Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Biological Functions and Applications of Antimicrobial Peptides

Author(s): Lei Wang, Linkai Qu, Sue Lin, Qinsi Yang, Xingxing Zhang, Libo Jin*, Hao Dong* and Da Sun*

Volume 23, Issue 4, 2022

Published on: 21 July, 2022

Page: [226 - 247] Pages: 22

DOI: 10.2174/1389203723666220519155942

Price: $65

Abstract

Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics, antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events disrupt the delicate microbial balance in both humans and animals, leading to secondary infections and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance, AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral, antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition, we highlighted various recommendations and potential research areas for their progress and challenges in practical applications.

Keywords: Antimicrobial peptides, microbial resistance, antimicrobial activity, action mechanism, achievement transformation, clinical application.

Graphical Abstract
[1]
Stein Gold, L.; Baldwin, H.; Kircik, L.H.; Weiss, J.S.; Pariser, D.M.; Callender, V.; Lain, E.; Gold, M.; Beer, K.; Draelos, Z. Efficacy and safety of a fixed-dose clindamycin phosphate 1.2%, benzoyl peroxide 3.1%, and adapalene 0.15% gel for moderate-to-severe acne: A randomized phase ii study of the first triple-combination drug. Am. J. Clin. Dermatol., 2022, 23(1), 93-104.
[http://dx.doi.org/10.1007/s40257-021-00650-3] [PMID: 34674160]
[2]
Shrivastava, S.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc, 2018, 32, 76.
[http://dx.doi.org/10.4103/jms.jms_25_17]
[3]
Sutradhar, I.; Ching, C.; Desai, D.; Suprenant, M.; Briars, E.; Heins, Z.; Khalil, A.S.; Zaman, M.H. Computational model to quantify the growth of antibiotic-resistant bacteria in wastewater. mSystems, 2021, 6(3), e0036021.
[http://dx.doi.org/10.1128/mSystems.00360-21] [PMID: 34100640]
[4]
Liu, Y.; Shi, J.; Tong, Z.; Jia, Y.; Yang, B.; Wang, Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol. Res., 2021, 163, 105276.
[http://dx.doi.org/10.1016/j.phrs.2020.105276] [PMID: 33161137]
[5]
Bosch, T.C.G.; Zasloff, M. Antimicrobial peptides-or how our ancestors learned to control the microbiome. MBio, 2021, 12(5), e0184721.
[http://dx.doi.org/10.1128/mBio.01847-21] [PMID: 34579574]
[6]
Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun., 2019, 10(1), 4538.
[http://dx.doi.org/10.1038/s41467-019-12364-6] [PMID: 31586049]
[7]
Yi, H-Y.; Chowdhury, M.; Huang, Y-D.; Yu, X-Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol., 2014, 98(13), 5807-5822.
[http://dx.doi.org/10.1007/s00253-014-5792-6] [PMID: 24811407]
[8]
Tang, Z.; Ma, Q.; Chen, X.; Chen, T.; Ying, Y.; Xi, X.; Wang, L.; Ma, C.; Shaw, C.; Zhou, M. Recent advances and challenges in nanodelivery systems for antimicrobial peptides (amps). Antibiotics (Basel), 2021, 10(8), 990.
[http://dx.doi.org/10.3390/antibiotics10080990] [PMID: 34439040]
[9]
Sahoo, A.; Swain, S.S.; Behera, A.; Sahoo, G.; Mahapatra, P.K.; Panda, S.K. Antimicrobial peptides derived from insects offer a novel therapeutic option to combat biofilm: A review. Front. Microbiol., 2021, 12, 661195.
[http://dx.doi.org/10.3389/fmicb.2021.661195] [PMID: 34248873]
[10]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[11]
Seshadri Sundararajan, V.; Gabere, M.N.; Pretorius, A.; Adam, S.; Christoffels, A.; Lehväslaiho, M.; Archer, J.A.C.; Bajic, V.B. DAMPD: A manually curated antimicrobial peptide database. Nucleic Acids Res., 2012, 40(Database issue), D1108-D1112.
[http://dx.doi.org/10.1093/nar/gkr1063] [PMID: 22110032]
[12]
Wallace, J.C.; Port, J.A.; Smith, M.N.; Faustman, E.M. FARME DB: A functional antibiotic resistance element database. Database (Oxford), 2017, 2017, baw165.
[http://dx.doi.org/10.1093/database/baw165] [PMID: 28077567]
[13]
Waghu, F.H.; Idicula-Thomas, S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci., 2020, 29(1), 36-42.
[http://dx.doi.org/10.1002/pro.3714] [PMID: 31441165]
[14]
Fjell, C.D.; Hancock, R.E.W.; Cherkasov, A. AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics, 2007, 23(9), 1148-1155.
[http://dx.doi.org/10.1093/bioinformatics/btm068] [PMID: 17341497]
[15]
Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A database linking antimicrobial peptides. PLoS One, 2013, 8(6), e66557.
[http://dx.doi.org/10.1371/journal.pone.0066557] [PMID: 23825543]
[16]
Théolier, J.; Fliss, I.; Jean, J.; Hammami, R. MilkAMP: A comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci. Technol., 2014, 94(2), 181-193.
[http://dx.doi.org/10.1007/s13594-013-0153-2]
[17]
Novković, M.; Simunić, J.; Bojović, V.; Tossi, A.; Juretić, D. DADP: The database of anuran defense peptides. Bioinformatics, 2012, 28(10), 1406-1407.
[http://dx.doi.org/10.1093/bioinformatics/bts141] [PMID: 22467909]
[18]
Hammami, R.; Ben Hamida, J.; Vergoten, G.; Fliss, I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Res., 2009, 37(Database issue), D963-D968.
[http://dx.doi.org/10.1093/nar/gkn655] [PMID: 18836196]
[19]
Hammami, R.; Zouhir, A.; Le Lay, C.; Ben Hamida, J.; Fliss, I. BACTIBASE second release: A database and tool platform for bacteriocin characterization. BMC Microbiol., 2010, 10(1), 22.
[http://dx.doi.org/10.1186/1471-2180-10-22] [PMID: 20105292]
[20]
Gueguen, Y.; Garnier, J.; Robert, L.; Lefranc, M.P.; Mougenot, I.; de Lorgeril, J.; Janech, M.; Gross, P.S.; Warr, G.W.; Cuthbertson, B.; Barracco, M.A.; Bulet, P.; Aumelas, A.; Yang, Y.; Bo, D.; Xiang, J.; Tassanakajon, A.; Piquemal, D.; Bachère, E. PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Dev. Comp. Immunol., 2006, 30(3), 283-288.
[http://dx.doi.org/10.1016/j.dci.2005.04.003] [PMID: 15963564]
[21]
Whitmore, L.; Wallace, B.A. The Peptaibol Database: A database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res., 2004, 32(Database issue), D593-D594.
[http://dx.doi.org/10.1093/nar/gkh077] [PMID: 14681489]
[22]
Qureshi, A.; Thakur, N.; Kumar, M. HIPdb: A database of experimentally validated HIV inhibiting peptides. PLoS One, 2013, 8(1), e54908.
[http://dx.doi.org/10.1371/journal.pone.0054908] [PMID: 23359817]
[23]
Qureshi, A.; Thakur, N.; Tandon, H.; Kumar, M. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res., 2014, 42(Database issue), D1147-D1153.
[http://dx.doi.org/10.1093/nar/gkt1191] [PMID: 24285301]
[24]
Prichula, J.; Primon-Barros, M.; Luz, R.C.Z.; Castro, Í.M.S.; Paim, T.G.S.; Tavares, M.; Ligabue-Braun, R.; d’Azevedo, P.A.; Frazzon, J.; Frazzon, A.P.G.; Seixas, A.; Gilmore, M.S. Genome mining for antimicrobial compounds in wild marine animals-associated enterococci. Mar. Drugs, 2021, 19(6), 328.
[http://dx.doi.org/10.3390/md19060328] [PMID: 34204046]
[25]
Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; Alekseyev, V.; Rosenthal, A.; Tartakovsky, M. DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res., 2016, 44(13), 6503-6503.
[http://dx.doi.org/10.1093/nar/gkw243] [PMID: 27060142]
[26]
Dong, B.; Yi, Y.; Liang, L.; Shi, Q. High throughput identification of antimicrobial peptides from fish gastrointestinal microbiota. Toxins (Basel), 2017, 9(9), 266.
[http://dx.doi.org/10.3390/toxins9090266] [PMID: 28867788]
[27]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[28]
Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel), 2020, 9(1), 24.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[29]
Agerberth, B.; Gunne, H.; Odeberg, J.; Kogner, P.; Boman, H.G.; Gudmundsson, G.H. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. USA, 1995, 92(1), 195-199.
[http://dx.doi.org/10.1073/pnas.92.1.195] [PMID: 7529412]
[30]
Assoni, L.; Milani, B.; Carvalho, M.R.; Nepomuceno, L.N.; Waz, N.T.; Guerra, M.E.S.; Converso, T.R.; Darrieux, M. Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Front. Microbiol., 2020, 11, 593215.
[http://dx.doi.org/10.3389/fmicb.2020.593215] [PMID: 33193264]
[31]
Pompilio, A.; Scocchi, M.; Pomponio, S.; Guida, F.; Di Primio, A.; Fiscarelli, E.; Gennaro, R.; Di Bonaventura, G. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides, 2011, 32(9), 1807-1814.
[http://dx.doi.org/10.1016/j.peptides.2011.08.002] [PMID: 21849157]
[32]
Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[33]
Jia, F.; Wang, J.; Zhang, L.; Zhou, J.; He, Y.; Lu, Y.; Liu, K.; Yan, W.; Wang, K. Multiple action mechanism and in vivo antimicrobial efficacy of antimicrobial peptide Jelleine-I. J. Pept. Sci., 2021, 27(3), e3294.
[http://dx.doi.org/10.1002/psc.3294] [PMID: 33283388]
[34]
Zhu, N.; Zhong, C.; Liu, T.; Zhu, Y.; Gou, S.; Bao, H.; Yao, J.; Ni, J. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in Gram-negative bacteria. Eur. J. Pharm. Sci., 2021, 158, 105665.
[http://dx.doi.org/10.1016/j.ejps.2020.105665] [PMID: 33285267]
[35]
Zhong, L.; Liu, J.; Teng, S.; Xie, Z. Identification of a novel Cathelicidin from the Deinagkistrodon acutus genome with antibacterial activity by multiple mechanisms. Toxins (Basel), 2020, 12(12), E771.
[http://dx.doi.org/10.3390/toxins12120771] [PMID: 33291852]
[36]
Mardirossian, M.; Pérébaskine, N.; Benincasa, M.; Gambato, S.; Hofmann, S.; Huter, P.; Müller, C.; Hilpert, K.; Innis, C.A.; Tossi, A.; Wilson, D.N. The dolphin proline-rich antimicrobial peptide tur1a inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem. Biol., 2018, 25(5), 530-539.e7.
[http://dx.doi.org/10.1016/j.chembiol.2018.02.004] [PMID: 29526712]
[37]
Hariton-Gazal, E.; Feder, R.; Mor, A.; Graessmann, A.; Brack-Werner, R.; Jans, D.; Gilon, C.; Loyter, A. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry, 2002, 41(29), 9208-9214.
[http://dx.doi.org/10.1021/bi0201466] [PMID: 12119035]
[38]
Aarbiou, J.; Tjabringa, G.S.; Verhoosel, R.M.; Ninaber, D.K.; White, S.R.; Peltenburg, L.T.C.; Rabe, K.F.; Hiemstra, P.S. Mechanisms of cell death induced by the neutrophil antimicrobial peptides alpha-defensins and LL-37. Inflamm. Res., 2006, 55(3), 119-127.
[http://dx.doi.org/10.1007/s00011-005-0062-9] [PMID: 16673155]
[39]
Varnava, K.G.; Edwards, P.J.B.; Cameron, A.J.; Harjes, E.; Sarojini, V. Cyclic peptides bearing the d-Phe-2-Abz turn motif: Structural characterization and antimicrobial potential. J. Pept. Sci., 2021, 27(2), e3291.
[http://dx.doi.org/10.1002/psc.3291] [PMID: 33283398]
[40]
Fan, X.; Xu, W.; Gao, W.; Xiao, H.; Wu, G. Opsonization of multiple drug resistant (MDR)-bacteria by antimicrobial peptide fused hepatitis B virus surface antigen (HBsAg) in vaccinated individuals. Biochem. Biophys. Res. Commun., 2021, 534, 193-198.
[http://dx.doi.org/10.1016/j.bbrc.2020.11.113] [PMID: 33280820]
[41]
Porcelli, F.; Verardi, R.; Shi, L.; Henzler-Wildman, K.A.; Ramamoorthy, A.; Veglia, G. NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry, 2008, 47(20), 5565-5572.
[http://dx.doi.org/10.1021/bi702036s] [PMID: 18439024]
[42]
Cuthbertson, B.J.; Deterding, L.J.; Williams, J.G.; Tomer, K.B.; Etienne, K.; Blackshear, P.J.; Büllesbach, E.E.; Gross, P.S. Diversity in penaeidin antimicrobial peptide form and function. Dev. Comp. Immunol., 2008, 32(3), 167-181.
[http://dx.doi.org/10.1016/j.dci.2007.06.009] [PMID: 17716729]
[43]
Martínez, B.; Böttiger, T.; Schneider, T.; Rodríguez, A.; Sahl, H-G.; Wiedemann, I. Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Appl. Environ. Microbiol., 2008, 74(15), 4666-4670.
[http://dx.doi.org/10.1128/AEM.00092-08] [PMID: 18539790]
[44]
Bonelli, R.R.; Schneider, T.; Sahl, H-G.; Wiedemann, I. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob. Agents Chemother., 2006, 50(4), 1449-1457.
[http://dx.doi.org/10.1128/AAC.50.4.1449-1457.2006] [PMID: 16569864]
[45]
Mourtada, R.; Herce, H.D.; Yin, D.J.; Moroco, J.A.; Wales, T.E.; Engen, J.R.; Walensky, L.D. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat. Biotechnol., 2019, 37(10), 1186-1197.
[http://dx.doi.org/10.1038/s41587-019-0222-z] [PMID: 31427820]
[46]
Mwangi, J.; Yin, Y.; Wang, G.; Yang, M.; Li, Y.; Zhang, Z.; Lai, R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26516-26522.
[http://dx.doi.org/10.1073/pnas.1909585117] [PMID: 31843919]
[47]
de Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.; van der Heijde, T.; Boekema, B.K.; Kwakman, P.H.S.; Kamp, N.; El Ghalbzouri, A.; Lohner, K.; Zaat, S.A.J.; Drijfhout, J.W.; Nibbering, P.H. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med., 2018, 10(423), eaan4044.
[http://dx.doi.org/10.1126/scitranslmed.aan4044] [PMID: 29321257]
[48]
University of Nebraska Medical Center. Omaha APD3 ANTIMICROBIAL PEPTIDE DATABASE Available from: https://aps.unmc.edu/database/peptide (Accessed on 11 November 2021).
[49]
Bergman, P.; Walter-Jallow, L.; Broliden, K.; Agerberth, B.; Söderlund, J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res., 2007, 5(4), 410-415.
[http://dx.doi.org/10.2174/157016207781023947] [PMID: 17627504]
[50]
Tripathi, S.; Wang, G.; White, M.; Qi, L.; Taubenberger, J.; Hartshorn, K.L. Antiviral activity of the human cathelicidin, ll-37, and derived peptides on seasonal and pandemic influenza a viruses. PLoS One, 2015, 10(4), e0124706.
[http://dx.doi.org/10.1371/journal.pone.0124706] [PMID: 25909853]
[51]
Currie, S.M.; Gwyer Findlay, E.; McFarlane, A.J.; Fitch, P.M.; Böttcher, B.; Colegrave, N.; Paras, A.; Jozwik, A.; Chiu, C.; Schwarze, J.; Davidson, D.J. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol., 2016, 196(6), 2699-2710.
[http://dx.doi.org/10.4049/jimmunol.1502478] [PMID: 26873992]
[52]
Schögler, A.; Muster, R.J.; Kieninger, E.; Casaulta, C.; Tapparel, C.; Jung, A.; Moeller, A.; Geiser, T.; Regamey, N.; Alves, M.P.; Vitamin, D. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur. Respir. J., 2016, 47(2), 520-530.
[http://dx.doi.org/10.1183/13993003.00665-2015] [PMID: 26585423]
[53]
Howell, M.D.; Jones, J.F.; Kisich, K.O.; Streib, J.E.; Gallo, R.L.; Leung, D.Y.M. Selective killing of vaccinia virus by LL-37: Implications for eczema vaccinatum. J. Immunol., 2004, 172(3), 1763-1767.
[http://dx.doi.org/10.4049/jimmunol.172.3.1763] [PMID: 14734759]
[54]
Matsumura, T.; Sugiyama, N.; Murayama, A.; Yamada, N.; Shiina, M.; Asabe, S.; Wakita, T.; Imawari, M.; Kato, T. Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus. Hepatol. Res., 2016, 46(9), 924-932.
[http://dx.doi.org/10.1111/hepr.12627] [PMID: 26606891]
[55]
Vilas Boas, L.C.P.; de Lima, L.M.P.; Migliolo, L.; Mendes, G.D.S.; de Jesus, M.G.; Franco, O.L.; Silva, P.A. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers, 2017, 108(2), e22871.
[http://dx.doi.org/10.1002/bip.22871] [PMID: 27161201]
[56]
Alagarasu, K.; Patil, P.S.; Shil, P.; Seervi, M.; Kakade, M.B.; Tillu, H.; Salunke, A. In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides, 2017, 92, 23-30.
[http://dx.doi.org/10.1016/j.peptides.2017.04.002] [PMID: 28400226]
[57]
Wang, D.; Chen, X.; Zhang, X.; Li, J.; Yi, Y.; Bian, C.; Shi, Q.; Lin, H.; Li, S.; Zhang, Y.; You, X. Whole genome sequencing of the giant grouper (Epinephelus lanceolatus) and high-throughput screening of putative antimicrobial peptide genes. Mar. Drugs, 2019, 17(9), E503.
[http://dx.doi.org/10.3390/md17090503] [PMID: 31466296]
[58]
Wakabayashi, H.; Oda, H.; Yamauchi, K.; Abe, F. Lactoferrin for prevention of common viral infections. J. Infect. Chemother., 2014, 20(11), 666-671.
[http://dx.doi.org/10.1016/j.jiac.2014.08.003] [PMID: 25182867]
[59]
Brice, D.C.; Diamond, G. Antiviral activities of human host defense peptides. Curr. Med. Chem., 2020, 27(9), 1420-1443.
[http://dx.doi.org/10.2174/0929867326666190805151654] [PMID: 31385762]
[60]
Uzair, B.; Bushra, R.; Khan, B.A.; Zareen, S.; Fasim, F. Potential uses of venom proteins in treatment of HIV. PPL, 2018, 25(7), 619-625.
[http://dx.doi.org/10.2174/0929866525666180628161107] [PMID: 29956606]
[61]
Fasoli, A.; Salomone, F.; Benedusi, M.; Boccardi, C.; Rispoli, G.; Beltram, F.; Cardarelli, F. Mechanistic insight into CM18-Tat11 peptide membrane-perturbing action by whole-cell patch-clamp recording. Molecules, 2014, 19(7), 9228-9239.
[http://dx.doi.org/10.3390/molecules19079228] [PMID: 24991756]
[62]
Boonrawd, S.; Supungul, P.; Tassanakajon, A.; Rimphanitchayakit, V. Antimicrobial activity of a serine proteinase inhibitor SPIPm5 from the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol., 2018, 77, 147-155.
[http://dx.doi.org/10.1016/j.fsi.2018.03.044] [PMID: 29601993]
[63]
Wachinger, M.; Kleinschmidt, A.; Winder, D.; von Pechmann, N.; Ludvigsen, A.; Neumann, M.; Holle, R.; Salmons, B.; Erfle, V.; Brack-Werner, R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol., 1998, 79(Pt 4), 731-740.
[http://dx.doi.org/10.1099/0022-1317-79-4-731] [PMID: 9568968]
[64]
Divyashree, M.; Mani, M.K.; Reddy, D.; Kumavath, R.; Ghosh, P.; Azevedo, V.; Barh, D. Clinical applications of antimicrobial peptides (AMPs): Where do we stand now? PPL, 2020, 27(2), 120-134.
[http://dx.doi.org/10.2174/0929866526666190925152957] [PMID: 31553285]
[65]
Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T.; Mixson, A.J. Peptide-based antifungal therapies against emerging infections. Drugs Future, 2010, 35(3), 197.
[http://dx.doi.org/10.1358/dof.2010.035.03.1452077] [PMID: 20495663]
[66]
InfoBiomedical rmatics Centre, NIRRH, Mumbai. Collection of Anti-Microbial Peptides. Available from: http://www.camp. bicnirrh.res.in/seqDb.php?page=0 (Accessed on 18 September 2021).
[67]
Geng, T.; Lu, F.; Wu, H.; Lou, D.; Tu, N.; Zhu, F.; Wang, S. Target antifungal peptides of immune signalling pathways in silkworm, BOMBYX MORI, against BEAUVERIA BASSIANA. Insect Mol. Biol., 2021, 30(1), 102-112.
[http://dx.doi.org/10.1111/imb.12681] [PMID: 33150694]
[68]
Ibeas, J.I.; Yun, D.J.; Damsz, B.; Narasimhan, M.L.; Uesono, Y.; Ribas, J.C.; Lee, H.; Hasegawa, P.M.; Bressan, R.A.; Pardo, J.M. Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J., 2001, 25(3), 271-280.
[http://dx.doi.org/10.1046/j.1365-313x.2001.00967.x] [PMID: 11208019]
[69]
Vriens, K.; Cammue, B.P.A.; Thevissen, K. Antifungal plant defensins: Mechanisms of action and production. Molecules, 2014, 19(8), 12280-12303.
[http://dx.doi.org/10.3390/molecules190812280] [PMID: 25153857]
[70]
Sagaram, U.S.; Pandurangi, R.; Kaur, J.; Smith, T.J.; Shah, D.M. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One, 2011, 6(4), e18550.
[http://dx.doi.org/10.1371/journal.pone.0018550] [PMID: 21533249]
[71]
Hakim Ullah, A.; Hussain, A.; Shaban, M.; Khan, A.H.; Alariqi, M.; Gul, S.; Jun, Z.; Lin, S.; Li, J. Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiol. Biochem., 2018, 123, 149-159.
[http://dx.doi.org/10.1016/j.plaphy.2017.12.012]
[72]
Grau, A.; Ortiz, A.; de Godos, A.; Gómez-Fernández, J.C. A biophysical study of the interaction of the lipopeptide antibiotic iturin A with aqueous phospholipid bilayers. Arch. Biochem. Biophys., 2000, 377(2), 315-323.
[http://dx.doi.org/10.1006/abbi.2000.1791] [PMID: 10845709]
[73]
Baker, O.J.; Edgerton, M.; Kramer, J.M.; Ruhl, S. Saliva-microbe interactions and salivary gland dysfunction. Adv. Dent. Res., 2014, 26(1), 7-14.
[http://dx.doi.org/10.1177/0022034514526239] [PMID: 24736699]
[74]
Fusco, A.; Savio, V.; Donniacuo, M.; Perfetto, B.; Donnarumma, G. Antimicrobial peptides human beta-defensin-2 and -3 protect the gut during candida albicans infections enhancing the intestinal barrier integrity: In vitro study. Front. Cell. Infect. Microbiol., 2021, 11, 666900.
[http://dx.doi.org/10.3389/fcimb.2021.666900] [PMID: 34178720]
[75]
Lewies, A.; Wentzel, J.F.; Jacobs, G.; Du Plessis, L.H.; Angélique, L.; Frederik, W.J.; Garmi, J.; Hester, D.P.L. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules, 2015, 20(8), 15392-15433.
[http://dx.doi.org/10.3390/molecules200815392] [PMID: 26305243]
[76]
Marr, A.K.; McGwire, B.S.; McMaster, W.R. Modes of action of Leishmanicidal antimicrobial peptides. Future Microbiol., 2012, 7(9), 1047-1059.
[http://dx.doi.org/10.2217/fmb.12.85] [PMID: 22953706]
[77]
El-Dirany, R.; Shahrour, H.; Dirany, Z.; Abdel-Sater, F.; Gonzalez-Gaitano, G.; Brandenburg, K.; Martinez de Tejada, G.; Nguewa, P.A. Activity of anti-microbial peptides (amps) against Leishmania and other parasites: An overview. Biomolecules, 2021, 11(7), 984.
[http://dx.doi.org/10.3390/biom11070984] [PMID: 34356608]
[78]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[79]
Dabirian, S.; Taslimi, Y.; Zahedifard, F.; Gholami, E.; Doustdari, F.; Motamedirad, M.; Khatami, S.; Azadmanesh, K.; Nylen, S.; Rafati, S. Human neutrophil peptide-1 (HNP-1): A new anti-leishmanial drug candidate. PLoS Negl. Trop. Dis., 2013, 7(10), e2491.
[http://dx.doi.org/10.1371/journal.pntd.0002491] [PMID: 24147170]
[80]
Feder, R.; Nehushtai, R.; Mor, A. Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides, 2001, 22(10), 1683-1690.
[http://dx.doi.org/10.1016/S0196-9781(01)00504-6] [PMID: 11587797]
[81]
Moreira, C.K.; Rodrigues, F.G.; Ghosh, A.; Varotti, F. de P.; Miranda, A.; Daffre, S.; Jacobs-Lorena, M.; Moreira, L.A. Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp. Parasitol., 2007, 116(4), 346-353.
[http://dx.doi.org/10.1016/j.exppara.2007.01.022] [PMID: 17376436]
[82]
Levashina, E.A. Immune responses in Anopheles gambiae. Insect Biochem. Mol. Biol., 2004, 34(7), 673-678.
[http://dx.doi.org/10.1016/j.ibmb.2004.03.020] [PMID: 15242708]
[83]
Tian, C.; Gao, B.; Rodriguez, M. del C.; Lanz-Mendoza, H.; Ma, B.; Zhu, S. Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol. Immunol., 2008, 45(15), 3909-3916.
[http://dx.doi.org/10.1016/j.molimm.2008.06.025] [PMID: 18657321]
[84]
Gao, B.; Xu, J.; Rodriguez, M. del C.; Lanz-Mendoza, H.; Hernández-Rivas, R.; Du, W.; Zhu, S. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie, 2010, 92(4), 350-359.
[http://dx.doi.org/10.1016/j.biochi.2010.01.011] [PMID: 20097251]
[85]
Vale, N.; Aguiar, L.; Gomes, P. Antimicrobial peptides: A new class of antimalarial drugs? Front. Pharmacol., 2014, 5, 275.
[http://dx.doi.org/10.3389/fphar.2014.00275] [PMID: 25566072]
[86]
Haines, L.R.; Thomas, J.M.; Jackson, A.M.; Eyford, B.A.; Razavi, M.; Watson, C.N.; Gowen, B.; Hancock, R.E.W.; Pearson, T.W. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18. PLoS Negl. Trop. Dis., 2009, 3(2), e373.
[http://dx.doi.org/10.1371/journal.pntd.0000373] [PMID: 19190729]
[87]
Souza, A.L.A.; Faria, R.X.; Calabrese, K.S.; Hardoim, D.J.; Taniwaki, N.; Alves, L.A.; De Simone, S.G. Temporizin and temporizin-1 peptides as novel candidates for eliminating Trypanosoma cruzi. PLoS One, 2016, 11(7), e0157673.
[http://dx.doi.org/10.1371/journal.pone.0157673] [PMID: 27384541]
[88]
Niyonsaba, F.; Kiatsurayanon, C.; Chieosilapatham, P.; Ogawa, H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol., 2017, 26(11), 989-998.
[http://dx.doi.org/10.1111/exd.13314] [PMID: 28191680]
[89]
Landa, A.; Jiménez, L.; Willms, K.; Jiménez-García, L.F.; Lara-Martínez, R.; Robert, L.; Cirioni, O.; Barańska-Rybak, W.; Kamysz, W. Antimicrobial peptides (Temporin A and Iseganan IB-367): Effect on the cysticerci of Taenia crassiceps. Mol. Biochem. Parasitol., 2009, 164(2), 126-130.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.006] [PMID: 19146887]
[90]
Robinson, M.W.; Donnelly, S.; Dalton, J.P. Helminth defence molecules-immunomodulators designed by parasites! Front. Microbiol., 2013, 4, 296.
[http://dx.doi.org/10.3389/fmicb.2013.00296] [PMID: 24101918]
[91]
Thivierge, K.; Cotton, S.; Schaefer, D.A.; Riggs, M.W.; To, J.; Lund, M.E.; Robinson, M.W.; Dalton, J.P.; Donnelly, S.M. Cathelicidin-like helminth defence molecules (HDMs): Absence of cytotoxic, anti-microbial and anti-protozoan activities imply a specific adaptation to immune modulation. PLoS Negl. Trop. Dis., 2013, 7(7), e2307.
[http://dx.doi.org/10.1371/journal.pntd.0002307] [PMID: 23875042]
[92]
Li, H.; Fu, S.; Wang, Y.; Yuan, X.; Liu, L.; Dong, H.; Wang, Q.; Zhang, Z. Antimicrobial and antitumor activity of peptidomimetics synthesized from amino acids. Bioorg. Chem., 2021, 106, 104506.
[http://dx.doi.org/10.1016/j.bioorg.2020.104506] [PMID: 33276980]
[93]
Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and mechanisms of human cathelicidin ll-37 in cancer. Cell. Physiol. Biochem., 2018, 47(3), 1060-1073.
[http://dx.doi.org/10.1159/000490183] [PMID: 29843147]
[94]
Baxter, A.A.; Lay, F.T.; Poon, I.K.H.; Kvansakul, M.; Hulett, M.D. Tumor cell membrane-targeting cationic antimicrobial peptides: Novel insights into mechanisms of action and therapeutic prospects. Cell. Mol. Life Sci., 2017, 74(20), 3809-3825.
[http://dx.doi.org/10.1007/s00018-017-2604-z] [PMID: 28770291]
[95]
Matsuzaki, K.; Sugishita, K.; Harada, M.; Fujii, N.; Miyajima, K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim. Biophys. Acta, 1997, 1327(1), 119-130.
[http://dx.doi.org/10.1016/S0005-2736(97)00051-5] [PMID: 9247173]
[96]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[97]
Parvy, J-P.; Yu, Y.; Dostalova, A.; Kondo, S.; Kurjan, A.; Bulet, P.; Lemaître, B.; Vidal, M.; Cordero, J.B. The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. eLife, 2019, 8, e45061.
[http://dx.doi.org/10.7554/eLife.45061] [PMID: 31358113]
[98]
Wang, Y-S.; Li, D.; Shi, H-S.; Wen, Y-J.; Yang, L.; Xu, N.; Chen, X-C.; Chen, X.; Chen, P.; Li, J.; Deng, H.X.; Wang, C.T.; Xie, G.; Huang, S.; Mao, Y.Q.; Chen, L.J.; Zhao, X.; Wei, Y.Q. Intratumoral expression of mature human neutrophil peptide-1 mediates antitumor immunity in mice. Clin. Cancer Res., 2009, 15(22), 6901-6911.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0484] [PMID: 19861439]
[99]
Troeira Henriques, S.; Lawrence, N.; Chaousis, S.; Ravipati, A.S.; Cheneval, O.; Benfield, A.H.; Elliott, A.G.; Kavanagh, A.M.; Cooper, M.A.; Chan, L.Y.; Huang, Y.H.; Craik, D.J. Redesigned spider peptide with improved antimicrobial and anticancer properties. ACS Chem. Biol., 2017, 12(9), 2324-2334.
[http://dx.doi.org/10.1021/acschembio.7b00459] [PMID: 28741926]
[100]
Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215.
[http://dx.doi.org/10.1016/j.peptides.2012.07.001] [PMID: 22800692]
[101]
Wang, Y.; Chen, Z.; Luo, G.; He, W.; Xu, K.; Xu, R.; Lei, Q.; Tan, J.; Wu, J.; Xing, M. In-situ-generated vasoactive intestinal peptide loaded microspheres in mussel-inspired polycaprolactone nanosheets creating spatiotemporal releasing microenvironment to promote wound healing and angiogenesis. ACS Appl. Mater. Interfaces, 2016, 8(11), 7411-7421.
[http://dx.doi.org/10.1021/acsami.5b11332] [PMID: 26914154]
[102]
Wang, S.; Yan, C.; Zhang, X.; Shi, D.; Chi, L.; Luo, G.; Deng, J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci., 2018, 6(10), 2757-2772.
[http://dx.doi.org/10.1039/C8BM00807H] [PMID: 30187036]
[103]
Tepeköylü, C.; Primessnig, U.; Pölzl, L.; Graber, M.; Lobenwein, D.; Nägele, F.; Kirchmair, E.; Pechriggl, E.; Grimm, M.; Holfeld, J. Shockwaves prevent from heart failure after acute myocardial ischaemia via RNA/protein complexes. J. Cell. Mol. Med., 2017, 21(4), 791-801.
[http://dx.doi.org/10.1111/jcmm.13021] [PMID: 27995765]
[104]
Sørensen, O.E.; Cowland, J.B.; Theilgaard-Mönch, K.; Liu, L.; Ganz, T.; Borregaard, N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol., 2003, 170(11), 5583-5589.
[http://dx.doi.org/10.4049/jimmunol.170.11.5583] [PMID: 12759437]
[105]
Heinonen, T.; Hargraves, S.; Georgieva, M.; Widmann, C.; Jacquier, N. The antimicrobial peptide TAT-RasGAP317-326 inhibits the formation and expansion of bacterial biofilms in vitro. J. Glob. Antimicrob. Resist., 2021, 25, 227-231.
[http://dx.doi.org/10.1016/j.jgar.2021.03.022] [PMID: 33852935]
[106]
Tomioka, H.; Nakagami, H.; Tenma, A.; Saito, Y.; Kaga, T.; Kanamori, T.; Tamura, N.; Tomono, K.; Kaneda, Y.; Morishita, R. Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One, 2014, 9(3), e92597.
[http://dx.doi.org/10.1371/journal.pone.0092597] [PMID: 24675668]
[107]
Sinner, M.P.; Masurat, F.; Ewbank, J.J.; Pujol, N.; Bringmann, H. Innate immunity promotes sleep through epidermal antimicrobial peptides. Curr. Biol., 2021, 31(3), 564-577.e12.
[http://dx.doi.org/10.1016/j.cub.2020.10.076] [PMID: 33259791]
[108]
Zhai, Z.; Zhang, F.; Cao, R.; Ni, X.; Xin, Z.; Deng, J.; Wu, G.; Ren, W.; Yin, Y.; Deng, B.; Cecropin, A. Cecropin A alleviates inflammation through modulating the gut microbiota of C57BL/6 mice with DSS-induced IBD. Front. Microbiol., 2019, 10, 1595.
[http://dx.doi.org/10.3389/fmicb.2019.01595] [PMID: 31354682]
[109]
Shan, C.H.; Guo, J.; Sun, X.; Li, N.; Yang, X.; Gao, Y.; Qiu, D.; Li, X.; Wang, Y.; Feng, M.; Wang, C.; Zhao, J.J. Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. J. Anim. Sci., 2018, 96(10), 4444-4457.
[http://dx.doi.org/10.1093/jas/sky270] [PMID: 30032262]
[110]
Broom, L.J.; Kogut, M.H. Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Anim. Health Res. Rev., 2018, 19(1), 46-52.
[http://dx.doi.org/10.1017/S1466252318000026] [PMID: 29704909]
[111]
Isogai, E.; Isogai, H.; Matuo, K.; Hirose, K.; Kowashi, Y.; Okumuara, K.; Hirata, M. Sensitivity of genera Porphyromonas and Prevotella to the bactericidal action of C-terminal domain of human CAP18 and its analogues. Oral Microbiol. Immunol., 2003, 18(5), 329-332.
[http://dx.doi.org/10.1034/j.1399-302X.2003.00083.x] [PMID: 12930528]
[112]
Li, S-A.; Xiang, Y.; Wang, Y-J.; Liu, J.; Lee, W-H.; Zhang, Y. Naturally occurring antimicrobial peptide OH-CATH30 selectively regulates the innate immune response to protect against sepsis. J. Med. Chem., 2013, 56(22), 9136-9145.
[http://dx.doi.org/10.1021/jm401134n] [PMID: 24151910]
[113]
Krishnan, M.; Choi, J.; Choi, S.; Kim, Y. Anti-endotoxin 9-meric peptide with therapeutic potential for the treatment of endotoxemia. J. Microbiol. Biotechnol., 2021, 31(1), 25-32.
[http://dx.doi.org/10.4014/jmb.2011.11011] [PMID: 33263333]
[114]
Kim, J.H.; Lee, J.O.; Jung, J.H.; Lee, S.K.; You, G.Y.; Park, S.H.; Kim, H.S. Gaegurin-6 stimulates insulin secretion through calcium influx in pancreatic beta Rin5mf cells. Regul. Pept., 2010, 159(1-3), 123-128.
[http://dx.doi.org/10.1016/j.regpep.2009.07.014] [PMID: 19651162]
[115]
Dupont, A.; Heinbockel, L.; Brandenburg, K.; Hornef, M.W. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes, 2014, 5(6), 761-765.
[http://dx.doi.org/10.4161/19490976.2014.972238] [PMID: 25483327]
[116]
Zhang, M.; Shan, Y.; Gao, H.; Wang, B.; Liu, X.; Dong, Y.; Liu, X.; Yao, N.; Zhou, Y.; Li, X.; Li, H. Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Microb. Cell Fact., 2018, 17(1), 18.
[http://dx.doi.org/10.1186/s12934-018-0865-3] [PMID: 29402269]
[117]
Kidess, E.; Kleerebezem, M.; Brugman, S. Colonizing microbes, IL-10 and IL-22: Keeping the peace at the mucosal surface. Front. Microbiol., 2021, 12, 729053.
[http://dx.doi.org/10.3389/fmicb.2021.729053] [PMID: 34603258]
[118]
Osakowicz, C.; Fletcher, L.; Caswell, J.L.; Li, J. Protective and anti-inflammatory effects of protegrin-1 on Citrobacter rodentium intestinal infection in mice. Int. J. Mol. Sci., 2021, 22(17), 9494.
[http://dx.doi.org/10.3390/ijms22179494] [PMID: 34502403]
[119]
Zhao, X.; Wang, L.; Zhu, C.; Xia, X.; Zhang, S.; Wang, Y.; Zhang, H.; Xu, Y.; Chen, S.; Jiang, J.; Liu, S.; Wu, Y.; Wu, X.; Zhang, G.; Bai, Y.; Fotina, H.; Hu, J. The antimicrobial peptide mastoparan X protects against enterohemorrhagic Escherichia coli O157: H7 infection, inhibits inflammation, and enhances the intestinal epithelial barrier. Front. Microbiol., 2021, 12, 644887.
[http://dx.doi.org/10.3389/fmicb.2021.644887] [PMID: 34177825]
[120]
Teixeira, M.C.; Carbone, C.; Sousa, M.C.; Espina, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. Nanomedicines for the delivery of antimicrobial peptides (AMPs). Nanomaterials (Basel), 2020, 10(3), 560.
[http://dx.doi.org/10.3390/nano10030560] [PMID: 32244858]
[121]
Tran, T.B.; Velkov, T.; Nation, R.L.; Forrest, A.; Tsuji, B.T.; Bergen, P.J.; Li, J. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? Int. J. Antimicrob. Agents, 2016, 48(6), 592-597.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.09.010] [PMID: 27793510]
[122]
Davis, C.A.; Janssen, E.M-L. Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. Environ. Int., 2020, 134, 105271.
[http://dx.doi.org/10.1016/j.envint.2019.105271] [PMID: 31704562]
[123]
Dolgareva, S.A.; Sorokin, A.V.; Konoplya, N.A.; Bushmina, O.N.; Bystrova, N.A.; Ovod, A.I. The use of immunomodulators, antioxidants and hepatoprotectors for the correction of the liver, erythrocites and the immune system disorders in chronic ethanol intoxication. Biomed. Khim., 2018, 64(4), 360-367.
[http://dx.doi.org/10.18097/PBMC20186404360] [PMID: 30135284]
[124]
Chen, R.Y.; Kilby, J.M.; Saag, M.S. Enfuvirtide. Expert Opin. Investig. Drugs, 2002, 11(12), 1837-1843.
[http://dx.doi.org/10.1517/13543784.11.12.1837] [PMID: 12457443]
[125]
Lazar, L.; Ofan, R.; Weintrob, N.; Avron, A.; Tamir, M.; Elias, D.; Phillip, M.; Josefsberg, Z. Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: A randomised, double-blind phase II study. Diabetes Metab. Res. Rev., 2007, 23(4), 286-291.
[http://dx.doi.org/10.1002/dmrr.711] [PMID: 17124721]
[126]
Flamm, R.K.; Rhomberg, P.R.; Simpson, K.M.; Farrell, D.J.; Sader, H.S.; Jones, R.N. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob. Agents Chemother., 2015, 59(3), 1751-1754.
[http://dx.doi.org/10.1128/AAC.04773-14] [PMID: 25583717]
[127]
Jaśkiewicz, M.; Neubauer, D.; Kazor, K.; Bartoszewska, S.; Kamysz, W. Antimicrobial Activity of Selected Antimicrobial Peptides Against Planktonic Culture and Biofilm of Acinetobacter baumannii. Probiotics Antimicrob. Proteins, 2019, 11(1), 317-324.
[http://dx.doi.org/10.1007/s12602-018-9444-5] [PMID: 30043322]
[128]
Ericksen, B.; Wu, Z.; Lu, W.; Lehrer, R.I. Antibacterial activity and specificity of the six human alpha-defensins. Antimicrob. Agents Chemother., 2005, 49(1), 269-275.
[http://dx.doi.org/10.1128/AAC.49.1.269-275.2005] [PMID: 15616305]
[129]
Buck, C.B.; Day, P.M.; Thompson, C.D.; Lubkowski, J.; Lu, W.; Lowy, D.R.; Schiller, J.T. Human alpha-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0508033103] [PMID: 16432216]
[130]
Ding, X.; Yu, H.; Qiao, S. Lasso peptide microcin j25 effectively enhances gut barrier function and modulates inflammatory response in an enterotoxigenic Escherichia coli-Challenged mouse model. Int. J. Mol. Sci., 2020, 21(18), E6500.
[http://dx.doi.org/10.3390/ijms21186500] [PMID: 32899529]
[131]
Yu, H.; Wang, Y.; Zeng, X.; Cai, S.; Wang, G.; Liu, L.; Huang, S.; Li, N.; Liu, H.; Ding, X.; Song, Q.; Qiao, S. Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic Escherichia coli infection. FASEB J., 2020, 34(1), 1018-1037.
[http://dx.doi.org/10.1096/fj.201901717R] [PMID: 31914603]
[132]
Bryzek, D.; Golda, A.; Budziaszek, J.; Kowalczyk, D.; Wong, A.; Bielecka, E.; Shakamuri, P.; Svoboda, P.; Pohl, J.; Potempa, J.; Koziel, J. Citrullination-Resistant LL-37 is a potent antimicrobial agent in the inflammatory environment high in arginine deiminase Activity. Int. J. Mol. Sci., 2020, 21(23), E9126.
[http://dx.doi.org/10.3390/ijms21239126] [PMID: 33266231]
[133]
Dutta, D.; Kamphuis, B.; Ozcelik, B.; Thissen, H.; Pinarbasi, R.; Kumar, N.; Willcox, M.D.P. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom. Vis. Sci., 2018, 95(10), 937-946.
[http://dx.doi.org/10.1097/OPX.0000000000001282] [PMID: 30234828]
[134]
Dutta, D.; Ozkan, J.; Willcox, M.D.P. Biocompatibility of antimicrobial melimine lenses: Rabbit and human studies. Optom. Vis. Sci., 2014, 91(5), 570-581.
[http://dx.doi.org/10.1097/OPX.0000000000000232] [PMID: 24759327]
[135]
Soehnlein, O.; Wantha, S.; Simsekyilmaz, S.; Döring, Y.; Megens, R.T.A.; Mause, S.F.; Drechsler, M.; Smeets, R.; Weinandy, S.; Schreiber, F.; Gries, T.; Jockenhoevel, S.; Möller, M.; Vijayan, S.; van Zandvoort, M.A.; Agerberth, B.; Pham, C.T.; Gallo, R.L.; Hackeng, T.M.; Liehn, E.A.; Zernecke, A.; Klee, D.; Weber, C. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci. Transl. Med., 2011, 3(103), 103ra98.
[http://dx.doi.org/10.1126/scitranslmed.3002531] [PMID: 21974936]
[136]
Xiao, H.; Shao, F.; Wu, M.; Ren, W.; Xiong, X.; Tan, B.; Yin, Y. The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol., 2015, 6(1), 19.
[http://dx.doi.org/10.1186/s40104-015-0018-z] [PMID: 26019864]
[137]
Li, K.; Li, W.; Chen, X.; Luo, T.; Mu, Y.; Chen, X. Molecular and functional identification of a β-defensin homolog in large yellow croaker (Larimichthys crocea). J. Fish Dis., 2021, 44(4), 391-400.
[http://dx.doi.org/10.1111/jfd.13324] [PMID: 33340371]
[138]
Du, Z-Q.; Li, B.; Shen, X-L.; Wang, K.; Du, J.; Yu, X-D.; Yuan, J-J. A new antimicrobial peptide isoform, Pc-crustin 4 involved in antibacterial innate immune response in fresh water crayfish, Procambarus clarkii. Fish Shellfish Immunol., 2019, 94, 861-870.
[http://dx.doi.org/10.1016/j.fsi.2019.10.003] [PMID: 31585246]
[139]
Lee, B-C.; Hung, C-W.; Lin, C-Y.; Shih, C-H.; Tsai, H-J. Oral administration of transgenic biosafe microorganism containing antimicrobial peptide enhances the survival of tilapia fry infected bacterial pathogen. Fish Shellfish Immunol., 2019, 95, 606-616.
[http://dx.doi.org/10.1016/j.fsi.2019.10.052] [PMID: 31682999]
[140]
Seo, J-K.; Go, H-J.; Kim, C-H.; Nam, B-H.; Park, N.G. Antimicrobial peptide, hdMolluscidin, purified from the gill of the abalone, Haliotis discus. Fish Shellfish Immunol., 2016, 52, 289-297.
[http://dx.doi.org/10.1016/j.fsi.2016.03.150] [PMID: 27033467]
[141]
Chiou, M-J.; Chen, L-K.; Peng, K-C.; Pan, C-Y.; Lin, T-L.; Chen, J-Y. Stable expression in a Chinese hamster ovary (CHO) cell line of bioactive recombinant chelonianin, which plays an important role in protecting fish against pathogenic infection. Dev. Comp. Immunol., 2009, 33(1), 117-126.
[http://dx.doi.org/10.1016/j.dci.2008.07.012] [PMID: 18765249]
[142]
Han, H.; Li, T.; Wang, Z.; Teng, D.; Mao, R.; Hao, Y.; Yang, N.; Wang, X.; Wang, J. Improved stability and activity of a marine peptide-N6NH2 against Edwardsiella tarda and its preliminary application in fish. Mar. Drugs, 2020, 18(12), E650.
[http://dx.doi.org/10.3390/md18120650] [PMID: 33348729]
[143]
van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell. Mol. Life Sci., 2013, 70(19), 3545-3570.
[http://dx.doi.org/10.1007/s00018-013-1260-1] [PMID: 23381653]
[144]
Garcia-Casado, G.; Collada, C.; Allona, I.; Soto, A.; Aragoncillo, C. Characterization of an apoplastic basic thaumatin‐like protein from recalcitrant chestnut seeds. Physiol. Plant., 2010, 110(2), 172-180.
[http://dx.doi.org/10.1034/j.1399-3054.2000.110205.x]
[145]
Baxter, A.A.; Richter, V.; Lay, F.T.; Poon, I.K.H.; Adda, C.G.; Veneer, P.K.; Phan, T.K.; Bleackley, M.R.; Anderson, M.A.; Kvansakul, M.; Hulett, M.D. The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Mol. Cell. Biol., 2015, 35(11), 1964-1978.
[http://dx.doi.org/10.1128/MCB.00282-15] [PMID: 25802281]
[146]
Mello, E.O.; Ribeiro, S.F.F.; Carvalho, A.O.; Santos, I.S.; Da Cunha, M.; Santa-Catarina, C.; Gomes, V.M. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol., 2011, 62(4), 1209-1217.
[http://dx.doi.org/10.1007/s00284-010-9847-3] [PMID: 21170711]
[147]
Salas, C.E.; Badillo-Corona, J.A.; Ramírez-Sotelo, G.; Oliver-Salvador, C. Biologically active and antimicrobial peptides from plants. BioMed Res. Int., 2015, 2015, 102129.
[http://dx.doi.org/10.1155/2015/102129] [PMID: 25815307]
[148]
Tenea, G.N.; Delgado Pozo, T. Antimicrobial peptides from Lactobacillus plantarum UTNGt2 prevent harmful bacteria growth on fresh tomatoes. J. Microbiol. Biotechnol., 2019, 29(10), 1553-1560.
[http://dx.doi.org/10.4014/jmb.1904.04063] [PMID: 31434171]
[149]
Thery, T.; Tharappel, J.C.; Kraszewska, J.; Beckett, M.; Bond, U.; Arendt, E.K. Antifungal activity of a synthetic human β-defensin 3 and potential applications in cereal-based products. Innov. Food Sci. Emerg., 2016, 38(P and A), 160-168.
[http://dx.doi.org/10.1016/j.ifset.2016.09.018]
[150]
Thery, T.; O’Callaghan, Y.; O’Brien, N.; Arendt, E.K. Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. Int. J. Food Microbiol., 2018, 265, 40-48.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.10.024] [PMID: 29127809]
[151]
Paola DiazDellavalle D.A. In search of topical agricultural biofungicides: Properties of the recombinant antimicrobial peptide trxaq-amp obtained from Amaranthus quitensis; Microb Biochem Technol, 2014, p. 06.
[http://dx.doi.org/10.4172/1948-5948.1000155]
[152]
Kim, J-S.; Jeong, J-H.; Cho, J-H.; Lee, D-H.; Kim, Y. Antimicrobial activity of antimicrobial peptide lpcin-yk3 derived from bovine lactophoricin. J. Microbiol. Biotechnol., 2018, 28(8), 1299-1309.
[http://dx.doi.org/10.4014/jmb.1805.05001] [PMID: 30021422]
[153]
Wu, Y.; Cao, K.; Zhang, W.; Zhang, G.; Zhou, M. Protective and anti-aging effects of 5 cosmeceutical peptide mixtures on hydrogen peroxide-induced premature senescence in human skin fibroblasts. Skin Pharmacol. Physiol., 2021, 34(4), 194-202.
[http://dx.doi.org/10.1159/000514496] [PMID: 33849044]
[154]
Lloyd, D.H. Alternatives to conventional antimicrobial drugs: A review of future prospects. Vet. Dermatol., 2012, 23(4), 299-304, e59-e60.
[http://dx.doi.org/10.1111/j.1365-3164.2012.01042.x] [PMID: 22409347]
[155]
Chu, H.; Pazgier, M.; Jung, G.; Nuccio, S-P.; Castillo, P.A.; de Jong, M.F.; Winter, M.G.; Winter, S.E.; Wehkamp, J.; Shen, B.; Salzman, N.H.; Underwood, M.A.; Tsolis, R.M.; Young, G.M.; Lu, W.; Lehrer, R.I.; Bäumler, A.J.; Bevins, C.L. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science, 2012, 337(6093), 477-481.
[http://dx.doi.org/10.1126/science.1218831] [PMID: 22722251]
[156]
Li, S-A.; Liu, J.; Xiang, Y.; Wang, Y-J.; Lee, W-H.; Zhang, Y. Therapeutic potential of the antimicrobial peptide OH-CATH30 for antibiotic-resistant In: Pseudomonas aeruginosa keratitis. In: Antimicrob Agents Ch 2014, Escherichia Coli; ,; , 2014; pp. 3144-3150.
[http://dx.doi.org/10.1128/AAC.00095-14]
[157]
Rai, A.; Pinto, S.; Evangelista, M.B.; Gil, H.; Kallip, S.; Ferreira, M.G.S.; Ferreira, L. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater., 2016, 33, 64-77.
[http://dx.doi.org/10.1016/j.actbio.2016.01.035] [PMID: 26821340]
[158]
Ivanov, I.E.; Morrison, A.E.; Cobb, J.E.; Fahey, C.A.; Camesano, T.A. Creating antibacterial surfaces with the peptide chrysophsin-1. ACS Appl. Mater. Interfaces, 2012, 4(11), 5891-5897.
[http://dx.doi.org/10.1021/am301530a] [PMID: 23043421]
[159]
Franco, A.R.; Fernandes, E.M.; Rodrigues, M.T.; Rodrigues, F.J.; Gomes, M.E.; Leonor, I.B.; Kaplan, D.L.; Reis, R.L. Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomater., 2019, 99, 236-246.
[http://dx.doi.org/10.1016/j.actbio.2019.09.004] [PMID: 31505301]
[160]
Chen, R.; Willcox, M.D.P.; Ho, K.K.K.; Smyth, D.; Kumar, N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials, 2016, 85, 142-151.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.063] [PMID: 26871890]
[161]
Di, Y.P.; Lin, Q.; Chen, C.; Montelaro, R.C.; Doi, Y.; Deslouches, B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv., 2020, 6(18), eaay6817.
[http://dx.doi.org/10.1126/sciadv.aay6817] [PMID: 32426473]
[162]
Kim, K-K.; Siddiqui, Z.; Patel, M.; Sarkar, B.; Kumar, V.A. A self-assembled peptide hydrogel for cytokine sequestration. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(5), 945-950.
[http://dx.doi.org/10.1039/C9TB02250C] [PMID: 31919489]
[163]
Carlomagno, T.; Cringoli, M.C.; Kralj, S.; Kurbasic, M.; Fornasiero, P.; Pengo, P.; Marchesan, S. Biocatalysis of D,L-peptide nanofibrillar hydrogel. Molecules, 2020, 25(13), E2995.
[http://dx.doi.org/10.3390/molecules25132995] [PMID: 32630001]
[164]
Guo, Q.; Liu, Y.; Mu, G.; Yang, L.; Wang, W.; Liu, J.; Liu, J. A peptide-drug hydrogel to enhance the anti-cancer activity of chlorambucil. Biomater. Sci., 2020, 8(20), 5638-5646.
[http://dx.doi.org/10.1039/D0BM01001D] [PMID: 32945821]
[165]
Li, Y.; Zhu, Y.; Luo, S.; He, Y.; Huang, Z.; Shen, J.; Yuan, X.; Lu, Z.; Han, H.; Ge, L.; Pan, L. Redox-sensitive ultrashort peptide hydrogel with tunable mechanical properties for anti-tumor drug delivery. J. Biomed. Nanotechnol., 2020, 16(11), 1588-1599.
[http://dx.doi.org/10.1166/jbn.2020.2974] [PMID: 33461651]
[166]
Gavel, P.K.; Parmar, H.S.; Tripathi, V.; Kumar, N.; Biswas, A.; Das, A.K. Investigations of anti-inflammatory activity of a peptide-based hydrogel using rat air pouch model. ACS Appl. Mater. Interfaces, 2019, 11(3), 2849-2859.
[http://dx.doi.org/10.1021/acsami.8b19228] [PMID: 30589529]
[167]
Yang, G.; Huang, T.; Wang, Y.; Wang, H.; Li, Y.; Yu, K.; Dong, L. Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J. Biomater. Sci. Polym. Ed., 2018, 29(15), 1812-1824.
[http://dx.doi.org/10.1080/09205063.2018.1504191] [PMID: 30035666]
[168]
Dubey, N.; Ferreira, J.A.; Malda, J.; Bhaduri, S.B.; Bottino, M.C. Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of craniomaxillofacial bone tissue. ACS Appl. Mater. Interfaces, 2020, 12(21), 23752-23763.
[http://dx.doi.org/10.1021/acsami.0c05311] [PMID: 32352748]
[169]
Lee, Y-S.; Feng, C-W.; Peng, M-Y.; Chen, Y-C.; Chan, T-F. Antiosteoporosis effects of a marine antimicrobial peptide pardaxin via regulation of the osteogenesis pathway. Peptides, 2022, 148, 170686.
[http://dx.doi.org/10.1016/j.peptides.2021.170686] [PMID: 34774923]
[170]
Luong, H.X.; Thanh, T.T.; Tran, T.H. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci., 2020, 260, 118407.
[http://dx.doi.org/10.1016/j.lfs.2020.118407] [PMID: 32931796]
[171]
Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science, 2020, 368(6490), eaau5480.
[http://dx.doi.org/10.1126/science.aau5480] [PMID: 32355003]
[172]
Keir, M.; Yi, Y.; Lu, T.; Ghilardi, N. The role of IL-22 in intestinal health and disease. J. Exp. Med., 2020, 217(3), e20192195.
[http://dx.doi.org/10.1084/jem.20192195] [PMID: 32997932]
[173]
Cho, Y.; Mitchell, R.; Paudel, S.; Feltham, T.; Schon, L.; Zhang, Z. Compromised antibacterial function of multipotent stromal cells in diabetes. Stem Cells Dev., 2019, 28(4), 268-277.
[http://dx.doi.org/10.1089/scd.2018.0219] [PMID: 30572796]
[174]
Markakis, K.; Faris, A.R.; Sharaf, H.; Faris, B.; Rees, S.; Bowling, F.L. Local antibiotic delivery systems: Current and future applications for diabetic foot infections. Int. J. Low. Extrem. Wounds, 2018, 17(1), 14-21.
[http://dx.doi.org/10.1177/1534734618757532] [PMID: 29458291]
[175]
Takahashi, T.; Yamasaki, K. Psoriasis and antimicrobial peptides. Int. J. Mol. Sci., 2020, 21(18), E6791.
[http://dx.doi.org/10.3390/ijms21186791] [PMID: 32947991]
[176]
Pahar, B.; Madonna, S.; Das, A.; Albanesi, C.; Girolomoni, G. Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines (Basel), 2020, 8(3), E517.
[http://dx.doi.org/10.3390/vaccines8030517] [PMID: 32927756]
[177]
Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 2012, 6(5), 707-728.
[http://dx.doi.org/10.1017/S1751731111002448] [PMID: 22558920]
[178]
Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[179]
Liu, Q.; Yao, S.; Chen, Y.; Gao, S.; Yang, Y.; Deng, J.; Ren, Z.; Shen, L.; Cui, H.; Hu, Y.; Ma, X.; Yu, S. Use of antimicrobial peptides as a feed additive for juvenile goats. Sci. Rep., 2017, 7(1), 12254.
[http://dx.doi.org/10.1038/s41598-017-12394-4] [PMID: 28947748]
[180]
Bao, H.; She, R.; Liu, T.; Zhang, Y.; Peng, K.S.; Luo, D.; Yue, Z.; Ding, Y.; Hu, Y.; Liu, W.; Zhai, L. Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poult. Sci., 2009, 88(2), 291-297.
[http://dx.doi.org/10.3382/ps.2008-00330] [PMID: 19151342]
[181]
Grant, A.; Gay, C.G.; Lillehoj, H.S. Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol., 2018, 47(4), 339-351.
[http://dx.doi.org/10.1080/03079457.2018.1464117] [PMID: 29635926]
[182]
Brooks, B.W.; Conkle, J.L. Commentary: Perspectives on aquaculture, urbanization and water quality. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 217, 1-4.
[http://dx.doi.org/10.1016/j.cbpc.2018.11.014] [PMID: 30496833]
[183]
Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol., 2012, 3, 287.
[http://dx.doi.org/10.3389/fmicb.2012.00287] [PMID: 23060862]
[184]
Wheather, D.M.; Hirsch, A.; Mattick, A.T.R. Lactobacillin, an antibiotic from Lactobacilli. Nature, 1951, 168(4276), 659.
[http://dx.doi.org/10.1038/168659b0] [PMID: 14882311]
[185]
Luo, L.; Wu, Y.; Liu, C.; Huang, L.; Zou, Y.; Shen, Y.; Lin, Q. Designing soluble soybean polysaccharides-based nanoparticles to improve sustained antimicrobial activity of nisin. Carbohydr. Polym., 2019, 225, 115251.
[http://dx.doi.org/10.1016/j.carbpol.2019.115251] [PMID: 31521298]
[186]
Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol., 2015, 6, 611.
[http://dx.doi.org/10.3389/fmicb.2015.00611] [PMID: 26136740]
[187]
Yuceer, M.; Caner, C. Antimicrobial lysozyme-chitosan coatings affect functional properties and shelf life of chicken eggs during storage. J. Sci. Food Agric., 2014, 94(1), 153-162.
[http://dx.doi.org/10.1002/jsfa.6322] [PMID: 23893388]
[188]
Liu, Y.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W. Antimicrobial peptides and their application in food packaging. Trends Food Sci. Technol., 2021, 112, 471-483.
[http://dx.doi.org/10.1016/j.tifs.2021.04.019]
[189]
Venkatesan, J.; Anil, S.; Kim, S-K.; Shim, M.S. Marine fish proteins and peptides for cosmeceuticals: a review. Mar. Drugs, 2017, 15(5), E143.
[http://dx.doi.org/10.3390/md15050143] [PMID: 28524092]
[190]
Dosler, S.; Karaaslan, E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides, 2014, 62, 32-37.
[http://dx.doi.org/10.1016/j.peptides.2014.09.021] [PMID: 25285879]
[191]
Chen, W.; Yang, S.; Li, S.; Lang, J.C.; Mao, C.; Kroll, P.; Tang, L.; Dong, H. Self-assembled peptide nanofibers display natural antimicrobial peptides to selectively kill bacteria without compromising cytocompatibility. ACS Appl. Mater. Interfaces, 2019, 11(32), 28681-28689.
[http://dx.doi.org/10.1021/acsami.9b09583] [PMID: 31328913]
[192]
Kumar, P.; Pletzer, D.; Haney, E.F.; Rahanjam, N.; Cheng, J.T.J.; Yue, M.; Aljehani, W.; Hancock, R.E.W.; Kizhakkedathu, J.N.; Straus, S.K. Aurein-derived antimicrobial peptides formulated with pegylated phospholipid micelles to target methicillin-resistant Staphylococcus aureus skin infections. ACS Infect. Dis., 2019, 5(3), 443-453.
[http://dx.doi.org/10.1021/acsinfecdis.8b00319] [PMID: 30565465]
[193]
Lakshmaiah Narayana, J.; Golla, R.; Mishra, B.; Wang, X.; Lushnikova, T.; Zhang, Y.; Verma, A.; Kumar, V.; Xie, J.; Wang, G. Short and robust anti-infective lipopeptides engineered based on the minimal antimicrobial peptide KR12 of human LL-37. ACS Infect. Dis., 2021, 7(6), 1795-1808.
[http://dx.doi.org/10.1021/acsinfecdis.1c00101] [PMID: 33890759]
[194]
García, A.N.; Ayub, N.D.; Fox, A.R.; Gómez, M.C.; Diéguez, M.J.; Pagano, E.M.; Berini, C.A.; Muschietti, J.P.; Soto, G. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol., 2014, 14(1), 248.
[http://dx.doi.org/10.1186/s12870-014-0248-9] [PMID: 25227589]
[195]
Cheng, H-Y.; Ning, M-X.; Chen, D-K.; Ma, W-T. Interactions between the gut microbiota and the host innate immune response against pathogens. Front. Immunol., 2019, 10, 607.
[http://dx.doi.org/10.3389/fimmu.2019.00607] [PMID: 30984184]
[196]
Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368.
[http://dx.doi.org/10.1038/nrmicro2546] [PMID: 21423246]
[197]
Aidoukovitch, A.; Dahl, S.; Fält, F.; Nebel, D.; Svensson, D.; Tufvesson, E.; Nilsson, B-O. Antimicrobial peptide LL-37 and its pro-form, hCAP18, in desquamated epithelial cells of human whole saliva. Eur. J. Oral Sci., 2020, 128(1), 1-6.
[http://dx.doi.org/10.1111/eos.12664] [PMID: 31825534]
[198]
Shanmugaraj, B.; Bulaon, C.J.I.; Malla, A.; Phoolcharoen, W. Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules, 2021, 26(13), 4032.
[http://dx.doi.org/10.3390/molecules26134032] [PMID: 34279372]
[199]
Pereira, P.R.; Freitas, C.S.; Paschoalin, V.M.F. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: Evaluating potential proteins as a source of antimicrobial peptides. Compr. Rev. Food Sci. Food Saf., 2021, 20(5), 4450-4479.
[http://dx.doi.org/10.1111/1541-4337.12798] [PMID: 34378312]
[200]
Cui, Y.; Luo, L.; Wang, X.; Lu, Y.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr. Rev. Food Sci. Food Saf., 2021, 20(1), 863-899.
[http://dx.doi.org/10.1111/1541-4337.12658] [PMID: 33443793]
[201]
Nguyen, T.P.A.; Nguyen, T.T.M.; Nguyen, N.H.; Nguyen, T.N.; Dang, T.T.P. Application of yeast surface display system in expression of recombinant pediocin PA-1 in Saccharomyces cerevisiae. Folia Microbiol. (Praha), 2020, 65(6), 955-961.
[http://dx.doi.org/10.1007/s12223-020-00804-6] [PMID: 32578013]
[202]
Li, X.; Fan, Y.; Lin, Q.; Luo, J.; Huang, Y.; Bao, Y.; Xu, L. Expression of chromogranin A-derived antifungal peptide CGA-N12 in Pichia pastoris. Bioengineered, 2020, 11(1), 318-327.
[http://dx.doi.org/10.1080/21655979.2020.1736237] [PMID: 32163000]
[203]
Li, Z.; Cheng, Q.; Guo, H.; Zhang, R.; Si, D. Expression of hybrid peptide EF-1 in Pichia pastoris, its purification, and antimicrobial characterization. Molecules, 2020, 25(23), 5538.
[http://dx.doi.org/10.3390/molecules25235538] [PMID: 33255863]
[204]
Thyab Gddoa Al-sahlany S.; Altemimi, A.; Al-Manhel, A.; Niamah, A.; Lakhssassi, N.; Ibrahim, S. Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Foods, 2020, 9(3), 324.
[http://dx.doi.org/10.3390/foods9030324]
[205]
Tai, H-M.; Huang, H-N.; Tsai, T-Y.; You, M-F.; Wu, H-Y.; Rajanbabu, V.; Chang, H-Y.; Pan, C-Y.; Chen, J-Y. Dietary supplementation of recombinant antimicrobial peptide Epinephelus lanceolatus piscidin improves growth performance and immune response in Gallus gallus domesticus. PLoS One, 2020, 15(3), e0230021.
[http://dx.doi.org/10.1371/journal.pone.0230021] [PMID: 32160226]
[206]
Lan, J.; Ma, Q.; Li, J.; Shao, C.; Shan, A. Expression of T9W in Pichia pastoris and the protective roles of T9W in ICR Mice. Biotechnol. Lett., 2020, 42(1), 67-78.
[http://dx.doi.org/10.1007/s10529-019-02759-2] [PMID: 31732827]
[207]
Vyas, N.; Kurian, S.J.; Bagchi, D.; Manu, M.K.; Saravu, K.; Unnikrishnan, M.K.; Mukhopadhyay, C.; Rao, M.; Miraj, S.S. Vitamin D in prevention and treatment of COVID-19: Current perspective and future prospects. J. Am. Coll. Nutr., 2021, 40(7), 632-645.
[http://dx.doi.org/10.1080/07315724.2020.1806758] [PMID: 32870735]
[208]
Marimuthu, S.K.; Nagarajan, K.; Perumal, S.K.; Palanisamy, S.; Subbiah, L. Insilico alpha-helical structural recognition of temporin antimicrobial peptides and its interactions with middle east respiratory syndrome-coronavirus. Int. J. Pept. Res. Ther., 2020, 26(3), 1473-1483.
[http://dx.doi.org/10.1007/s10989-019-09951-y.] [PMID: 32206049]
[209]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[210]
Kurpe, S.R.; Grishin, S.Y.; Surin, A.K.; Panfilov, A.V.; Slizen, M.V.; Chowdhury, S.D.; Galzitskaya, O.V. Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2? Int. J. Mol. Sci., 2020, 21(24), E9552.
[http://dx.doi.org/10.3390/ijms21249552] [PMID: 33333996]
[211]
Liscano, Y.; Oñate-Garzón, J.; Ocampo-Ibáñez, I.D. In Silico discovery of antimicrobial peptides as an alternative to control SARS-CoV-2. Molecules, 2020, 25(23), E5535.
[http://dx.doi.org/10.3390/molecules25235535] [PMID: 33255849]
[212]
Mousavi Maleki, M.S.; Rostamian, M.; Madanchi, H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev. Anti Infect. Ther., 2021, 19(10), 1205-1217.
[http://dx.doi.org/10.1080/14787210.2021.1912593] [PMID: 33844613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy