Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on Advanced Nanomaterials for Antibacterial Applications

Author(s): Jephin K. Jose, Christie Thomas Cherian* and Manoj Balachandran*

Volume 19, Issue 6, 2023

Published on: 14 February, 2023

Page: [803 - 816] Pages: 14

DOI: 10.2174/1573413719666230120103335

Price: $65

Abstract

The management of infectious diseases is one of the major public health challenges of the 21st century. Mutation of the microbes, biofilm formation, and other structural-morphological behaviors have resulted in pathogens acquiring multi-drug resistance. The development of advanced materials that can provide long-lasting and effective protection against harmful microbes is becoming a need of the hour. Biocompatibility, efficient microbial inactivation, thermal and chemical stability of nanomaterials help to reduce the excessive use of antibiotics and, thus, to overcome antimicrobial resistance. Metal and metal oxide nanostructures, graphene, carbon dots, and other two-dimensional materials exhibit excellent antimicrobial properties. This review provides a comprehensive overview of antibacterial mechanisms and factors that help to inactivate the bacteria by nanomaterials. It also points out the enhanced antibacterial behaviors of the modified nanomaterials for future research concerns.

Keywords: Antibacterial, bacteria, nanocomposite, nanomaterials, photocatalytic, infectious diseases.

Graphical Abstract
[1]
Monack, D.M.; Mueller, A.; Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat. Rev. Microbiol., 2004, 2(9), 747-765.
[http://dx.doi.org/10.1038/nrmicro955] [PMID: 15372085]
[2]
Arabpour, N.; Nezamzadeh-Ejhieh, A. Modification of clinoptilolite nano-particles with iron oxide: Increased composite catalytic activity for photodegradation of cotrimaxazole in aqueous suspension. Mater. Sci. Semicond. Process., 2015, 31, 684-692.
[http://dx.doi.org/10.1016/j.mssp.2014.12.067]
[3]
Omrani, N.; Nezamzadeh-Ejhieh, A. Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite. Separ. Purif. Tech., 2020, 235, 116228.
[http://dx.doi.org/10.1016/j.seppur.2019.116228]
[4]
Woo, J.S.; Lim, J.H.; Shin, H.C.; Suh, M.K.; Ku, B.; Lee, K.H.; Joo, K.; Robinson, H.; Lee, J.; Park, S.Y.; Ha, N.C.; Oh, B.H. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell, 2009, 136(1), 85-96.
[http://dx.doi.org/10.1016/j.cell.2008.10.050] [PMID: 19135891]
[5]
Wong, T.Y.; Preston, L.A.; Schiller, N.L. ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol., 2000, 54(1), 289-340.
[http://dx.doi.org/10.1146/annurev.micro.54.1.289] [PMID: 11018131]
[6]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[7]
Kraigsley, A.M.; Finkel, S.E. Adaptive evolution in single species bacterial biofilms. FEMS Microbiol. Lett., 2009, 293(1), 135-140.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01526.x] [PMID: 19239496]
[8]
Arciola, C.R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33(26), 5967-5982.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.031] [PMID: 22695065]
[9]
Variola, F.; Brunski, J.B.; Orsini, G.; Tambasco de Oliveira, P.; Wazen, R.; Nanci, A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale, 2011, 3(2), 335-353.
[http://dx.doi.org/10.1039/C0NR00485E] [PMID: 20976359]
[10]
Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol., 2013, 31(5), 295-304.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.017] [PMID: 23434154]
[11]
Vimbela, G.; Ngo, S.M.; Fraze, C.; Yang, L.; Stout, D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomedicine, 2017, 12, 3941-3965.
[http://dx.doi.org/10.2147/IJN.S134526] [PMID: 28579779]
[12]
Mohan, A.N. B, M. Extraction of graphene nanostructures from colocasia esculenta and nelumbo nucifera leaves and surface functionalization with tin oxide: evaluation of their antibacterial properties. Chem.-A Eur. J., 2020, 26(36), 8105-8114.
[http://dx.doi.org/10.1002/chem.202000590] [PMID: 32222045]
[13]
Claudel, M.; Schwarte, J.V.; Fromm, K.M. New antimicrobial strategies based on metal complexes. Chemistry, 2020, 2(4), 849-899.
[http://dx.doi.org/10.3390/chemistry2040056]
[14]
Sonohara, R.; Muramatsu, N.; Ohshima, H.; Kondo, T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys. Chem., 1995, 55(3), 273-277.
[http://dx.doi.org/10.1016/0301-4622(95)00004-H] [PMID: 7626745]
[15]
Bogdanović U.; Lazić V.; Vodnik, V.; Budimir, M.; Marković Z.; Dimitrijević S. Copper nanoparticles with high antimicrobial activity. Mater. Lett., 2014, 128, 75-78.
[http://dx.doi.org/10.1016/j.matlet.2014.04.106]
[16]
López-Miranda, J.L.; Cervantes-Chávez, J.A.; Hernández-Martínez, A.R.; Pérez, R.; Esparza, R.; Estévez-González, M. Study on the photocatalytic and antibacterial properties of silver nanoparticles synthesized by a green approach. Mater. Res. Express, 2019, 6(6), 065066.
[http://dx.doi.org/10.1088/2053-1591/ab0ef6]
[17]
Vahabirad, S.; Nezamzadeh-Ejhieh, A.; Mirmohammadi, M. The coupled BiOI/(BiO)2CO3 catalyst: Brief characterization, and study of its photocatalytic kinetics. J. Solid State Chem., 2022, 314, 123405.
[http://dx.doi.org/10.1016/j.jssc.2022.123405]
[18]
Estelrich, J.; Busquets, M. Iron oxide nanoparticles in photothermal therapy. Molecules, 2018, 23(7), 1567.
[http://dx.doi.org/10.3390/molecules23071567] [PMID: 29958427]
[19]
Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J. Nanomater., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/720654]
[20]
El Badawy, A.M.; Silva, R.G.; Morris, B.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol., 2011, 45(1), 283-287.
[http://dx.doi.org/10.1021/es1034188] [PMID: 21133412]
[21]
Khan, S.T.; Musarrat, J.; Al-Khedhairy, A.A. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf. B Biointerfaces, 2016, 146, 70-83.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.046] [PMID: 27259161]
[22]
Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev., 2009, 38(7), 1999-2011.
[http://dx.doi.org/10.1039/b714786b] [PMID: 19551179]
[23]
Lampimäki, M.; Schreiber, S.; Zelenay, V. Křepelová, A.; Birrer, M.; Axnanda, S.; Mao, B.; Liu, Z.; Bluhm, H.; Ammann, M. Exploring the environmental photochemistry on the TiO2 (110) surface in situ by near ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C, 2015, 119(13), 7076-7085.
[http://dx.doi.org/10.1021/jp511340n]
[24]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[25]
Magalhaes, P.; Andrade, L.; Nunes, O.C.; Mendes, A. Titanium dioxide photocatalysis: Fundamentals and application on photoinactivation. Rev. Adv. Mater. Sci., 2017, 51(2)
[26]
Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M.C.; Horvatovich, P.; Gies, J.P.; Keller, V.; Keller, N.; Andre, P. TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microbiol., 2014, 80(8), 2573-2581.
[http://dx.doi.org/10.1128/AEM.03995-13] [PMID: 24532071]
[27]
Nezamzadeh-Ejhieh, A.; Zabihi-Mobarakeh, H. Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite. J. Ind. Eng. Chem., 2014, 20(4), 1421-1431.
[http://dx.doi.org/10.1016/j.jiec.2013.07.027]
[28]
Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 334-343.
[http://dx.doi.org/10.1016/j.saa.2018.02.043] [PMID: 29475182]
[29]
Senobari, S.; Nezamzadeh-Ejhieh, A. A p-n junction NiO-CdS nanoparticles with enhanced photocatalytic activity: A response surface methodology study. J. Mol. Liq., 2018, 257, 173-183.
[http://dx.doi.org/10.1016/j.molliq.2018.02.096]
[30]
Mehrali-Afjani, M.; Nezamzadeh-Ejhieh, A.; Aghaei, H. A brief study on the kinetic aspect of the photodegradation and mineralization of BiOI-Ag3PO4 towards sodium diclofenac. Chem. Phys. Lett., 2020, 759, 137873.
[http://dx.doi.org/10.1016/j.cplett.2020.137873]
[31]
Mirsalari, S.A.; Nezamzadeh-Ejhieh, A.; Massah, A.R. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. Environ. Sci. Pollut. Res. Int., 2022, 29(22), 33013-33032.
[http://dx.doi.org/10.1007/s11356-021-17569-1] [PMID: 35018594]
[32]
Harrison, J.J.; Ceri, H.; Stremick, C.A.; Turner, R.J. Biofilm susceptibility to metal toxicity. Environ. Microbiol., 2004, 6(12), 1220-1227.
[http://dx.doi.org/10.1111/j.1462-2920.2004.00656.x] [PMID: 15560820]
[33]
El-Zahry, M.R.; Mahmoud, A.; Refaat, I.H.; Mohamed, H.A.; Bohlmann, H.; Lendl, B. Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta, 2015, 138, 183-189.
[http://dx.doi.org/10.1016/j.talanta.2015.02.022] [PMID: 25863389]
[34]
Talebian, N.; Amininezhad, S.M.; Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B, 2013, 120, 66-73.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.01.004] [PMID: 23428888]
[35]
Parham, S.; Wicaksono, D.H.B.; Bagherbaigi, S.; Lee, S.L.; Nur, H.; Wicaksono, S.B.; Siew, L.L.; Hadi, N. Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J. Chin. Chem. Soc. (Taipei), 2016, 63(4), 385-393.
[http://dx.doi.org/10.1002/jccs.201500446]
[36]
Barker, E.; Shepherd, J.; Asencio, I.O. The use of cerium compounds as antimicrobials for biomedical applications. Molecules, 2022, 27(9), 2678.
[http://dx.doi.org/10.3390/molecules27092678] [PMID: 35566026]
[37]
Lai, I.P.J.; Harroun, S.G.; Chen, S.Y.; Unnikrishnan, B.; Li, Y.J.; Huang, C.C. Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sens. Actuators B Chem., 2016, 228, 465-470.
[http://dx.doi.org/10.1016/j.snb.2016.01.062]
[38]
Dong, X.; Ge, L.; Abu Rabe, D.I.; Mohammed, O.O.; Wang, P.; Tang, Y.; Kathariou, S.; Yang, L.; Sun, Y.P. Photoexcited state properties and antibacterial activities of carbon dots relevant to mechanistic features and implications. Carbon, 2020, 170, 137-145.
[http://dx.doi.org/10.1016/j.carbon.2020.08.025]
[39]
Li, Y.J.; Harroun, S.G.; Su, Y.C.; Huang, C.F.; Unnikrishnan, B.; Lin, H.J.; Lin, C.H.; Huang, C.C. Synthesis of self‐assembled spermidine‐carbon quantum dots effective against multidrug‐resistant bacteria. Adv. Healthc. Mater., 2016, 5(19), 2545-2554.
[http://dx.doi.org/10.1002/adhm.201600297] [PMID: 27448287]
[40]
Al Awak, M.M.; Wang, P.; Wang, S.; Tang, Y.; Sun, Y.P.; Yang, L. Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Advances, 2017, 7(48), 30177-30184.
[http://dx.doi.org/10.1039/C7RA05397E] [PMID: 29177045]
[41]
Kumari, A.; Khare, S.K.; Kundu, J. Adverse effect of CdTe quantum dots on the cell membrane of Bacillus subtilis: Insight from microscopy. Nano-Structures & Nano-Objects, 2017, 12, 19-26.
[http://dx.doi.org/10.1016/j.nanoso.2017.08.003]
[42]
Jin, T.; Sun, D.; Su, J.Y.; Zhang, H.; Sue, H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J. Food Sci., 2009, 74(1), M46-M52.
[http://dx.doi.org/10.1111/j.1750-3841.2008.01013.x] [PMID: 19200107]
[43]
Zhang, H.; Liang, Y.; Zhao, H.; Qi, R.; Chen, Z.; Yuan, H.; Liang, H.; Wang, L. Dual‐mode antibacterial conjugated polymer nanoparticles for photothermal and photodynamic therapy. Macromol. Biosci., 2020, 20(2), 1900301.
[http://dx.doi.org/10.1002/mabi.201900301] [PMID: 31762196]
[44]
Ye, S.; Shao, K.; Li, Z.; Guo, N.; Zuo, Y.; Li, Q.; Lu, Z.; Chen, L.; He, Q.; Han, H. Antiviral activity of graphene oxide: how sharp edged structure and charge matter. ACS Appl. Mater. Interfaces, 2015, 7(38), 21571-21579.
[http://dx.doi.org/10.1021/acsami.5b06876] [PMID: 26370151]
[45]
Tang, K.; Wang, L.; Geng, H.; Qiu, J.; Cao, H.; Liu, X. Molybdenum disulfide (MoS2) nanosheets vertically coated on titanium for disinfection in the dark. Arab. J. Chem., 2020, 13(1), 1612-1623.
[http://dx.doi.org/10.1016/j.arabjc.2017.12.013]
[46]
Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117(9), 6225-6331.
[http://dx.doi.org/10.1021/acs.chemrev.6b00558] [PMID: 28306244]
[47]
Thomas, R.; Unnikrishnan, J.; Nair, A.V.; Daniel, E.C.; Balachandran, M. Antibacterial performance of GO–Ag nanocomposite prepared via ecologically safe protocols. Appl. Nanosci., 2020, 10(11), 4207-4219.
[http://dx.doi.org/10.1007/s13204-020-01539-z]
[48]
Ryu, S.J.; Jung, H.; Oh, J.M.; Lee, J.K.; Choy, J.H. Layered double hydroxide as novel antibacterial drug delivery system. J. Phys. Chem. Solids, 2010, 71(4), 685-688.
[http://dx.doi.org/10.1016/j.jpcs.2009.12.066]
[49]
Li, Z.; Wong, S.L. Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater. Sci. Eng. C, 2017, 70(Pt 2), 1095-1106.
[http://dx.doi.org/10.1016/j.msec.2016.03.039] [PMID: 27772710]
[50]
Orooji, Y.; Ghanbari, M.; Amiri, O.; Salavati-Niasari, M. Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater., 2020, 389, 122079.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122079] [PMID: 32062394]
[51]
Ren, X.; Huo, M.; Wang, M.; Lin, H.; Zhang, X.; Yin, J.; Chen, Y.; Chen, H. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano, 2019, 13(6), 6438-6454.
[http://dx.doi.org/10.1021/acsnano.8b09327] [PMID: 31180624]
[52]
Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater., 2017, 29(1), 1603276.
[http://dx.doi.org/10.1002/adma.201603276] [PMID: 27797119]
[53]
Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci., 2019, 1(1), 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[54]
Zhao, R.; Kong, W.; Sun, M.; Yang, Y.; Liu, W.; Lv, M.; Song, S.; Wang, L.; Song, H.; Hao, R. Highly stable graphene-based nanocomposite (GO–PEI–Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS Appl. Mater. Interfaces, 2018, 10(21), 17617-17629.
[http://dx.doi.org/10.1021/acsami.8b03185] [PMID: 29767946]
[55]
Karaky, N.; Kirby, A.; McBain, A.J.; Butler, J.A.; El Mohtadi, M.; Banks, C.E.; Whitehead, K.A. Metal ions and graphene-based compounds as alternative treatment options for burn wounds infected by antibiotic-resistant Pseudomonas aeruginosa. Arch. Microbiol., 2020, 202(5), 995-1004.
[http://dx.doi.org/10.1007/s00203-019-01803-z] [PMID: 31915886]
[56]
Mohan, A.N. B, M.; Panicker, S. Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci. Rep., 2019, 9(1), 4170.
[http://dx.doi.org/10.1038/s41598-019-40916-9] [PMID: 30862854]
[57]
Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067), 442-444.
[http://dx.doi.org/10.1126/science.1211694] [PMID: 22282806]
[58]
Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano, 2011, 5(9), 6971-6980.
[http://dx.doi.org/10.1021/nn202451x] [PMID: 21851105]
[59]
Xin, Q.; Shah, H.; Nawaz, A.; Xie, W.; Akram, M.Z.; Batool, A.; Tian, L.; Jan, S.U.; Boddula, R.; Guo, B.; Liu, Q.; Gong, J.R. Antibacterial carbon‐based nanomaterials. Adv. Mater., 2019, 31(45), 1804838.
[http://dx.doi.org/10.1002/adma.201804838] [PMID: 30379355]
[60]
Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull., 2015, 5(1), 19-23.
[PMID: 25789215]
[61]
Wei, W.; Li, J.; Liu, Z.; Deng, Y.; Chen, D.; Gu, P.; Wang, G.; Fan, X. Distinct antibacterial activity of a vertically aligned graphene coating against Gram-positive and Gram-negative bacteria. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(28), 6069-6079.
[http://dx.doi.org/10.1039/D0TB00417K] [PMID: 32555838]
[62]
Palmieri, V.; Bugli, F.; Lauriola, M.C.; Cacaci, M.; Torelli, R.; Ciasca, G.; Conti, C.; Sanguinetti, M.; Papi, M.; De Spirito, M. Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater. Sci. Eng., 2017, 3(4), 619-627.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00812] [PMID: 33429629]
[63]
Perreault, F.; de Faria, A.F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano, 2015, 9(7), 7226-7236.
[http://dx.doi.org/10.1021/acsnano.5b02067] [PMID: 26091689]
[64]
Homaeigohar, S.; Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater., 2017, 9(8), e427-e427.
[http://dx.doi.org/10.1038/am.2017.135]
[65]
Musico, Y.L.F.; Santos, C.M.; Dalida, M.L.P.; Rodrigues, D.F.M.; Yvonne, L.F.; Catherine, M.S.; Maria, L.P.D.; Debora, F.R. Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain. Chem. Eng., 2014, 2(7), 1559-1565.
[http://dx.doi.org/10.1021/sc500044p]
[66]
Mohan, A.N.; Manoj, B. Surface modified graphene/SnO2 nanocomposite from carbon black as an efficient disinfectant against Pseudomonas aeruginosa. Mater. Chem. Phys., 2019, 232, 137-144.
[http://dx.doi.org/10.1016/j.matchemphys.2019.04.074]
[67]
Sun, P.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Xu, Z.; Zhu, H. Selective ion penetration of graphene oxide membranes. ACS Nano, 2013, 7(1), 428-437.
[http://dx.doi.org/10.1021/nn304471w] [PMID: 23214493]
[68]
Mohan, A.N. B, M. Biowaste derived graphene quantum dots interlaced with SnO 2 nanoparticles-A dynamic disinfection agent against Pseudomonas aeruginosa. New J. Chem., 2019, 43(34), 13681-13689.
[http://dx.doi.org/10.1039/C9NJ00379G]
[69]
Feng, Y.; Liu, L.; Zhang, J.; Aslan, H.; Dong, M. Photoactive antimicrobial nanomaterials. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(44), 8631-8652.
[http://dx.doi.org/10.1039/C7TB01860F] [PMID: 32264259]
[70]
Sun, L.; Du, T.; Hu, C.; Chen, J.; Lu, J.; Lu, Z.; Han, H. Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng., 2017, 5(10), 8693-8701.
[http://dx.doi.org/10.1021/acssuschemeng.7b01431]
[71]
Romero-Vargas Castrillón, S.; Perreault, F.; de Faria, A.F.; Elimelech, M. Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy. Environ. Sci. Technol. Lett., 2015, 2(4), 112-117.
[http://dx.doi.org/10.1021/acs.estlett.5b00066]
[72]
Kavitha, T.; Gopalan, A.I.; Lee, K.P.; Park, S.Y. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon, 2012, 50(8), 2994-3000.
[http://dx.doi.org/10.1016/j.carbon.2012.02.082]
[73]
Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal., 2012, 2(8), 1596-1606.
[http://dx.doi.org/10.1021/cs300240x]
[74]
Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta, 2018, 1031, 47-59.
[http://dx.doi.org/10.1016/j.aca.2018.06.002] [PMID: 30119743]
[75]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental design, bandgap study, and characterization of the catalyst. Int. J. Hydrogen Energy, 2020, 45(46), 24636-24656.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.207]
[76]
Deng, J.; Liang, J.; Li, M.; Tong, M. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C 3 N 4 -AgBr. Colloids Surf. B Biointerfaces, 2017, 152, 49-57.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.003] [PMID: 28081483]
[77]
Ju, P.; He, Y.; Wang, M.; Han, X.; Jiang, F.; Sun, C.; Wu, C. Enhanced peroxidase-like activity of MoS2 quantum dots functionalized g-C3N4 nanosheets towards colorimetric detection of H2O2. Nanomaterials (Basel), 2018, 8(12), 976.
[http://dx.doi.org/10.3390/nano8120976] [PMID: 30486292]
[78]
Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4), 263-275.
[http://dx.doi.org/10.1038/nchem.1589] [PMID: 23511414]
[79]
Matsumoto, T.; Sunada, K.; Nagai, T.; Isobe, T.; Matsushita, S.; Ishiguro, H.; Nakajima, A. Effects of cerium and tungsten substitution on antiviral and antibacterial properties of lanthanum molybdate. Mater. Sci. Eng. C, 2020, 117, 111323.
[http://dx.doi.org/10.1016/j.msec.2020.111323] [PMID: 32919679]
[80]
Awasthi, G.P.; Adhikari, S.P.; Ko, S.; Kim, H.J.; Park, C.H.; Kim, C.S. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloys Compd., 2016, 682, 208-215.
[http://dx.doi.org/10.1016/j.jallcom.2016.04.267]
[81]
Mohid, S.A.; Ghorai, A.; Ilyas, H.; Mroue, K.H.; Narayanan, G.; Sarkar, A.; Ray, S.K.; Biswas, K.; Bera, A.K.; Malmsten, M.; Midya, A.; Bhunia, A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf. B Biointerfaces, 2019, 176, 360-370.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.020] [PMID: 30658284]
[82]
Laishram, R.; Praveen, S.; Guisan, M.; Garg, P.; Rawat, J.S.; Prakash, C. Structural properties of MoS 2 layers grown by CVD technique. Integr. Ferroelectr., 2018, 194(1), 16-20.
[http://dx.doi.org/10.1080/10584587.2018.1514889]
[83]
Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano, 2016, 10(12), 11000-11011.
[http://dx.doi.org/10.1021/acsnano.6b05810] [PMID: 28024334]
[84]
Liu, C.; Kong, D.; Hsu, P.C.; Yuan, H.; Lee, H.W.; Liu, Y.; Wang, H.; Wang, S.; Yan, K.; Lin, D.; Maraccini, P.A.; Parker, K.M.; Boehm, A.B.; Cui, Y. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol., 2016, 11(12), 1098-1104.
[http://dx.doi.org/10.1038/nnano.2016.138] [PMID: 27525474]
[85]
Melamed, J.R.; Edelstein, R.S.; Day, E.S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano, 2015, 9(1), 6-11.
[http://dx.doi.org/10.1021/acsnano.5b00021] [PMID: 25590560]
[86]
Kim, T.I.; Kwon, B.; Yoon, J.; Park, I.J.; Bang, G.S.; Park, Y.; Seo, Y.S.; Choi, S.Y. YongKeun, P.; Yeon-Soo, S.; Sung-Yool, C. Antibacterial activities of graphene oxide–molybdenum disulfide nanocomposite films. ACS Appl. Mater. Interfaces, 2017, 9(9), 7908-7917.
[http://dx.doi.org/10.1021/acsami.6b12464] [PMID: 28198615]
[87]
Cao, F.; Ju, E.; Zhang, Y.; Wang, Z.; Liu, C.; Li, W.; Huang, Y.; Dong, K.; Ren, J.; Qu, X. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano, 2017, 11(5), 4651-4659.
[http://dx.doi.org/10.1021/acsnano.7b00343] [PMID: 28406604]
[88]
Navale, G.R.; Rout, C.S.; Gohil, K.N.; Dharne, M.S.; Late, D.J.; Shinde, S.S. Oxidative and membrane stress-mediated antibacterial activity of WS 2 and rGO-WS 2 nanosheets. RSC Advances, 2015, 5(91), 74726-74733.
[http://dx.doi.org/10.1039/C5RA15652A]
[89]
Liu, X.; Duan, G.; Li, W.; Zhou, Z.; Zhou, R. Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS 2). RSC Advances, 2017, 7(60), 37873-37880.
[http://dx.doi.org/10.1039/C7RA06442J]
[90]
Szuplewska, A. Kulpińska, D.; Dybko, A.; Chudy, M.; Jastrzębska, A.M.; Olszyna, A.; Brzózka, Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol., 2020, 38(3), 264-279.
[http://dx.doi.org/10.1016/j.tibtech.2019.09.001] [PMID: 31635894]
[91]
Ronchi, R.M.; Arantes, J.T.; Santos, S.F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int., 2019, 45(15), 18167-18188.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.114]
[92]
Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett., 2017, 17(1), 384-391.
[http://dx.doi.org/10.1021/acs.nanolett.6b04339] [PMID: 28026960]
[93]
Jastrzębska, A.M.; Karwowska, E.; Wojciechowski, T.; Ziemkowska, W.; Rozmysłowska, A.; Chlubny, L.; Olszyna, A. The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. J. Mater. Eng. Perform., 2019, 28(3), 1272-1277.
[http://dx.doi.org/10.1007/s11665-018-3223-z]
[94]
Arabi Shamsabadi, A.; Sharifian Gh, M.; Anasori, B.; Soroush, M. Antimicrobial mode-of-action of colloidal Ti3C2T x MXene nanosheets. ACS Sustain. Chem.& Eng., 2018, 6(12), 16586-16596.
[http://dx.doi.org/10.1021/acssuschemeng.8b03823]
[95]
Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev., 2018, 47(14), 5109-5124.
[http://dx.doi.org/10.1039/C7CS00838D] [PMID: 29667670]
[96]
Li, M.; Li, L.; Lin, S. Efficient antimicrobial properties of layered double hydroxide assembled with transition metals via a facile preparation method. Chin. Chem. Lett., 2020, 31(6), 1511-1515.
[http://dx.doi.org/10.1016/j.cclet.2019.09.047]
[97]
Rasool, K.; Mahmoud, K.A.; Johnson, D.J.; Helal, M.; Berdiyorov, G.R.; Gogotsi, Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep., 2017, 7(1), 1598.
[http://dx.doi.org/10.1038/s41598-017-01714-3] [PMID: 28487521]
[98]
Zhao, Y.; Wang, C.J.; Gao, W.; Li, B.; Wang, Q.; Zheng, L.; Wei, M.; Evans, D.G.; Duan, X.; O’Hare, D. Synthesis and antimicrobial activity of ZnTi–layered double hydroxide nanosheets. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(43), 5988-5994.
[http://dx.doi.org/10.1039/c3tb21059f] [PMID: 32261066]
[99]
Chen, C.; Gunawan, P.; Lou, X.W.D.; Xu, R. Silver nanoparticles deposited layered double hydroxide nanoporous coatings with excellent antimicrobial activities. Adv. Funct. Mater., 2012, 22(4), 780-787.
[http://dx.doi.org/10.1002/adfm.201102333]
[100]
Cao, Y.; Li, G.; Li, X. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chem. Eng. J., 2016, 292, 207-223.
[http://dx.doi.org/10.1016/j.cej.2016.01.114]
[101]
Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Kumar, S.P.; Stephen, A.; Selvam, P.; Subaraja, M.; Narayanan, V. Biological evolution of new intercalated layered double hydroxides: anticancer, antibacterial and photocatalytic studies. ChemistrySelect, 2017, 2(35), 11717-11726.
[http://dx.doi.org/10.1002/slct.201702621]
[102]
Carja, G.; Kameshima, Y.; Nakajima, A.; Dranca, C.; Okada, K. Nanosized silver–anionic clay matrix as nanostructured ensembles with antimicrobial activity. Int. J. Antimicrob. Agents, 2009, 34(6), 534-539.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.08.008] [PMID: 19786342]
[103]
Wang, Z.; Yu, H.; Ma, K.; Chen, Y.; Zhang, X.; Wang, T.; Li, S.; Zhu, X.; Wang, X. Flower-like surface of three-metal-component layered double hydroxide composites for improved antibacterial activity of lysozyme. Bioconjug. Chem., 2018, 29(6), 2090-2099.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00305] [PMID: 29847098]
[104]
Aksoy, İ.; Küçükkeçeci, H.; Sevgi, F.; Metin, Ö.; Hatay Patir, I. Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl. Mater. Interfaces, 2020, 12(24), 26822-26831.
[http://dx.doi.org/10.1021/acsami.0c02524] [PMID: 32427479]
[105]
Guo, T.; Zhuang, S.; Qiu, H.; Guo, Y.; Wang, L.; Jin, G.; Lin, W.; Huang, G.; Yang, H. Black phosphorus nanosheets for killing bacteria through nanoknife effect. Part. Part. Syst. Charact., 2020, 37(8), 2000169.
[http://dx.doi.org/10.1002/ppsc.202000169]
[106]
Lu, W.; Ma, X.; Fei, Z.; Zhou, J.; Zhang, Z.; Jin, C.; Zhang, Z. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements. Appl. Phys. Lett., 2015, 107(2), 021906.
[http://dx.doi.org/10.1063/1.4926731]
[107]
Li, Z.; Wu, L.; Wang, H.; Zhou, W.; Liu, H.; Cui, H.; Li, P.; Chu, P.K.; Yu, X.F. Synergistic antibacterial activity of black phosphorus nanosheets modified with titanium aminobenzenesulfanato complexes. ACS Appl. Nano Mater., 2019, 2(3), 1202-1209.
[http://dx.doi.org/10.1021/acsanm.8b02065]
[108]
Ouyang, J.; Liu, R.Y.; Chen, W.; Liu, Z.; Xu, Q.; Zeng, K.; Deng, L.; Shen, L.; Liu, Y.N. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(39), 6302-6310.
[http://dx.doi.org/10.1039/C8TB01669K] [PMID: 32254620]
[109]
Vinardell, M.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel), 2015, 5(2), 1004-1021.
[http://dx.doi.org/10.3390/nano5021004] [PMID: 28347048]
[110]
Alangari, A.; Alqahtani, M.S.; Mateen, A.; Kalam, M.A.; Alshememry, A.; Ali, R.; Kazi, M.; AlGhamdi, K.M.; Syed, R. Iron oxide nanoparticles: preparation, characterization, and assessment of antimicrobial and anticancer activity. Adsorpt. Sci. Technol., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/1562051]
[111]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141.
[http://dx.doi.org/10.1007/s10534-010-9381-6] [PMID: 20938718]
[112]
Salesi, S.; Nezamzadeh-Ejhieh, A. Boosted photocatalytic effect of binary AgI/Ag2WO4 nanocatalyst: characterization and kinetics study towards ceftriaxone photodegradation. Environ. Sci. Pollut. Res. Int., 2022, 29(60), 90191-90206.
[http://dx.doi.org/10.1007/s11356-022-22100-1] [PMID: 35864406]
[113]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[114]
Mehrabanpour, N.; Nezamzadeh-Ejhieh, A.; Ghattavi, S. The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study. Environ. Sci. Pollut. Res. Int., 2022, 1-14.
[http://dx.doi.org/10.1007/s11356-022-22557-0] [PMID: 35978238]
[115]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[116]
Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy