Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Review Article

Coronavirus Disease 2019 and Hypertension: How Anti-hypertensive Drugs Affect COVID-19 Medications and Vice Versa

Author(s): Aida Doostkam, Alireza Hosseinpour, Kamyar Iravani, Leila Malekmakan, Abdolreza Haghpanah, Fatemeh Masjedi, Zeinab Karimi, Hossein Rouzbeh and Jamshid Roozbeh*

Volume 18, Issue 2, 2023

Published on: 30 June, 2022

Page: [125 - 137] Pages: 13

DOI: 10.2174/1574886317666220405121319

Price: $65

Abstract

Background: As a medical problem, hypertension is one of the most common disorders in cardiovascular disease. High blood pressure has been identified as one of the most familiar risk factors for the ongoing COVID-19 pandemic. We planned to explore the possible interactions between anti-hypertensive agents and drugs targeting SARS-CoV-2 with broad investigations of these medications' mechanism of action and adverse effects.

Methods: Two co-authors searched the electronic databases (PubMed, Scopus, and Google Scholar) to collect papers relevant to the subject. The keywords searched were angiotensin-converting enzyme inhibitors (ACEI), angiotensin-II receptor blockers (ARBs), sympatholytic drugs (alpha-1 blockers, beta-blockers), vasodilators (calcium channel blockers, nitrates, and hydralazine), diuretics, chloroquine, hydroxychloroquine, lopinavir/ritonavir, remdesivir, favipiravir, interferons, azithromycin, anti-cytokine agents, glucocorticoids, anticoagulant agents, nitric oxide, and epoprostenol.

Results: QT prolongation, arrhythmia, hypokalemia, hypertriglyceridemia are the most dangerous adverse effects in the patients on COVID-19 medications and anti-hypertensive drugs.

Conclusion: This review emphasized the importance of the potential interaction between drugs used against COVID-19 and anti-hypertensive agents. Therefore, caution must be exercised when these medications are being used simultaneously.

Keywords: Blood pressure, COVID-19, drug interaction, hypertension, SARS-CoV-2, cardiovascular disease.

Graphical Abstract
[1]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
World Health Organization. WHO coronavirus dis-ease (COVID-19) dashboard 2020. Available from: https://covid19.who.int/
[3]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[4]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[5]
Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med 2003; 13(3): 93-101.
[http://dx.doi.org/10.1016/S1050-1738(02)00233-5] [PMID: 12691672]
[6]
Fan C, Li K, Ding Y, Lu WL, Wang J. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019.MedRxiv
[http://dx.doi.org/10.1101/2020.02.12.20022418]
[7]
Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and multi-organ response. Curr Probl Cardiol 2020; 45(8): 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[8]
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39(10): e105114.
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[9]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[10]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[11]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[12]
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: A systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[13]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[14]
Díez-Freire C, Vázquez J, Correa de Adjounian MF, et al. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics 2006; 27(1): 12-9.
[http://dx.doi.org/10.1152/physiolgenomics.00312.2005] [PMID: 16788004]
[15]
Laurent S. Antihypertensive drugs. Pharmacol Res 2017; 124: 116-25.
[http://dx.doi.org/10.1016/j.phrs.2017.07.026] [PMID: 28780421]
[16]
Wu R, Wang L, Kuo HD, et al. An update on current therapeutic drugs treating COVID-19. Curr Pharmacol Rep 2020; 6(3): 56-70.
[http://dx.doi.org/10.1007/s40495-020-00216-7] [PMID: 32395418]
[17]
Choy K-T, Wong AY-L, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020; 178: 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[18]
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020; 92(7): 814-8.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[19]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[20]
Nash DT. Alpha-adrenergic blockers: Mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol 1990; 13(11): 764-72.
[http://dx.doi.org/10.1002/clc.4960131104] [PMID: 1980236]
[21]
Lepor H. Alpha blockers for the treatment of benign prostatic hyperplasia. Rev Urol 2007; 9(4): 181-90.
[PMID: 18231614]
[22]
Debruyne FM. Alpha blockers: Are all created equal? Urology 2000; 56(5) (Suppl. 1): 20-2.
[http://dx.doi.org/10.1016/S0090-4295(00)00744-5] [PMID: 11074198]
[23]
Konig MF, Powell M, Staedtke V, et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest 2020; 130(7): 3345-7.
[http://dx.doi.org/10.1172/JCI139642] [PMID: 32352407]
[24]
U.S. National Library of Medicine. Prazosin to Prevent COVID-19 (PREVENT-COVID Tri-al) (PREVENT) 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04365257
[25]
Gorre F, Vandekerckhove H. Beta-blockers: Focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol 2010; 65(5): 565-70.
[http://dx.doi.org/10.1080/AC.65.5.2056244] [PMID: 21125979]
[26]
Frishman WH. Beta-adrenergic receptor blockers. Adverse effects and drug interactions. Hypertension 1988; 11(3 Pt 2): II21-9.
[http://dx.doi.org/10.1161/01.HYP.11.3_Pt_2.II21] [PMID: 2895072]
[27]
Vasanthakumar N. Beta-adrenergic blockers as a potential treatment for COVID-19 patients. BioEssays 2020; 42(11): e2000094.
[http://dx.doi.org/10.1002/bies.202000094] [PMID: 32815593]
[28]
Peach MJ. Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol Rev 1977; 57(2): 313-70.
[http://dx.doi.org/10.1152/physrev.1977.57.2.313] [PMID: 191856]
[29]
Peng H, Carretero OA, Vuljaj N, et al. Angiotensin-converting enzyme inhibitors: A new mechanism of action. Circulation 2005; 112(16): 2436-45.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.528695] [PMID: 16216963]
[30]
Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell 2019; 176(3): 479-490.e12.
[http://dx.doi.org/10.1016/j.cell.2018.12.006] [PMID: 30639100]
[31]
Guan W, Ni Z, Hu Y, et al. China medical treatment expert group for Covid-19. Clinical characteristics of coronavirus disease 2019; 1708-20.
[32]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[33]
Chan C-K, Huang Y-S, Liao H-W, et al. Renin-angiotensin-aldosterone system inhibitors and risks of severe acute respiratory syndrome coronavirus 2 infection: A systematic review and meta-analysis. Hypertension 2020; 76(5): 1563-71.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15989] [PMID: 32869673]
[34]
Brown. Antihypertensive drugs and risk of COVID-19? 2020; 8(5): e28.
[http://dx.doi.org/10.1016/S2213-2600(20)30158-2]
[35]
Zhang X, Yu J, Pan L-Y, Jiang H-JPR. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: A systematic review and meta-analysis Pharmacological Research. Academic Press 2020; p. 104927.
[36]
Sidorenkov G, Navis G. Safety of ACE inhibitor therapies in patients with chronic kidney disease. Expert Opin Drug Saf 2014; 13(10): 1383-95.
[http://dx.doi.org/10.1517/14740338.2014.951328] [PMID: 25148900]
[37]
Lakhdar R, Al-Mallah MH, Lanfear DE. Safety and tolerability of angiotensin-converting enzyme inhibitor versus the combination of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker in patients with left ventricular dysfunction: A systematic review and meta-analysis of randomized controlled trials. J Card Fail 2008; 14(3): 181-8.
[http://dx.doi.org/10.1016/j.cardfail.2007.11.008] [PMID: 18381180]
[38]
Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-CoV2 interaction with renin angiotensin system. J Am Coll Cardiol 2020; 75(24): 3085-95.
[http://dx.doi.org/10.1016/j.jacc.2020.04.028] [PMID: 32305401]
[39]
Sica DA, Carter B, Cushman W, Hamm L. Thiazide and loop diuretics. J Clin Hypertens (Greenwich) 2011; 13(9): 639-43.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00512.x] [PMID: 21896142]
[40]
Blowey DL. Diuretics in the treatment of hypertension. Pediatr Nephrol 2016; 31(12): 2223-33.
[http://dx.doi.org/10.1007/s00467-016-3334-4] [PMID: 26983630]
[41]
Kokko JP. Site and mechanism of action of diuretics. Am J Med 1984; 77(5A): 11-7.
[http://dx.doi.org/10.1016/S0002-9343(84)80003-0] [PMID: 6496555]
[42]
Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol 2008; 31(4): 153-8.
[http://dx.doi.org/10.1002/clc.20324] [PMID: 18404673]
[43]
Eschenhagen T. Treatment of HypertensionGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[44]
Jackson EK. Drugs affecting renal excretory functionGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[45]
Rathnayake D, Sinclair R. Innovative use of spironolactone as an antiandrogen in the treatment of female pattern hair loss. Dermatol Clin 2010; 28(3): 611-8.
[http://dx.doi.org/10.1016/j.det.2010.03.011] [PMID: 20510769]
[46]
Goren A, Vaño-Galván S, Wambier CG, et al. A preliminary observation: Male pattern hair loss among hospitalized COVID-19 patients in Spain - A potential clue to the role of androgens in COVID-19 severity. J Cosmet Dermatol 2020; 19(7): 1545-7.
[http://dx.doi.org/10.1111/jocd.13443] [PMID: 32301221]
[47]
Elliott WJ, Ram CVS. Calcium channel blockers. J Clin Hypertens (Greenwich) 2011; 13(9): 687-9.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00513.x] [PMID: 21896151]
[48]
Eschenhagen T. Treatment of ischemic heart diseaseGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[49]
Westfall TC, Macarthur H, Westfall DP. Adrenergic agonists and antagonistsGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[50]
Hilal-Dandan R. Renin and angiotensinGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[51]
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect Dis 2003; 3(11): 722-7.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[52]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6(1): 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[53]
Dan Z, Sheng-Ming D, Qiang T. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 1-4; 14(369): 1849.
[54]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[55]
Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with COVID-19: An open-label, randomized, controlled trial MedRxiv 2020.
[56]
te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6(11): e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[57]
Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding W-Q. Chloroquine is a zinc ionophore. PLoS One 2014; 9(10): e109180.
[http://dx.doi.org/10.1371/journal.pone.0109180] [PMID: 25271834]
[58]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[59]
Li Z, Wang X, Cao D, Sun R, Li C, Li G. Rapid review for the anti-coronavirus effect of remdesivir. Drug Discov Ther 2020; 14(2): 73-6.
[http://dx.doi.org/10.5582/ddt.2020.01015] [PMID: 32378648]
[60]
De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J 2019; 14(22): 3962-8.
[http://dx.doi.org/10.1002/asia.201900841] [PMID: 31389664]
[61]
Du YX, Chen XP. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019‐nCoV infection. Clin Pharmacol Ther 2020; 108(2): 242-7.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[62]
Pooladanda V, Thatikonda S, Godugu C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci 2020; 254: 117765.
[http://dx.doi.org/10.1016/j.lfs.2020.117765] [PMID: 32437797]
[63]
Högner K, Wolff T, Pleschka S, et al. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 2013; 9(2): e1003188.
[http://dx.doi.org/10.1371/journal.ppat.1003188] [PMID: 23468627]
[64]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[65]
Schlossberg DL, Samuel R. Antibiotics Manual: A Guide to Commonly Used Antimicrobials. Hoboken, NJ: John Wiley & Sons 2017.
[http://dx.doi.org/10.1002/9781119220787]
[66]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[67]
Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA 2016; 113(50): 14408-13.
[http://dx.doi.org/10.1073/pnas.1618029113] [PMID: 27911847]
[68]
Bacharier LB, Guilbert TW, Mauger DT, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: A randomized clinical trial. JAMA 2015; 314(19): 2034-44.
[http://dx.doi.org/10.1001/jama.2015.13896] [PMID: 26575060]
[69]
Lagier J-C, Million M, Gautret P, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis. Travel Med Infect Dis 2020; 36: 101791.
[http://dx.doi.org/10.1016/j.tmaid.2020.101791] [PMID: 32593867]
[70]
Saleh M, Gabriels J, Chang D, et al. The effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol 2020; 13(6): e008662.
[http://dx.doi.org/10.1161/CIRCEP.120.008662] [PMID: 32347743]
[71]
Cunningham L, Kimber I, Basketter DA, McFadden JP. Why judiciously timed anti-IL 6 therapy may be of benefit in severe COVID-19 infection. Autoimmun Rev 2020; 19(7): 102563.
[http://dx.doi.org/10.1016/j.autrev.2020.102563] [PMID: 32380318]
[72]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[73]
Owlia S, Owlia MB. Glucocorticoids in COVID19; a friend not foe. J Res Med Sci 2020; 25(1): 45.
[PMID: 32765615]
[74]
Samuel S, Nguyen T, Choi HA. Pharmacologic characteristics of corticosteroids. J Neurocritical Care 2017; 10(2): 53-9.
[http://dx.doi.org/10.18700/jnc.170035]
[75]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[76]
Elens L, Langman LJ, Hesselink DA, et al. Pharmacologic treatment of transplant recipients infected with SARS-CoV-2: Considerations regarding therapeutic drug monitoring and drug-drug interactions. Ther Drug Monit 2020; 42(3): 360-8.
[http://dx.doi.org/10.1097/FTD.0000000000000761] [PMID: 32304488]
[77]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): 473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[78]
Lamontagne F, Rochwerg B, Lytvyn L, et al. Corticosteroid therapy for sepsis: A clinical practice guideline. BMJ 2018; 362: k3284.
[http://dx.doi.org/10.1136/bmj.k3284] [PMID: 30097460]
[79]
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033-40.
[http://dx.doi.org/10.1182/blood.2020006000] [PMID: 32339221]
[80]
Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: Emerging evidence and call for action. Br J Haematol 2020; 189(5): 846-7.
[http://dx.doi.org/10.1111/bjh.16727] [PMID: 32304577]
[81]
Hedenstierna G, Chen L, Hedenstierna M, Lieberman R, Fine DH. Nitric oxide dosed in short bursts at high concentrations may protect against COVID 19. Nitric Oxide 2020; 103: 1-3.
[http://dx.doi.org/10.1016/j.niox.2020.06.005] [PMID: 32590117]
[82]
Cherian SV, Kumar A, Akasapu K, Ashton RW, Aparnath M, Malhotra A. Salvage therapies for refractory hypoxemia in ARDS. Respir Med 2018; 141: 150-8.
[http://dx.doi.org/10.1016/j.rmed.2018.06.030] [PMID: 30053961]
[83]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19-preliminary report. N Engl J Med 2020; 383(19): 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[84]
MacDougall C. Protein synthesis inhibitors and miscellaneous antibacterial agentsGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[85]
Vinetz JM. Chemotherapy of MalariaGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[86]
Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 2019; 32(2): 176-86.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[87]
Flexner CW. Antiretroviral agents and treatment of HIV infectionGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[88]
Plushner SL. Tocilizumab: An interleukin-6 receptor inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother 2008; 42(11): 1660-8.
[http://dx.doi.org/10.1345/aph.1L268] [PMID: 18957621]
[89]
Barnes PJ. Pulmonary pharmacologyGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[90]
Patel HH, Pearn ML, Patel PM, Roth DM. General anesthetics and therapeutic gasesGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[91]
Fraidenburg DR, Desai AA, Yuan JX-J. Treatment of pulmonary arterial hypertensionGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[92]
Fares-Frederickson N, David M. Introduction to immunity and inflammationGoodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, USA: McGraw-Hill Education 2018.
[93]
Mirjalili M, Shafiekhani M, Vazin A. Coronavirus disease 2019 (COVID-19) and transplantation: Pharmacotherapeutic management of immunosuppression regimen. Ther Clin Risk Manag 2020; 16: 617-29.
[http://dx.doi.org/10.2147/TCRM.S256246] [PMID: 32694915]
[94]
FitzGerald GA. Misguided drug advice for COVID-19. Science 2020; 367(6485): 1434.
[http://dx.doi.org/10.1126/science.abb8034] [PMID: 32198292]
[95]
Zheng W, Fan W, Zhang S, et al. Naproxen exhibits broad anti-influenza virus activity in mice by impeding viral nucleoprotein nuclear export. Cell Rep 2019; 27(6): 1875-1885.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.04.053] [PMID: 31067470]
[96]
Adnet F, Slama Schwok A. Efficacy of addition of naproxen in the treatment of critically ill patients hospitalized for COVID-19 infection (enacovid). Available from: https://clinicaltrials.gov/ct2/show/NCT04325633
[97]
Amici C, Di Caro A, Ciucci A, et al. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir Ther 2006; 11(8): 1021-30.
[http://dx.doi.org/10.1177/135965350601100803] [PMID: 17302372]
[98]
Day M. Covid-19: Ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ 2020; 368: m1086.
[http://dx.doi.org/10.1136/bmj.m1086] [PMID: 32184201]
[99]
Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis in streptozotocin-induced diabetic rats. Cardiology 2015; 131(2): 97-106.
[http://dx.doi.org/10.1159/000375362] [PMID: 25896805]
[100]
Freedberg DE, Conigliaro J, Wang TC, Tracey KJ, Callahan MV, Abrams JA. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: A propensity score matched retrospective cohort study. Gastroenterology 2020; 159(3): 1129-1131.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.05.053] [PMID: 32446698]
[101]
Shneider A, Kudriavtsev A, Vakhrusheva A. Can melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol 2020; 39(4): 153-62.
[http://dx.doi.org/10.1080/08830185.2020.1756284] [PMID: 32347747]
[102]
Krammes SK, Jacobs T, Clark JM, Lutes RE. Effect of intravenous ondansetron on the QT interval of patients’ electrocardiograms. Pediatr Emerg Care 2018; 34(1): 38-41.
[http://dx.doi.org/10.1097/PEC.0000000000000757] [PMID: 27261956]
[103]
Lai K, Shen H, Zhou X, et al. Clinical practice guidelines for diagnosis and management of cough—Chinese Thoracic Society (CTS) asthma consortium. J Thorac Dis 2018; 10(11): 6314-51.
[http://dx.doi.org/10.21037/jtd.2018.09.153] [PMID: 30622806]
[104]
Taylor CP, Traynelis SF, Siffert J, Pope LE, Matsumoto RR. Pharmacology of dextromethorphan: Relevance to dextrome-thorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther 2016; 164: 170-82.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.010] [PMID: 27139517]
[105]
Chang S-H, Chou I-J, Yeh Y-H, et al. Association between use of non–vitamin K oral anticoagulants with and without concurrent medications and risk of major bleeding in nonvalvular atrial fibrillation. JAMA 2017; 318(13): 1250-9.
[http://dx.doi.org/10.1001/jama.2017.13883] [PMID: 28973247]
[106]
Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: A Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 2003; 31(7): 815-32.
[http://dx.doi.org/10.1124/dmd.31.7.815] [PMID: 12814957]
[107]
Lebrun-Vignes B, Archer VC, Diquet B, et al. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br J Clin Pharmacol 2001; 51(5): 443-50.
[http://dx.doi.org/10.1046/j.1365-2125.2001.01372.x] [PMID: 11422002]
[108]
Lee JE, van Heeswijk R, Alves K, Smith F, Garg V. Effect of the hepatitis C virus protease inhibitor telaprevir on the pharmacokinetics of amlodipine and atorvastatin. Antimicrob Agents Chemother 2011; 55(10): 4569-74.
[http://dx.doi.org/10.1128/AAC.00653-11] [PMID: 21825288]
[109]
Mzayek F, Deng H, Mather FJ, et al. Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS Clin Trials 2007; 2(1): e6.
[http://dx.doi.org/10.1371/journal.pctr.0020006] [PMID: 17213921]
[110]
Vereckei A, Fazakas A, Baló T, Fekete B, Molnár MJ, Karádi I. Chloroquine cardiotoxicity mimicking connective tissue disease heart involvement. Immunopharmacol Immunotoxicol 2013; 35(2): 304-6.
[http://dx.doi.org/10.3109/08923973.2013.766801] [PMID: 23409733]
[111]
Somer M, Kallio J, Pesonen U, Pyykkö K, Huupponen R, Scheinin M. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol 2000; 49(6): 549-54.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00197.x] [PMID: 10848718]
[112]
Administration, U.F.a.D. Fact sheet for health care providers Emergency Use Authorization (EUA) of remdesivir (GS-5734™). 2020. Available from: https://www.fda.gov/media/137566/download
[113]
Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Disease-drug drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 2011; 89(5): 735-40.
[http://dx.doi.org/10.1038/clpt.2011.35] [PMID: 21430660]
[114]
Durand D, Ader JL, Rey JP, et al. Inducing hyperkalemia by converting enzyme inhibitors and heparin. Kidney Int Suppl 1988; 25: S196-7.
[PMID: 3184611]
[115]
Bengalorkar GM, Sarala N, Venkatrathnamma PN, Kumar TN. Effect of heparin and low-molecular weight heparin on serum potassium and sodium levels. J Pharmacol Pharmacother 2011; 2(4): 266-9.
[http://dx.doi.org/10.4103/0976-500X.85956] [PMID: 22025855]
[116]
López A, Bernardo B, López-Herce J, Cristina AI, Carrillo A. Methaemoglobinaemia secondary to treatment with trimethoprim and sulphamethoxazole associated with inhaled nitric oxide. Acta Paediatr 1999; 88(8): 915-6.
[http://dx.doi.org/10.1111/j.1651-2227.1999.tb00071.x] [PMID: 10503695]
[117]
Widmer P, Maibach R, Künzi UP, et al. Diuretic-related hypokalaemia: The role of diuretics, potassium supplements, glucocorticoids and beta 2-adrenoceptor agonists. Results from the comprehensive hospital drug monitoring programme, berne (CHDM). Eur J Clin Pharmacol 1995; 49(1-2): 31-6.
[http://dx.doi.org/10.1007/BF00192355] [PMID: 8751018]
[118]
Non-steroidal anti-inflammatory drugs and frusemide-induced diuresis. Br Med J (Clin Res Ed) 1981; 283(6297): 988-9.
[PMID: 6793204]
[119]
Lusardi P, Piazza E, Fogari R. Cardiovascular effects of melatonin in hypertensive patients well controlled by nifedipine: A 24-hour study. Br J Clin Pharmacol 2000; 49(5): 423-7.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00195.x] [PMID: 10792199]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy