Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

ceRNA网络分析揭示AP-1转录因子成分是阿尔茨海默病的潜在生物标志物

卷 19, 期 5, 2022

发表于: 22 July, 2022

页: [387 - 406] 页: 20

弟呕挨: 10.2174/1567205019666220613142303

价格: $65

摘要

背景:阿尔茨海默病(AD)是一种影响老年人的进行性神经退行性疾病,其特征是认知功能下降。非编码RNAs参与AD的发病机制。 目的:利用6月龄淀粉样前体蛋白/早老蛋白1双转基因(APP/PS1)和野生型小鼠海马组织构建内源性RNA (ceRNA)网络,以寻找AD潜在的治疗靶点。 方法:应用limma R包分析APP/PS1和野生型小鼠海马区RNA-seq数据(GSE158995),识别显著差异表达的mRNAs和circRNAs(分别为DEMs和DECs)。DEM基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析使用了Enrichr(https://maayanlab.cloud/Enrichr/)。使用ggcorrplot R包确定DEMs和DECs之间的相关性。使用STRING数据库和Cytoscape软件选择主要集群和集线器DEMs。使用miRTarbase和Starbase工具预测ceRNA相互作用,并使用ggallvial R软件包和Cytoscape软件构建。使用定量逆转录-聚合酶链反应(qRT-PCR)和Western blot对ceRNA网络进行验证。 结果:与野生型海马相比,APP/PS1中有198个DEMs和90个DECs表达差异。DEM GO分析显示,转录调控显著富集,可细分为转录调控、突触可塑性和蛋白质再折叠三个主要聚类。在转录调控簇中,AP-1转录因子组分充当枢纽基因。基于qRT-PCR和Western blot分析建立mmu_circ_0001787(circGLCE)/miR-339-5p/Junb和mmu_circ_0001899(circFAM120C)/ miR-181a-5p/Egr1 ceRNA网络。 结论:在AD小鼠模型中构建了两个AP-1转录因子成分相关的ceRNA网络circGLCE/miR- 339-5p/Junb和circFAM120C/miR-181a-5p/Egr1。这些ceRNA网络可能有助于AD的转录调节,并为AD的诊断和治疗提供潜在的生物标志物。

关键词: 阿尔茨海默病,环状RNA, microRNA,转录因子,ceRNA,基因本体论。

« Previous
[1]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement 2021; 17(3): 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[2]
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci 2017; 40(6): 347-57.
[http://dx.doi.org/10.1016/j.tins.2017.04.002] [PMID: 28494972]
[3]
Lanoiselée HM, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14(3): e1002270.
[http://dx.doi.org/10.1371/journal.pmed.1002270] [PMID: 28350801]
[4]
Lauretti E, Dabrowski K, Praticò D. The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71: 101425.
[http://dx.doi.org/10.1016/j.arr.2021.101425] [PMID: 34384901]
[5]
Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol 2021; 22(6): 425-38.
[http://dx.doi.org/10.1038/s41580-021-00354-w] [PMID: 33772227]
[6]
Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[7]
Juźwik CAS, S. Drake S, Zhang Y, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182: 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[8]
Wang X, Liu D, Huang HZ, et al. A Novel MicroRNA-124/PTPN1 Signal Pathway Mediates Synaptic and Memory Deficits in Alzheimer’s Disease. Biol Psychiatry 2018; 83(5): 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023] [PMID: 28965984]
[9]
Zheng K, Hu F, Zhou Y, et al. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat Commun 2021; 12(1): 1903.
[http://dx.doi.org/10.1038/s41467-021-22196-y] [PMID: 33771994]
[10]
Hou TY, Zhou Y, Zhu LS, et al. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J Neurochem 2020; 154(4): 441-57.
[http://dx.doi.org/10.1111/jnc.14961] [PMID: 31951013]
[11]
Wang X, Li H, Lu Y, Cheng L. Circular RNAs in Human Cancer. Front Oncol 2021; 10: 577118.
[http://dx.doi.org/10.3389/fonc.2020.577118] [PMID: 33537235]
[12]
Zhang N, Gao Y, Yu S, Sun X, Shen K. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci 2020; 252: 117637.
[http://dx.doi.org/10.1016/j.lfs.2020.117637] [PMID: 32251633]
[13]
Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s Disease. Neurosci Bull 2019; 35(5): 877-88.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[14]
Li W, Yang S, Qiao R, Zhang J. Potential value of urinary exosome-derived LET-7C-5p in the diagnosis and progression of type II Diabetic Nephropathy. Clin Lab 2018; 64(5): 709-18.
[http://dx.doi.org/10.7754/Clin.Lab.2018.171031] [PMID: 29739042]
[15]
Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90-7.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[16]
Huang HY, Lin YC, Li J, et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2020; 48(D1): D148-54.
[PMID: 31647101]
[17]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(Database issue): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[18]
Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 2017; 35(3): 222-9.
[http://dx.doi.org/10.1038/nbt.3802] [PMID: 28244992]
[19]
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer’s disease: Challenges and perspectives. Mol Neurodegener 2021; 16(1): 76.
[http://dx.doi.org/10.1186/s13024-021-00496-7] [PMID: 34742333]
[20]
Walgrave H, Balusu S, Snoeck S, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell 2021; 28(10): 1805-1821.e8.
[http://dx.doi.org/10.1016/j.stem.2021.05.001] [PMID: 34033742]
[21]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 2020; 21(8): 475-90.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[22]
Trejo J, Massamiri T, Deng T, Dewji NN, Bayney RM, Brown JH. A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer’s beta-amyloid precursor protein gene. J Biol Chem 1994; 269(34): 21682-90.
[http://dx.doi.org/10.1016/S0021-9258(17)31860-4] [PMID: 8063812]
[23]
Huang YA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion. Cell 2017; 168(3): 427-441.e21.
[http://dx.doi.org/10.1016/j.cell.2016.12.044] [PMID: 28111074]
[24]
Cheng C, Li W, Zhang Z, et al. MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 2013; 288(19): 13748-61.
[http://dx.doi.org/10.1074/jbc.M112.381392] [PMID: 23546882]
[25]
Ren RJ, Zhang YF, Dammer EB, et al. Peripheral Blood MicroRNA Expression Profiles in Alzheimer’s Disease: Screening, Validation, Association with Clinical Phenotype and Implications for Molecular Mechanism. Mol Neurobiol 2016; 53(8): 5772-81.
[http://dx.doi.org/10.1007/s12035-015-9484-8] [PMID: 26497032]
[26]
Hu YT, Chen XL, Huang SH, et al. Early growth response-1 regulates acetylcholinesterase and its relation with the course of Alzheimer’s disease. Brain Pathol 2019; 29(4): 502-12.
[http://dx.doi.org/10.1111/bpa.12688] [PMID: 30511454]
[27]
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 2014; 122: 89-129.
[http://dx.doi.org/10.1016/B978-0-12-420170-5.00004-0] [PMID: 24484699]
[28]
Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 2003; 358(1432): 805-14.
[http://dx.doi.org/10.1098/rstb.2002.1224] [PMID: 12740127]
[29]
Zhu QB, Unmehopa U, Bossers K, et al. MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain 2016; 139(Pt 3): 908-21.
[http://dx.doi.org/10.1093/brain/awv383] [PMID: 26792551]
[30]
Rodriguez-Ortiz CJ, Prieto GA, Martini AC, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer’s disease. Aging Cell 2020; 19(3): e13118.
[http://dx.doi.org/10.1111/acel.13118] [PMID: 32087004]
[31]
Ansari A, Maffioletti E, Milanesi E, et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 2019; 82: 102-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.06.005] [PMID: 31437718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy