicine Plus, 2021, 1(4), 100102.
[http://dx.doi.org/10.1016/j.phyplu.2021.100102]
[21]
Roy, S.; Dash, S.K.; Chattopadhyay, S.; Karmakar, P. Anti-leukemic activity of betulinic acid from bulk to self-assembled structure. BLDE University Journal of Health Sciences, 2016, 1(1), 14.
[http://dx.doi.org/10.4103/2456-1975.183269]
[22]
Dash, S.K.; Chattopadhyay, S.; Dash, S.S.; Tripathy, S.; Das, B.; Mahapatra, S.K.; Bag, B.G.; Karmakar, P.; Roy, S. Self assembled nano fibers of betulinic acid: A selective inducer for ROS/TNF-alpha pathway mediated leukemic cell death. Bioorg. Chem., 2015, 63, 85-100.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.006] [PMID: 26469741]
[23]
Dash, S.K.; Chattopadhyay, S.; Tripathy, S.; Dash, S.S.; Das, B.; Mandal, D.; Mahapatra, S.K.; Bag, B.G.; Roy, S. Self-assembled betulinic acid augments immunomodulatory activity associates with IgG response. Biomed. Pharmacother., 2015, 75, 205-217.
[http://dx.doi.org/10.1016/j.biopha.2015.07.033] [PMID: 26256937]
[24]
Dash, S.K.; Chattopadhyay, S.; Ghosh, T.; Dash, S.S.; Tripathy, S.; Das, B.; Bag, B.G.; Das, D.; Roy, S. Self-assembled betulinic acid protects doxorubicin induced apoptosis followed by reduction of ROS–TNF-α–caspase-3 activity. Biomed. Pharmacother., 2015, 72, 144-157.
[http://dx.doi.org/10.1016/j.biopha.2015.04.017] [PMID: 26054689]
[25]
Dash, S.K.; Chattopadhyay, S.; Tripathy, S.; Dash, S.S.; Das, B.; Mandal, D.; Bag, B.G.; Roy, S. Betulinic acid, a natural bio-active compound: Proficient to induce programmed cell death in human myeloid leukemia. World J. Pharm. Pharm. Sci., 2014, 2014(3), 1348-1374.
[26]
Banerjee, J.; Hasan, S.N.; Samanta, S.; Giri, B.; Bag, B.G.; Dash, S.K. Self-Assembled Maslinic Acid Attenuates Doxorobucin Induced Cytotoxicity via Nrf2 Signaling Pathway: An in vitro and in silico Study in Human Healthy Cells. Cell Biochem. Biophys., 2022, 80(3), 563-578.
[http://dx.doi.org/10.1007/s12013-022-01083-3] [PMID: 35849306]
[27]
Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Mahmood, T.; Kanwal, S.; Ali, B.; Khalil, A.T.; Shah, S.A.; Alam, M.M.; Badshah, H. Ursolic acid a promising candidate in the therapeutics of breast cancer: Current status and future implications. Biomed. Pharmacother., 2018, 108, 752-756.
[http://dx.doi.org/10.1016/j.biopha.2018.09.096] [PMID: 30248543]
[28]
Xiu, Z.; Zhu, Y.; Li, S.; Li, Y.; Yang, X.; Li, Y.; Song, G.; Jin, N.; Fang, J.; Han, J.; Li, Y.; Li, X. Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway. J. Funct. Foods, 2023, 102, 105441.
[http://dx.doi.org/10.1016/j.jff.2023.105441]
[29]
Wang, Y.; Zhang, H.; Ye, Z.; Ye, Q.; Yang, X.; Mao, W.; Xu, R.; Zhang, Y. Maslinic acid inhibits the growth of malignant gliomas by inducing apoptosis via MAPK signaling. J. Oncol., 2022, 2022, 3347235.
[http://dx.doi.org/10.1155/2022/3347235]
[30]
Chen, J.; Wang, L. Maslinic acid inhibits cervical intraepithelial neoplasia by suppressing interleukin-6 and enhancing apoptosis in a mouse model. Anticancer. Agents Med. Chem., 2022, 22(3), 579-585.
[http://dx.doi.org/10.2174/1871520621666210903143922] [PMID: 34477530]
[31]
Xu, A.L.; Xue, Y.Y.; Tao, W.T.; Wang, S.Q.; Xu, H.Q. Oleanolic acid combined with olaparib enhances radiosensitization in triple negative breast cancer and hypoxia imaging with 18F-FETNIM micro PET/CT. Biomed. Pharmacother., 2022, 150, 113007.
[http://dx.doi.org/10.1016/j.biopha.2022.113007] [PMID: 35483190]
[32]
Zhou, M.; Zhang, R.H.; Wang, M.; Xu, G.B.; Liao, S.G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem., 2017, 131, 222-236.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.005] [PMID: 28329729]
[33]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[34]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[35]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[36]
Song, X.; Peng, Y.; Wang, X.; Chen, Y.; Jin, L.; Yang, T.; Qian, M.; Ni, W.; Tong, X.; Lan, J. Incidence, survival, and risk factors for adults with acute myeloid leukemia not otherwise specified and acute myeloid leukemia with recurrent genetic abnormalities: analysis of the surveillance, epidemiology, and end results (SEER) database, 2001–2013. Acta Haematol., 2018, 139(2), 115-127.
[http://dx.doi.org/10.1159/000486228] [PMID: 29455198]
[37]
Zhang, X.; Zeng, Q.; Cai, W.; Ruan, W. Trends of cervical cancer at global, regional, and national level: Data from the Global Burden of Disease study 2019. BMC Public Health, 2021, 21(1), 894.
[http://dx.doi.org/10.1186/s12889-021-10907-5] [PMID: 33975583]
[38]
Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des., 2010, 16(1), 3-10.
[http://dx.doi.org/10.2174/138161210789941847] [PMID: 20214614]
[39]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[40]
Qi, S.S.; Sun, J.H.; Yu, H.H.; Yu, S.Q. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv., 2017, 24(1), 1909-1926.
[http://dx.doi.org/10.1080/10717544.2017.1410256] [PMID: 29191057]
[41]
Acklin, S.; Xia, F. The role of nucleotide excision repair in cisplatin-induced peripheral neuropathy: mechanism, prevention, and treatment. Int. J. Mol. Sci., 2021, 22(4), 1975.
[http://dx.doi.org/10.3390/ijms22041975] [PMID: 33671279]
[42]
Foroozan, R. Neuro-ophthalmic Complications of Chemotherapy. Acta Ophthalmologica, 2010, 91(s252)
[43]
Rybak, L.P.; Whitworth, C.A.; Mukherjea, D.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res., 2007, 226(1-2), 157-167.
[http://dx.doi.org/10.1016/j.heares.2006.09.015] [PMID: 17113254]
[44]
Vijayanathan, V.; Gulinello, M.; Ali, N.; Cole, P.D. Persistent cognitive deficits, induced by intrathecal methotrexate, are associated with elevated CSF concentrations of excitotoxic glutamate analogs and can be reversed by an NMDA antagonist. Behav. Brain Res., 2011, 225(2), 491-497.
[http://dx.doi.org/10.1016/j.bbr.2011.08.006] [PMID: 21856332]
[45]
Mani, S.; Jindal, D.; Chopra, H.; Jha, S.K.; Singh, S.K.; Ashraf, G.M.; Kamal, M.; Iqbal, D.; Chellappan, D.K.; Dey, A.; Dewanjee, S.; Singh, K.K.; Ojha, S.; Singh, I.; Gautam, R.K.; Jha, N.K. ROCK2 inhibition: A futuristic approach for the management of Alzheimer’s disease. Neurosci. Biobehav. Rev., 2022, 142, 104871.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104871] [PMID: 36122738]
[46]
Tchounwou, P.B.; Dasari, S.; Noubissi, F.K.; Ray, P.; Kumar, S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp. Pharmacol., 2021, 13, 303-328.
[http://dx.doi.org/10.2147/JEP.S267383] [PMID: 33776489]
[47]
Yousef, M.I.; Hussien, H.M. Cisplatin-induced renal toxicity via tumor necrosis factor-α interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: Protective effect of ginseng. Food Chem. Toxicol., 2015, 78, 17-25.
[http://dx.doi.org/10.1016/j.fct.2015.01.014] [PMID: 25640527]
[48]
Sawpari, R.; Samanta, S.; Banerjee, J.; Das, S.; Dash, S.S.; Ahmed, R.; Giri, B.; Dash, S.K. Recent advances and futuristic potentials of nano-tailored doxorubicin for prostate cancer therapy. J. Drug Deliv. Sci. Technol., 2023, 81, 104212.
[http://dx.doi.org/10.1016/j.jddst.2023.104212]
[49]
Wang, Z. ErbB receptors and cancer. In: ErbB Receptor Signaling: Methods and Protocols; Wang, Z., Ed.; Humana Press: New York, 2017; Vol. 1652, pp. 3-35.
[50]
Sb, B.; Adhikari, S.; Surana, S.J. Tyrosine kinase receptor inhibitors: a new target for anticancer drug development. J. Pharm. Sci. Technol., 2012, 1(2), 36-45.
[51]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[52]
Pines, G.; Köstler, W.J.; Yarden, Y. Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Lett., 2010, 584(12), 2699-2706.
[http://dx.doi.org/10.1016/j.febslet.2010.04.019] [PMID: 20388509]
[53]
Seebacher, N.A.; Stacy, A.E.; Porter, G.M.; Merlot, A.M. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res., 2019, 38(1), 156.
[http://dx.doi.org/10.1186/s13046-019-1094-2] [PMID: 30975211]
[54]
Agarwal, A.; Ressler, D.; Snyder, G. The current and future state of companion diagnostics. Pharmacog. Genomics Pers. Med., 2015, 8, 99-110.
[55]
Oliveras-Ferraros, C.; Vazquez-Martin, A.; Martin-Castilló, B.; Pérez-Martínez, M.C.; Cufí, S.; Del Barco, S.; Bernado, L.; Brunet, J.; López-Bonet, E.; Menendez, J.A. Pathway-focused proteomic signatures in HER2-overexpressing breast cancer with a basal-like phenotype: new insights into de novo resistance to trastuzumab (Herceptin). Int. J. Oncol., 2010, 37(3), 669-678.
[PMID: 20664936]
[56]
Whisenant, J.G.; Sorace, A.G.; McIntyre, J.O.; Kang, H.; Sánchez, V.; Loveless, M.E.; Yankeelov, T.E. Evaluating treatment response using DW-MRI and DCE-MRI in trastuzumab responsive and resistant HER2-overexpressing human breast cancer xenografts. Transl. Oncol., 2014, 7(6), 768-779.
[http://dx.doi.org/10.1016/j.tranon.2014.09.011] [PMID: 25500087]
[57]
Segovia-Mendoza, M.; González-González, M.E.; Barrera, D.; Díaz, L.; García-Becerra, R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am. J. Cancer Res., 2015, 5(9), 2531-2561.
[PMID: 26609467]
[58]
Chandrasekhar, C.; Kumar, P.S.; Sarma, P.V.G.K. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci. Rep., 2019, 9(1), 2412.
[http://dx.doi.org/10.1038/s41598-019-38672-x] [PMID: 30787317]
[59]
Vinay, K.; Yanamandra, U.; Dogra, S.; Handa, S.; Suri, V.; Kumari, S.; Khadwal, A.; Prakash, G.; Lad, D.; Varma, S.; Malhotra, P. Long-term mucocutaneous adverse effects of imatinib in Indian chronic myeloid leukemia patients. Int. J. Dermatol., 2018, 57(3), 332-338.
[http://dx.doi.org/10.1111/ijd.13852] [PMID: 29266186]
[60]
Demirci, U.; Buyukberber, S. Yılmaz, G.; Kerem, M.; Coskun, U.; Uner, A.; Baykara, M.; Pasali, H.; Benekli, M. Hepatotoxicity associated with lapatinib in an experimental rat model. Eur. J. Cancer, 2012, 48(2), 279-285.
[http://dx.doi.org/10.1016/j.ejca.2011.10.011] [PMID: 22100178]
[61]
Chakrabarti, A.; Banerjee, J.; Chakravarty, S.; Samanta, S.; Nath, M.; Chattopadhyay, S.; Sarkar, S.; Mitra Banerjee, S.; Chowdhury, S.; Dash, S.K.; Bandyopadhyay, A. Exploration of structural and magnetic aspects of biocompatible cobalt ferrite nanoparticles with canted spin configuration and assessment of their selective anti-leukemic efficacy. J. Magn. Magn. Mater., 2022, 563, 169957.
[http://dx.doi.org/10.1016/j.jmmm.2022.169957]
[62]
Ahmed, R.; Samanta, S.; Banerjee, J.; Kar, S.S.; Dash, S.K. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation. Curr. Res. Pharm. Drug Discov., 2022, 3, 100131.
[63]
Chen, L.; Wang, L.; Zhu, L.; Xu, Z.; Liu, Y.; Li, Z.; Zhou, J.; Luo, F. Exosomes as drug carriers in anti-cancer therapy. Front. Cell Dev. Biol., 2022, 10, 728616.
[http://dx.doi.org/10.3389/fcell.2022.728616] [PMID: 35155421]
[64]
Fan, H.C.; Chi, C.S.; Chang, Y.K.; Tung, M.C.; Lin, S.Z.; Harn, H.J. The molecular mechanisms of plant-derived compounds targeting brain cancer. Int. J. Mol. Sci., 2018, 19(2), 395.
[http://dx.doi.org/10.3390/ijms19020395] [PMID: 29385679]
[65]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[66]
Bugde, P.; Biswas, R.; Merien, F.; Lu, J.; Liu, D.X.; Chen, M.; Zhou, S.; Li, Y. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert Opin. Ther. Targets, 2017, 21(5), 511-530.
[http://dx.doi.org/10.1080/14728222.2017.1310841] [PMID: 28335655]
[67]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[68]
Hodon, J.; Borkova, L.; Pokorny, J.; Kazakova, A.; Urban, M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur. J. Med. Chem., 2019, 182, 111653.
[http://dx.doi.org/10.1016/j.ejmech.2019.111653] [PMID: 31499360]
[69]
Peron, G.; Marzaro, G.; Dall’Acqua, S. Known triterpenes and their derivatives as scaffolds for the development of new therapeutic agents for cancer. Curr. Med. Chem., 2018, 25(10), 1259-1269.
[http://dx.doi.org/10.2174/0929867324666170818111933] [PMID: 28820068]
[70]
Xie, J.; Zhang, A.; Qiu, S.; Zhang, T.; Li, X.; Yan, G.; Sun, H.; Liu, L.; Wang, X. Identification of the perturbed metabolic pathways associating with prostate cancer cells and anticancer affects of obacunone. J. Proteomics, 2019, 206, 103447.
[http://dx.doi.org/10.1016/j.jprot.2019.103447] [PMID: 31326558]
[71]
Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules, 2019, 24(21), 3961.
[http://dx.doi.org/10.3390/molecules24213961] [PMID: 31683764]
[72]
Sandeep; Misra, R.C.; Chanotiya, C.S.; Mukhopadhyay, P.; Ghosh, S. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. New Phytol., 2019, 222(1), 408-424.
[http://dx.doi.org/10.1111/nph.15606] [PMID: 30472753]
[73]
Pollier, J.; Goossens, A. Oleanolic acid. Phytochemistry, 2012, 77, 10-15.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.022] [PMID: 22377690]
[74]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.H.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett., 2014, 346(2), 206-216.
[http://dx.doi.org/10.1016/j.canlet.2014.01.016] [PMID: 24486850]
[75]
Cláudio, A.F.M.; Cognigni, A.; de Faria, E.L.P.; Silvestre, A.J.D.; Zirbs, R.; Freire, M.G.; Bica, K. Valorization of olive tree leaves: Extraction of oleanolic acid using aqueous solutions of surface-active ionic liquids. Separ. Purif. Tech., 2018, 204, 30-37.
[http://dx.doi.org/10.1016/j.seppur.2018.04.042] [PMID: 30319309]
[76]
Fujiwara, Y.; Komohara, Y.; Kudo, R.; Tsurushima, K.; Ohnishi, K.; Ikeda, T.; Takeya, M. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol. Rep., 2011, 26(6), 1533-1537.
[PMID: 21922144]
[77]
Kang, G.D.; Lim, S.; Kim, D.H. Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway. Int. Immunopharmacol., 2015, 29(2), 393-400.
[http://dx.doi.org/10.1016/j.intimp.2015.10.024] [PMID: 26514300]
[78]
Ayeleso, T.; Matumba, M.; Mukwevho, E. Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules, 2017, 22(11), 1915.
[http://dx.doi.org/10.3390/molecules22111915] [PMID: 29137205]
[79]
Mokhtari, K.; Rufino-Palomares, E.E.; Pérez-Jiménez, A.; Reyes-Zurita, F.J.; Figuera, C.; García-Salguero, L.; Medina, P.P.; Peragón, J.; Lupiáñez, J.A. Maslinic acid, a triterpene from olive, affects the antioxidant and mitochondrial status of B16F10 melanoma cells grown under stressful conditions. Evid.-based Complement. Altern. Med., 2015, 2015, 272457.
[80]
Lozano-Mena, G.; Sánchez-González, M.; Juan, M.; Planas, J. Maslinic acid, a natural phytoalexin-type triterpene from olives-a promising nutraceutical? Molecules, 2014, 19(8), 11538-11559.
[http://dx.doi.org/10.3390/molecules190811538] [PMID: 25093990]
[81]
Stiti, N.; Triki, S.; Hartmann, M.A. Formation of triterpenoids throughout Olea europaea fruit ontogeny. Lipids, 2007, 42(1), 55-67.
[http://dx.doi.org/10.1007/s11745-006-3002-8] [PMID: 17393211]
[82]
Siewert, B.; Pianowski, E.; Csuk, R. Esters and amides of maslinic acid trigger apoptosis in human tumor cells and alter their mode of action with respect to the substitution pattern at C-28. Eur. J. Med. Chem., 2013, 70, 259-272.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.016] [PMID: 24161703]
[83]
Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.) - a review. Int. J. Mol. Sci., 2012, 13(3), 3291-3340.
[http://dx.doi.org/10.3390/ijms13033291] [PMID: 22489153]
[84]
Woźniak, Ł; Skąpska, S.; Marszałek, K. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules, 2015, 20(11), 20614-20641.
[http://dx.doi.org/10.3390/molecules201119721] [PMID: 26610440]
[85]
Lee, S.Y.; Kim, Y.J.; Chung, S.O.; Park, S.U. Recent studies on ursolic acid and its biological and pharmacological activity. EXCLI J., 2016, 15, 221-228.
[PMID: 27231476]
[86]
Laszczyk, M. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med., 2009, 75(15), 1549-1560.
[http://dx.doi.org/10.1055/s-0029-1186102] [PMID: 19742422]
[87]
Bachořík, J.; Urban, M. Biocatalysis in the chemistry of lupane triterpenoids. Molecules, 2021, 26(8), 2271.
[http://dx.doi.org/10.3390/molecules26082271] [PMID: 33919839]
[88]
Jin, C.C.; Zhang, J.L.; Song, H.; Cao, Y.X. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microb. Cell Fact., 2019, 18(1), 77.
[http://dx.doi.org/10.1186/s12934-019-1127-8] [PMID: 31053076]
[89]
Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem. Rev., 2019, 18(3), 929-951.
[http://dx.doi.org/10.1007/s11101-019-09623-1]
[90]
Heidary Navid, M.; Laszczyk-Lauer, M.N.; Reichling, J.; Schnitzler, P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine, 2014, 21(11), 1273-1280.
[http://dx.doi.org/10.1016/j.phymed.2014.06.007] [PMID: 25172789]
[91]
Armbruster, M.; Mönckedieck, M.; Scherließ, R.; Daniels, R.; Wahl, M. Birch bark dry extract by supercritical fluid technology: Extract characterisation and use for stabilisation of semisolid systems. Appl. Sci., 2017, 7(3), 292.
[http://dx.doi.org/10.3390/app7030292]
[92]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[http://dx.doi.org/10.1016/j.canlet.2009.04.033] [PMID: 19464787]
[93]
Kemboi, D.; Peter, X.; Langat, M.; Tembu, J. A review of the ethnomedicinal uses, biological activities, and triterpenoids of Euphorbia species. Molecules, 2020, 25(17), 4019.
[http://dx.doi.org/10.3390/molecules25174019] [PMID: 32899130]
[94]
Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev., 2018, 38(3), 951-976.
[http://dx.doi.org/10.1002/med.21484] [PMID: 29350407]
[95]
Haque, S.; Nawrot, D.A.; Alakurtti, S.; Ghemtio, L.; Yli-Kauhaluoma, J.; Tammela, P. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PLoS One, 2014, 9(7), e102696.
[http://dx.doi.org/10.1371/journal.pone.0102696] [PMID: 25032708]
[96]
Pettit, G.R.; Gaddamidi, V.; Herald, D.L.; Singh, S.B.; Cragg, G.M.; Schmidt, J.M.; Boettner, F.E.; Williams, M.; Sagawa, Y. Antineoplastic Agents, 120. Pancratium littorale. J. Nat. Prod., 1986, 49(6), 995-1002.
[http://dx.doi.org/10.1021/np50048a005] [PMID: 3572427]
[97]
Ivanenko, K.A.; Prassolov, V.S.; Khabusheva, E.R. Transcription factor Sp1 in the expression of genes encoding components of MAPK, JAK/STAT, and PI3K/Akt signaling pathways. Mol. Biol., 2022, 56(5), 832-847.
[PMID: 36165020]
[98]
Li, L.; Wei, L.; Shen, A.; Chu, J.; Lin, J.; Peng, J. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth. Int. J. Oncol., 2015, 47(6), 2247-2254.
[http://dx.doi.org/10.3892/ijo.2015.3198] [PMID: 26459864]
[99]
Juan, M.E.; Planas, J.M.; Ruiz-Gutierrez, V.; Daniel, H.; Wenzel, U. Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. Br. J. Nutr., 2008, 100(1), 36-43.
[http://dx.doi.org/10.1017/S0007114508882979] [PMID: 18298868]
[100]
Liu, W.; Li, S.; Qu, Z.; Luo, Y.; Chen, R.; Wei, S.; Yang, X.; Wang, Q. Betulinic acid induces autophagy-mediated apoptosis through suppression of the PI3K/AKT/mTOR signaling pathway and inhibits hepatocellular carcinoma. Am. J. Transl. Res., 2019, 11(11), 6952-6964.
[PMID: 31814899]
[101]
Duan, L.; Yang, Z.; Jiang, X.; Zhang, J.; Guo, X. Oleanolic acid inhibits cell proliferation migration and invasion and induces SW579 thyroid cancer cell line apoptosis by targeting forkhead transcription factor A. Anticancer Drugs, 2019, 30(8), 812-820.
[http://dx.doi.org/10.1097/CAD.0000000000000777] [PMID: 30882397]
[102]
Deng, Y.; Jiang, T.Y.; Sheng, S.; Tianasoa-Ramamonjy, M.; Snyder, J.K.; Remangilones, A. Remangilones A-C, new cytotoxic triterpenes from Physena madagascariensis. J. Nat. Prod., 1999, 62(3), 471-476.
[http://dx.doi.org/10.1021/np9805140] [PMID: 10096861]
[103]
Liu, Y.; Lu, H.; Dong, Q.; Hao, X.; Qiao, L. Maslinic acid induces anticancer effects in human neuroblastoma cells mediated via apoptosis induction and caspase activation, inhibition of cell migration and invasion and targeting MAPK/ERK signaling pathway. AMB Express, 2020, 10(1), 104.
[http://dx.doi.org/10.1186/s13568-020-01035-1] [PMID: 32488691]
[104]
Manna, S.; Dey, A.; Majumdar, R.; Bag, B.G.; Ghosh, C.; Roy, S. Self assembled arjunolic acid acts as a smart weapon against cancer through TNF- α mediated ROS generation. Heliyon, 2020, 6(2), e03456.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03456] [PMID: 32140584]
[105]
Prasad, S.; Yadav, V.R.; Sung, B.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment. Oncotarget, 2016, 7(11), 13182-13196.
[http://dx.doi.org/10.18632/oncotarget.7537] [PMID: 26909608]
[106]
Wu, T.; Geng, J.; Guo, W.; Gao, J.; Zhu, X. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B, 2017, 7(1), 65-72.
[http://dx.doi.org/10.1016/j.apsb.2016.04.003] [PMID: 28119810]
[107]
Saeed, M.E.M.; Mahmoud, N.; Sugimoto, Y.; Efferth, T.; Abdel-Aziz, H. Betulinic acid exerts cytotoxic activity against multidrug-resistant tumor cells via targeting autocrine motility factor receptor (AMFR). Front. Pharmacol., 2018, 9, 481.
[http://dx.doi.org/10.3389/fphar.2018.00481] [PMID: 29867487]
[108]
Orchel, A.; Chodurek, E.; Jaworska-Kik, M. Paduszyński, P.; Kaps, A.; Chrobak, E.; Bębenek, E.; Boryczka, S.; Borkowska, P.; Kasperczyk, J. Anticancer activity of the acetylenic derivative of betulin phosphate involves induction of necrotic-like death in breast cancer cells in vitro. Molecules, 2021, 26(3), 615.
[http://dx.doi.org/10.3390/molecules26030615] [PMID: 33503929]
[109]
Park, H.J.; Chi, G.Y.; Choi, Y.H.; Park, S.H. Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization. Biochem. Biophys. Res. Commun., 2020, 527(4), 889-895.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.160] [PMID: 32430175]
[110]
Shrivastava, S.; Jeengar, M.K.; Reddy, V.S.; Reddy, G.B.; Naidu, V.G.M. Anticancer effect of celastrol on human triple negative breast cancer: Possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways. Exp. Mol. Pathol., 2015, 98(3), 313-327.
[http://dx.doi.org/10.1016/j.yexmp.2015.03.031] [PMID: 25818165]
[111]
Ee, G.C.; Lim, C.K.; Rahmat, A.; Lee, H.L. Cytotoxic activities of chemical constituents from Mesua daphnifolia. Trop. Biomed., 2005, 22(2), 99-102.
[PMID: 16883274]
[112]
Munir, M.T.; Kay, M.K.; Kang, M.H.; Rahman, M.M.; Al-Harrasi, A.; Choudhury, M.; Moustaid-Moussa, N.; Hussain, F.; Rahman, S.M. Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int. J. Mol. Sci., 2021, 22(12), 6526.
[http://dx.doi.org/10.3390/ijms22126526] [PMID: 34207035]
[113]
Sánchez-Quesada, C.; López-Biedma, A.; Gaforio, J.J. Maslinic Acid enhances signals for the recruitment of macrophages and their differentiation to m1 state. Evid.-based Complement. Altern. Med., 2015, 2015, 654721.
[114]
Wang, W.; Zhao, C.; Jou, D.; Lü, J.; Zhang, C.; Lin, L.; Lin, J. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res., 2013, 33(10), 4279-4284.
[PMID: 24122993]
[115]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[116]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[117]
Ahmad, S.; Abbas, M.; Ullah, M.F.; Aziz, M.H.; Beylerli, O.; Alam, M.A.; Syed, M.A.; Uddin, S.; Ahmad, A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin. Cancer Biol., 2022, 85, 155-163.
[118]
Huang, J.; Lin, S.; Zhu, F.; Xu, L. Exploring the underlying mechanism of oleanolic acid treating glioma by transcriptome and molecular docking. Biomed. Pharmacother., 2022, 154, 113586.
[http://dx.doi.org/10.1016/j.biopha.2022.113586] [PMID: 36007277]
[119]
Li, C.; Zhang, C.; Zhou, H.; Feng, Y.; Tang, F.; Hoi, M.P.M.; He, C.; Ma, D.; Zhao, C.; Lee, S.M.Y. Inhibitory effects of betulinic acid on LPS-induced neuroinflammation involve M2 microglial polarization via CaMKKβ-dependent AMPK activation. Front. Mol. Neurosci., 2018, 11, 98.
[http://dx.doi.org/10.3389/fnmol.2018.00098] [PMID: 29666569]
[120]
Hsum, Y.; Yew, W.; Hong, P.; Soo, K.; Hoon, L.; Chieng, Y.; Mooi, L. Cancer chemopreventive activity of maslinic acid: suppression of COX-2 expression and inhibition of NF-κB and AP-1 activation in Raji cells. Planta Med., 2011, 77(2), 152-157.
[http://dx.doi.org/10.1055/s-0030-1250203] [PMID: 20669087]
[121]
Chen, Z.; Liu, Q.; Zhu, Z.; Xiang, F.; Zhang, M.; Wu, R.; Kang, X. Ursolic acid protects against proliferation and inflammatory response in LPS-treated gastric tumour model and cells by inhibiting NLRP3 Inflammasome activation. Cancer Manag. Res., 2020, 12, 8413-8424.
[http://dx.doi.org/10.2147/CMAR.S264070] [PMID: 32982435]
[122]
Wei, Z.Y.; Chi, K.Q.; Wang, K.S.; Wu, J.; Liu, L.P.; Piao, H.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1797-1803.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.021] [PMID: 29678461]
[123]
Luo, R.; Fang, D.; Chu, P.; Wu, H.; Zhang, Z.; Tang, Z. Multiple molecular targets in breast cancer therapy by betulinic acid. Biomed. Pharmacother., 2016, 84, 1321-1330.
[http://dx.doi.org/10.1016/j.biopha.2016.10.018] [PMID: 27810789]
[124]
Khan, M.F.; Nahar, N.; Rashid, R.B.; Chowdhury, A.; Rashid, M.A. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement. Med. Ther., 2018, 18(1), 1-15.
[125]
Dutta, B.; Barick, K.C.; Hassan, P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci., 2021, 296, 102509.
[http://dx.doi.org/10.1016/j.cis.2021.102509] [PMID: 34455211]
[126]
Youle, R.J.; Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[127]
Opferman, J.T.; Kothari, A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ., 2018, 25(1), 37-45.
[http://dx.doi.org/10.1038/cdd.2017.170] [PMID: 29099482]
[128]
Parsons, M.J.; Green, D.R. Mitochondria in cell death. Essays Biochem., 2010, 47(1), 99-114.
[PMID: 20533903]
[129]
Cerella, C.; Teiten, M.H.; Radogna, F.; Dicato, M.; Diederich, M. From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol. Adv., 2014, 32(6), 1111-1122.
[http://dx.doi.org/10.1016/j.biotechadv.2014.03.006] [PMID: 24681093]
[130]
Budenholzer, L.; Cheng, C.L.; Li, Y.; Hochstrasser, M. Proteasome structure and assembly. J. Mol. Biol., 2017, 429(22), 3500-3524.
[http://dx.doi.org/10.1016/j.jmb.2017.05.027] [PMID: 28583440]
[131]
Hinds, M.G.; Smits, C.; Fredericks-Short, R.; Risk, J.M.; Bailey, M.; Huang, D.C.S.; Day, C.L. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival BCL-2 targets. Cell Death Differ., 2007, 14(1), 128-136.
[http://dx.doi.org/10.1038/sj.cdd.4401934] [PMID: 16645638]
[132]
D’Aguanno, S.; Del Bufalo, D. Inhibition of anti-apoptotic BCL-2 proteins in preclinical and clinical studies: current overview in cancer. Cells, 2020, 9(5), 1287.
[http://dx.doi.org/10.3390/cells9051287] [PMID: 32455818]
[133]
Kim, M.; Park, S.Y.; Pai, H.S.; Kim, T.H.; Billiar, T.R.; Seol, D.W. Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking BAX translocation. Cancer Res., 2004, 64(12), 4078-4081.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0284] [PMID: 15205314]
[134]
Pratheeshkumar, P.; Kuttan, G. Oleanolic acid induces Apoptosis by modulating p53, BAX, BCL-2 and caspase-3 gene expression and regulates the activation of transcription factors and cytokine profile in B16F. J. Environ. Pathol. Toxicol. Oncol., 2011, 30(1), 21-31.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i1.30]
[135]
Baluchi, I.; Anani, H.; Hassanshahi, G.; Fatemi, A.; Khalilabadi, R.M. The effect of maslinic acid on apoptotic genes in u266 multiple myeloma cell line. Gene Rep., 2019, 16, 100431.
[http://dx.doi.org/10.1016/j.genrep.2019.100431]
[136]
Park, C.; Jeong, J.W.; Han, M.H.; Lee, H.; Kim, G.Y.; Jin, S.; Park, J.H.; Kwon, H.J.; Kim, B.W.; Choi, Y.H. The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis. Anim. Cells Syst., 2021, 25(2), 119-127.
[http://dx.doi.org/10.1080/19768354.2021.1915380] [PMID: 34234893]
[137]
Kim, K.H.; Seo, H.S.; Choi, H.S.; Choi, I.; Shin, Y.C.; Ko, S.G. Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch. Pharm. Res., 2011, 34(8), 1363-1372.
[http://dx.doi.org/10.1007/s12272-011-0817-5] [PMID: 21910059]
[138]
Wu, C.C.; Cheng, C.H.; Lee, Y.H.; Chang, I.L.; Chen, H.Y.; Hsieh, C.P.; Chueh, P.J. Ursolic acid triggers apoptosis in human osteosarcoma cells via caspase activation and the ERK1/2 MAPK pathway. J. Agric. Food Chem., 2016, 64(21), 4220-4226.
[http://dx.doi.org/10.1021/acs.jafc.6b00542] [PMID: 27171502]
[139]
Kuwana, T.; Newmeyer, D.D. BCL-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003, 15(6), 691-699.
[http://dx.doi.org/10.1016/j.ceb.2003.10.004] [PMID: 14644193]
[140]
Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie, 2017, 135, 111-125.
[http://dx.doi.org/10.1016/j.biochi.2017.02.001] [PMID: 28192157]
[141]
McKee, C.M. The modulation of apoptosis in testicular germ cells following toxicant-induced cellular stress; The University of Texas at Austin, 2007.
[142]
Wolf, P.; Schoeniger, A.; Edlich, F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res BBA-MOL CELL RES, 2022, 1869(10), 119317.
[143]
Yan, S.; Huang, C.; Wu, S.; Yin, M. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol. In Vitro, 2010, 24(3), 842-848.
[http://dx.doi.org/10.1016/j.tiv.2009.12.008] [PMID: 20005942]
[144]
Reyes-Zurita, F.J.; Rufino-Palomares, E.E.; Medina, P.P.; Leticia García-Salguero, E.; Peragón, J.; Cascante, M.; Lupiáñez, J.A. Antitumour activity on extrinsic apoptotic targets of the triterpenoid maslinic acid in p53-deficient Caco-2 adenocarcinoma cells. Biochimie, 2013, 95(11), 2157-2167.
[http://dx.doi.org/10.1016/j.biochi.2013.08.017] [PMID: 23973282]
[145]
Zhang, J.; Liu, F.; Zhang, X. Inhibition of proliferation of SGC7901 and BGC823 human gastric cancer cells by ursolic acid occurs through a caspase-dependent apoptotic pathway. Med. Sci. Monit., 2019, 25, 6846-6854.
[http://dx.doi.org/10.12659/MSM.916740] [PMID: 31545303]
[146]
Xu, Y.; Li, J.; Li, Q.J.; Feng, Y.L.; Pan, F. Betulinic acid promotes TRAIL function on liver cancer progression inhibition through p53/Caspase-3 signaling activation. Biomed. Pharmacother., 2017, 88, 349-358.
[http://dx.doi.org/10.1016/j.biopha.2017.01.034] [PMID: 28119237]
[147]
Holzerland, J.; Fénéant, L.; Banadyga, L.; Hölper, J.E.; Knittler, M.R.; Groseth, A. BH3-only sensors bad, noxa and puma are key regulators of tacaribe virus-induced apoptosis. PLoS Pathog., 2020, 16(10), e1008948.
[http://dx.doi.org/10.1371/journal.ppat.1008948] [PMID: 33045019]
[148]
Karbon, G.; Haschka, M.D.; Hackl, H.; Soratroi, C.; Rocamora-Reverte, L.; Parson, W.; Fiegl, H.; Villunger, A. The BH3-only protein NOXA serves as an independent predictor of breast cancer patient survival and defines susceptibility to microtubule targeting agents. Cell Death Dis., 2021, 12(12), 1151.
[http://dx.doi.org/10.1038/s41419-021-04415-y] [PMID: 34903710]
[149]
Woo, J.S.; Yoo, E.S.; Kim, S.H.; Lee, J.H.; Han, S.H.; Jung, S.H.; Jung, G.H.; Jung, J.Y. Anticancer effects of oleanolic acid on human melanoma cells. Chem. Biol. Interact., 2021, 347, 109619.
[http://dx.doi.org/10.1016/j.cbi.2021.109619] [PMID: 34364837]
[150]
Jannus, F.; Medina-O’Donnell, M.; Rivas, F.; Díaz-Ruiz, L.; Rufino-Palomares, E.E.; Lupiáñez, J.A.; Parra, A.; Reyes-Zurita, F.J. A diamine-PEGylated oleanolic acid derivative induced efficient apoptosis through a death receptor and mitochondrial apoptotic pathway in HepG2 human hepatoma cells. Biomolecules, 2020, 10(10), 1375.
[http://dx.doi.org/10.3390/biom10101375] [PMID: 32998255]
[151]
Reyes-Zurita, F.J.; Pachón-Peña, G.; Lizárraga, D.; Rufino-Palomares, E.E.; Cascante, M.; Lupiáñez, J.A. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer, 2011, 11(1), 154.
[http://dx.doi.org/10.1186/1471-2407-11-154] [PMID: 21524306]
[152]
Huo, L.; Bai, X.; Wang, Y.; Wang, M. Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA. Biomed. Pharmacother., 2017, 92, 347-355.
[http://dx.doi.org/10.1016/j.biopha.2017.05.074] [PMID: 28554130]
[153]
Zheng, Q.; Li, P.; Jin, F.; Yao, C.; Zhang, G.; Zang, T.; Ai, X. Ursolic acid induces ER stress response to activate ASK1–JNK signaling and induce apoptosis in human bladder cancer T24 cells. Cell. Signal., 2013, 25(1), 206-213.
[http://dx.doi.org/10.1016/j.cellsig.2012.09.012] [PMID: 23000344]
[154]
Tsuchihara, K.; Fujii, S.; Esumi, H. Autophagy and cancer: Dynamism of the metabolism of tumor cells and tissues. Cancer Lett., 2009, 278(2), 130-138.
[http://dx.doi.org/10.1016/j.canlet.2008.09.040] [PMID: 19004545]
[155]
Mariño, G.; López-Otín, C. Autophagy: Molecular mechanisms, physiological functions and relevance in human pathology. Cell. Mol. Life Sci., 2004, 61(12), 1439-1454.
[http://dx.doi.org/10.1007/s00018-004-4012-4] [PMID: 15197469]
[156]
Nam, H.J. Autophagy modulators in cancer: Focus on cancer treatment. Life, 2021, 11(8), 839.
[http://dx.doi.org/10.3390/life11080839] [PMID: 34440583]
[157]
Kma, L.; Baruah, T.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol. Appl. Biochem., 2022, 69(1), 248-264.
[http://dx.doi.org/10.1002/bab.2104] [PMID: 33442914]
[158]
Yao, J.; Yan, M.; Guan, Z.; Pan, C.; Xia, L.; Li, C.; Wang, L.; Long, Z.; Zhao, Y.; Li, M.; Zheng, F.; Xu, J.; Lin, D.; Liu, Q. Aurora-A down-regulates IkappaBα via Akt activation and interacts with insulin-like growth factor-1 induced phosphatidylinositol 3-kinase pathway for cancer cell survival. Mol. Cancer, 2009, 8(1), 95.
[http://dx.doi.org/10.1186/1476-4598-8-95]
[159]
Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer, 2021, 21(8), 481-499.
[http://dx.doi.org/10.1038/s41568-021-00363-z] [PMID: 34083781]
[160]
Fukunaga, K.; Ishigami, T.; Kawano, T. Transcriptional regulation of neuronal genes and its effect on neural functions: Expression and function of forkhead transcription factors in neurons. J. Pharmacol. Sci., 2005, 98(3), 205-211.
[http://dx.doi.org/10.1254/jphs.FMJ05001X3] [PMID: 16006742]
[161]
Roux, P.P.; Ballif, B.A.; Anjum, R.; Gygi, S.P.; Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA, 2004, 101(37), 13489-13494.
[http://dx.doi.org/10.1073/pnas.0405659101] [PMID: 15342917]
[162]
Xie, J.; De Poi, S.P.; Humphrey, S.J.; Hein, L.K.; Bruning, J.B.; Pan, W.; Selth, L.A.; Sargeant, T.J.; Proud, C.G. TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cell. Mol. Life Sci., 2021, 78(8), 4035-4052.
[http://dx.doi.org/10.1007/s00018-021-03825-7] [PMID: 33834258]
[163]
Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal., 2014, 26(12), 2694-2701.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.019] [PMID: 25173700]
[164]
Jhou, A.J.; Chang, H.C.; Hung, C.C.; Lin, H.C.; Lee, Y.C.; Liu, W.; Han, K.F.; Lai, Y.W.; Lin, M.Y.; Lee, C.H. Chlorpromazine, an antipsychotic agent, induces G2/M phase arrest and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral cancer. Biochem. Pharmacol., 2021, 184, 114403.
[http://dx.doi.org/10.1016/j.bcp.2020.114403] [PMID: 33388284]
[165]
Shi, Y.; Song, Q.; Hu, D.; Zhuang, X.; Yu, S.; Teng, D. Oleanolic acid induced autophagic cell death in hepatocellular carcinoma cells via PI3K/Akt/mTOR and ROS-dependent pathway. Korean J. Physiol. Pharmacol., 2016, 20(3), 237-243.
[http://dx.doi.org/10.4196/kjpp.2016.20.3.237] [PMID: 27162477]
[166]
Lee, J.H.; Yoo, E.S.; Han, S.H.; Jung, G.H.; Han, E.J.; Jung, S.H.; Seok Kim, B.; Cho, S.D.; Nam, J.S.; Choi, C.; Che, J-H.; Jung, J-Y. Oleanolic acid induces apoptosis and autophagy via the PI3K/AKT/mTOR pathway in AGS human gastric cancer cells. J. Funct. Foods, 2021, 87, 104854.
[http://dx.doi.org/10.1016/j.jff.2021.104854]
[167]
Tian, Y.; Xu, H.; Farooq, A.A.; Nie, B.; Chen, X.; Su, S.; Yuan, R.; Qiao, G.; Li, C.; Li, X.; Liu, X.; Lin, X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother. Res., 2018, 32(7), 1320-1331.
[http://dx.doi.org/10.1002/ptr.6064] [PMID: 29516568]
[168]
Shin, S.W.; Kim, S.Y.; Park, J.W. Autophagy inhibition enhances ursolic acid-induced apoptosis in PC3 cells. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(2), 451-457.
[http://dx.doi.org/10.1016/j.bbamcr.2011.10.014] [PMID: 22178132]
[169]
Luo, J.; Hu, Y.L.; Wang, H. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp. Ther. Med., 2017, 14(4), 3623-3631.
[http://dx.doi.org/10.3892/etm.2017.4965] [PMID: 29042957]
[170]
Wang, S.; Wang, K.; Zhang, C.; Zhang, W.; Xu, Q.; Wang, Y.; Zhang, Y.; Li, Y.; Zhang, Y.; Zhu, H.; Song, F.; Lei, Y.; Bu, Y. Overaccumulation of p53-mediated autophagy protects against betulinic acid-induced apoptotic cell death in colorectal cancer cells. Cell Death Dis., 2017, 8(10), e3087-e3087.
[http://dx.doi.org/10.1038/cddis.2017.485] [PMID: 28981110]
[171]
Kawamata, T.; Kamada, Y.; Kabeya, Y.; Sekito, T.; Ohsumi, Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell, 2008, 19(5), 2039-2050.
[http://dx.doi.org/10.1091/mbc.e07-10-1048] [PMID: 18287526]
[172]
Wadgaonkar, P.; Chen, F. In Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Semin. Cancer Biol., 2021, 76, 258-266.
[173]
Zhou, W.; Zeng, X.; Wu, X. Effect of oleanolic acid on apoptosis and autophagy of SMMC-7721 hepatoma cells. Med. Sci. Monit., 2020, 26, e921606-e1.
[http://dx.doi.org/10.12659/MSM.921606] [PMID: 32424110]
[174]
Dong, X.; Zhang, J.; Zhou, Z.; Ye, Z.; Chen, J.; Yuan, J.; Cao, F.; Wang, X.; Liu, W.; Yu, W.; Li, X. Maslinic acid promotes autophagy by disrupting the interaction between BCL-2 and Beclin1 in rat pheochromocytoma PC12 cells. Oncotarget, 2017, 8(43), 74527-74538.
[http://dx.doi.org/10.18632/oncotarget.20210] [PMID: 29088805]
[175]
Shen, S.; Zhang, Y.; Zhang, R.; Tu, X.; Gong, X. Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chem. Biol. Interact., 2014, 218, 28-41.
[http://dx.doi.org/10.1016/j.cbi.2014.04.017] [PMID: 24802810]
[176]
Shen, M.; Wang, D.; Sennari, Y.; Zeng, Z.; Baba, R.; Morimoto, H.; Kitamura, N.; Nakanishi, T.; Tsukada, J.; Ueno, M.; Todoroki, Y.; Iwata, S.; Yonezawa, T.; Tanaka, Y.; Osada, Y.; Yoshida, Y. Pentacyclic triterpenoid ursolic acid induces apoptosis with mitochondrial dysfunction in adult T-cell leukemia MT-4 cells to promote surrounding cell growth. Med. Oncol., 2022, 39(8), 118.
[http://dx.doi.org/10.1007/s12032-022-01707-x] [PMID: 35674939]
[177]
Zhang, Y.; He, N.; Zhou, X.; Wang, F.; Cai, H.; Huang, S.H.; Chen, X.; Hu, Z.; Jin, X. Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells. Aging, 2021, 13(17), 21251-21267.
[http://dx.doi.org/10.18632/aging.203441] [PMID: 34510030]
[178]
Dolatabadi, S.; Candia, J.; Akrap, N.; Vannas, C.; Tesan, T.T.; Losert, W.; Landberg, G.; Åman, P.; Ståhlberg, A. Cell cycle and cell size dependent gene expression reveals distinct subpopulations at single-cell level. Front. Genet., 2017, 8, 1.
[http://dx.doi.org/10.3389/fgene.2017.00001] [PMID: 28179914]
[179]
Wang, Z. Regulation of cell cycle progression by growth factor-induced cell signaling. Cells, 2021, 10(12), 3327.
[http://dx.doi.org/10.3390/cells10123327] [PMID: 34943835]
[180]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[181]
Ding, L.; Cao, J.; Lin, W.; Chen, H.; Xiong, X.; Ao, H.; Yu, M.; Lin, J.; Cui, Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci., 2020, 21(6), 1960.
[http://dx.doi.org/10.3390/ijms21061960] [PMID: 32183020]
[182]
Graña, X.; Reddy, E.P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 1995, 11(2), 211-219.
[PMID: 7624138]
[183]
Diaz-Moralli, S.; Tarrado-Castellarnau, M.; Miranda, A.; Cascante, M. Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther., 2013, 138(2), 255-271.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.011] [PMID: 23356980]
[184]
Graf, F.; Mosch, B.; Koehler, L.; Bergmann, R.; Wuest, F.; Pietzsch, J. Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: Perspectives in cancer therapy and imaging. Mini Rev. Med. Chem., 2010, 10(6), 527-539.
[http://dx.doi.org/10.2174/138955710791384072] [PMID: 20370706]
[185]
Koliopoulos, M.G.; Alfieri, C. Cell cycle regulation by complex nanomachines. FEBS J., 2022, 289(17), 5100-5120.
[http://dx.doi.org/10.1111/febs.16082] [PMID: 34143558]
[186]
Zhao, X.; Liu, M.; Li, D. Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol. Cell. Biochem., 2015, 400(1-2), 1-7.
[http://dx.doi.org/10.1007/s11010-014-2228-7] [PMID: 25472877]
[187]
Kim, G.J.; Jo, H.J.; Lee, K.J.; Choi, J.W.; An, J.H. Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice. Oncotarget, 2018, 9(41), 26370-26386.
[http://dx.doi.org/10.18632/oncotarget.25316] [PMID: 29899865]
[188]
Lim, Y.M.; Ooi, K.X.; Subramaniam, M.; Fong, L.Y.; Goh, H.H.; Khoo, S.B.A. Apoptotic and cytostatic actions of maslinic acid in colorectal cancer cells through possible IKK-β inhibition. Asian Pac. J. Trop. Biomed., 2021, 11(3), 122.
[http://dx.doi.org/10.4103/2221-1691.306692]
[189]
Jain, R.; Grover, A. Maslinic acid differentially exploits the MAPK pathway in estrogen-positive and triple-negative breast cancer to induce mitochondrion-mediated, caspase-independent apoptosis. Apoptosis, 2020, 25(11-12), 817-834.
[http://dx.doi.org/10.1007/s10495-020-01636-y] [PMID: 32940876]
[190]
Yang, M.; Hu, C.; Cao, Y.; Liang, W.; Yang, X.; Xiao, T. Ursolic acid regulates cell cycle and proliferation in colon adenocarcinoma by suppressing cyclin B1. Front. Pharmacol., 2021, 11, 622212.
[http://dx.doi.org/10.3389/fphar.2020.622212] [PMID: 33628185]
[191]
Yang, L.; Chen, Y.; Ma, Q.; Fang, J.; He, J.; Cheng, Y.; Wu, Q. Effect of betulinic acid on the regulation of Hiwi and cyclin B1 in human gastric adenocarcinoma AGS cells. Acta Pharmacol. Sin., 2010, 31(1), 66-72.
[http://dx.doi.org/10.1038/aps.2009.177] [PMID: 20037601]
[192]
Kim, G.D. Ursolic acid decreases the proliferation of MCF-7 cell-derived breast cancer stem-like cells by modulating the ERK and PI3K/AKT signaling pathways. Prev. Nutr. Food Sci., 2021, 26(4), 434-444.
[http://dx.doi.org/10.3746/pnf.2021.26.4.434] [PMID: 35047440]
[193]
Goswami, P.; Paul, S.; Banerjee, R.; Kundu, R.; Mukherjee, A. Betulinic acid induces DNA damage and apoptosis in SiHa cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 828, 1-9.
[http://dx.doi.org/10.1016/j.mrgentox.2018.02.003] [PMID: 29555058]
[194]
Li, S.; Xu, H.X.; Wu, C.T.; Wang, W.Q.; Jin, W.; Gao, H.L.; Li, H.; Zhang, S.R.; Xu, J.Z.; Qi, Z.H.; Ni, Q.X.; Yu, X.J.; Liu, L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis, 2019, 22(1), 15-36.
[http://dx.doi.org/10.1007/s10456-018-9645-2] [PMID: 30168025]
[195]
Al-Ostoot, F.H.; Salah, S.; Khamees, H.A.; Khanum, S.A. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat. Res. Commun., 2021, 28, 100422.
[http://dx.doi.org/10.1016/j.ctarc.2021.100422]] [PMID: 34147821]
[196]
Derynck, R.; Muthusamy, B.P.; Saeteurn, K.Y. Signaling pathway cooperation in TGF-β-induced epithelial–mesenchymal transition. Curr. Opin. Cell Biol., 2014, 31, 56-66.
[http://dx.doi.org/10.1016/j.ceb.2014.09.001] [PMID: 25240174]
[197]
Zeng, Z.; Yu, J.; Jiang, Z.; Zhao, N. Oleanolic acid (OA) targeting UNC5B inhibits proliferation and EMT of ovarian cancer cell and increases chemotherapy sensitivity of niraparib. J. Oncol., 2022, 588, 7671.
[198]
Fan, X.; Wang, P.; Sun, Y.; Jiang, J.; Du, H.; Wang, Z.; Duan, Z.; Lei, H.; Li, H. Oleanolic acid derivatives inhibit the Wnt/β-catenin signaling pathway by promoting the phosphorylation of β-catenin in human SMMC-7721 cells. Pharmazie, 2016, 71(7), 398-401.
[PMID: 29441916]
[199]
Park, J.H.; Kwon, H.Y.; Sohn, E.J.; Kim, K.A.; Kim, B.; Jeong, S.J.; Song, J.; Koo, J.S.; Kim, S.H. Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol. Rep., 2013, 65(5), 1366-1374.
[http://dx.doi.org/10.1016/S1734-1140(13)71495-6] [PMID: 24399733]
[200]
Song, G.R.; Park, Y.J.C.S.J.; Shin, S.; Lee, G.; Choi, H.J.; Lee, D.Y.; Song, G-Y.; Oh, S. Root bark of Morus alba L. and its bioactive ingredient, ursolic acid, suppress the proliferation of multiple myeloma cells by inhibiting wnt/β-catenin pathway. J. Microbiol. Biotechnol., 2021, 31(11), 1559-1567.
[201]
Li, X.; Liu, X.; Deng, R.; Gao, S.; Jiang, Q.; Liu, R.; Li, H.; Miao, Y.; Zhai, Y.; Zhang, S.; Wang, Z.; Ren, Y.; Ning, W.; Zhou, H.; Yang, C. Betulinic acid attenuated bleomycin-induced pulmonary fibrosis by effectively intervening Wnt/β-catenin signaling. Phytomedicine, 2021, 81, 153428.
[http://dx.doi.org/10.1016/j.phymed.2020.153428] [PMID: 33341025]
[202]
Li, L.; Lin, J.; Sun, G.; Wei, L.; Shen, A.; Zhang, M.; Peng, J. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways. Mol. Med. Rep., 2016, 13(6), 5276-5282.
[http://dx.doi.org/10.3892/mmr.2016.5171] [PMID: 27108756]
[203]
Niu, G.; Sun, L.; Pei, Y.; Wang, D. Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer. Agents Med. Chem., 2018, 18(4), 583-590.
[http://dx.doi.org/10.2174/1871520617666171020124916] [PMID: 29065844]
[204]
Chen, L.; Liu, M.; Yang, H.; Ren, S.; Sun, Q.; Zhao, H.; Ming, T.; Tang, S.; Tao, Q.; Zeng, S.; Meng, X.; Xu, H. Ursolic acid inhibits the activation of smoothened‐independent non‐canonical hedgehog pathway in colorectal cancer by suppressing AKT signaling cascade. Phytother. Res., 2022, 36(9), 3555-3570.
[http://dx.doi.org/10.1002/ptr.7523] [PMID: 35708264]
[205]
Eichenmüller, M.; Hemmerlein, B.; von Schweinitz, D.; Kappler, R. Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma. Br. J. Cancer, 2010, 103(1), 43-51.
[http://dx.doi.org/10.1038/sj.bjc.6605715] [PMID: 20517313]
[206]
Lu, X.; An, L.; Fan, G.; Zang, L.; Huang, W.; Li, J.; Liu, J.; Ge, W.; Huang, Y.; Xu, J.; Du, S.; Cao, Y.; Zhou, T.; Yin, H.; Yu, L.; Jiao, S.; Wang, H. EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res., 2022, 32(4), 359-374.
[http://dx.doi.org/10.1038/s41422-022-00628-8] [PMID: 35197608]
[207]
Sangwan, V.; Park, M. Receptor tyrosine kinases: role in cancer progression. Curr. Oncol., 2006, 13(5), 191-193.
[http://dx.doi.org/10.3390/curroncol13050019] [PMID: 22792017]
[208]
Yang, J.; Li, X.; Yang, H.; Long, C. Oleanolic acid improves the symptom of renal ischemia reperfusion injury via the PI3K/AKT pathway. Urol. Int., 2021, 105(3-4), 215-220.
[http://dx.doi.org/10.1159/000506778] [PMID: 33291121]
[209]
Turturro, S.B.; Najor, M.S.; Yung, T.; Portt, L.; Malarkey, C.S.; Abukhdeir, A.M.; Cobleigh, M.A. Somatic loss of PIK3R1 may sensitize breast cancer to inhibitors of the MAPK pathway. Breast Cancer Res. Treat., 2019, 177(2), 325-333.
[http://dx.doi.org/10.1007/s10549-019-05320-x] [PMID: 31209687]
[210]
Reynaud, D.; Pietras, E.; Barry-Holson, K.; Mir, A.; Binnewies, M.; Jeanne, M.; Sala-Torra, O.; Radich, J.P.; Passegué, E. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell, 2011, 20(5), 661-673.
[http://dx.doi.org/10.1016/j.ccr.2011.10.012] [PMID: 22094259]
[211]
Zhao, R.; Li, T.; Zheng, G.; Jiang, K.; Fan, L.; Shao, J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 2017, 143, 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.030] [PMID: 28755539]
[212]
Chen, C.L.; Chen, C.Y.; Chen, Y.P.; Huang, Y.B.; Lin, M.W.; Wu, D.C.; Huang, H.T.; Liu, M.Y.; Chang, H.W.; Kao, Y.C.; Yang, P.H. Betulinic acid enhances TGF-β signaling by altering TGF-β receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells. J. Biomed. Sci., 2016, 23(1), 30.
[http://dx.doi.org/10.1186/s12929-016-0229-4] [PMID: 26922801]
[213]
Medicine, U.S.N. L o. Clin. Trials, 2023.
[214]
Seki, H.; Sawai, S.; Ohyama, K.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Fukushima, E.O.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell, 2011, 23(11), 4112-4123.
[http://dx.doi.org/10.1105/tpc.110.082685] [PMID: 22128119]
[215]
Feng, C.; Wang, H.; Yao, C.; Zhang, J.; Tian, Z. Diammonium glycyrrhizinate, a component of traditional Chinese medicine Gan-Cao, prevents murine T-cell-mediated fulminant hepatitis in IL-10- and IL-6-dependent manners. Int. Immunopharmacol., 2007, 7(10), 1292-1298.
[http://dx.doi.org/10.1016/j.intimp.2007.05.011] [PMID: 17673144]
[216]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[217]
Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 2021, 26(4), 1109.
[http://dx.doi.org/10.3390/molecules26041109] [PMID: 33669817]
[218]
Bakhtiar, Z.; Mirjalili, M.H.; Sonboli, A.; Farimani, M.M.; Ayyari, M. In vitro propagation, genetic and phytochemical assessment of Thymus persicus-a medicinally important source of pentacyclic triterpenoids. Biologia, 2014, 69(5), 594-603.
[http://dx.doi.org/10.2478/s11756-014-0346-z]
[219]
Malík, M.; Velechovský, J.; Tlustoš, P. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia, 2021, 151, 104845.
[http://dx.doi.org/10.1016/j.fitote.2021.104845] [PMID: 33684460]
[220]
Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci., 2011, 16(1), 980-996.
[http://dx.doi.org/10.2741/3730] [PMID: 21196213]
[221]
Ghosh, J.; Sil, P.C. Arjunolic acid: A new multifunctional therapeutic promise of alternative medicine. Biochimie, 2013, 95(6), 1098-1109.
[http://dx.doi.org/10.1016/j.biochi.2013.01.016] [PMID: 23402784]
[222]
Sandhu, S.S.; Rouz, S.K.; Kumar, S.; Swamy, N.; Deshmukh, L.; Hussain, A.; Haque, S.; Tuli, H.S. Ursolic acid: A pentacyclic triterpenoid that exhibits anticancer therapeutic potential by modulating multiple oncogenic targets. Biotechnol. Genet. Eng. Rev., 2023, 2023, 1-31.
[http://dx.doi.org/10.1080/02648725.2022.2162257] [PMID: 36600517]
[223]
Patlolla, J.M.; Rao, C.V. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr. Pharm. Biotechnol., 2012, 13(1), 147-155.
[http://dx.doi.org/10.2174/138920112798868719] [PMID: 21466427]
[224]
Furtado, J.C. N.A.; Pirson, L.; Edelberg, H.; M Miranda, L.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules, 2017, 22(3), 400.
[http://dx.doi.org/10.3390/molecules22030400] [PMID: 28273859]
[225]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[226]
Wang, S.; Dong, G.; Sheng, C. Structural simplification: an efficient strategy in lead optimization. Acta Pharm. Sin. B, 2019, 9(5), 880-901.
[http://dx.doi.org/10.1016/j.apsb.2019.05.004] [PMID: 31649841]
[227]
Bag, B.G.; Paul, K. Vesicular and fibrillar gels by self‐assembly of nanosized oleanolic acid. Asian J. Org. Chem., 2012, 1(2), 150-154.
[http://dx.doi.org/10.1002/ajoc.201200032]
[228]
Bag, B.G.; Dash, S.S. First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid. Nanoscale, 2011, 3(11), 4564-4566.
[http://dx.doi.org/10.1039/c1nr10886g] [PMID: 21947431]
[229]
Bag, B.G.; Das, S.; Hasan, S.N.; Chandan Barai, A. Nanoarchitectures by hierarchical self-assembly of ursolic acid: Entrapment and release of fluorophores including anticancer drug doxorubicin. RSC Advances, 2017, 7(29), 18136-18143.
[http://dx.doi.org/10.1039/C7RA02123B]
[230]
Bag, B.G.; Hasan, S.N.; Ghorai, S.; Panja, S.K. First self-assembly of dihydroxy triterpenoid maslinic acid yielding vesicles. ACS Omega, 2019, 4(4), 7684-7690.
[http://dx.doi.org/10.1021/acsomega.8b03667]
[231]
Bag, B.G.; Dash, S.S. Self-assembly of sodium and potassium betulinates into hydro- and organo-gels: Entrapment and removal studies of fluorophores and synthesis of gel–gold nanoparticle hybrid materials. RSC Advances, 2016, 6(21), 17290-17296.
[http://dx.doi.org/10.1039/C5RA25167B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy