Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Analytical Chemistry

Therapeutic Application of Bavachalcone in Chronic Diseases: A Concise Report on Medicinal Importance and Pharmacological Activities

Author(s): Dinesh Kumar Patel*

Volume 2, Issue 4, 2022

Published on: 24 March, 2022

Page: [257 - 262] Pages: 6

DOI: 10.2174/2210298102666220302094731

Abstract

Background: Psoralea corylifolia L. is an important herbal medicine mainly used for the treatment of coronary artery disease, osteoporosis, bacterial infections, vitiligo, and psoriasis. P. corylifolia contains numerous active phytochemicals, including bavachalcone. Polyphenolic compounds, including flavonoidal class phytochemicals, are secondary plant metabolites found in numerous plant species and reported to have multiple functions to counteract free radicals.

Methods: The aim of the present study is to review the medicinal importance and pharmacological activities of bavachalcone. To determine the therapeutic benefit of bavachalcone in medicine, here in the present work, we have attempted to provide scientific information related to bavachalcone. The present paper provides an overview of flavonoids and P. corylifolia, pharmacological activities of bavachalcone, and analytical aspects of bavachalcone. Bioanalytical aspects have been discussed for the development of analytical techniques for separation, isolation, and identification of bavachalcones. In the present work, numerous scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, and Google, have been searched.

Results: Scientific data analysis revealed bavachalcone to be an important phytochemical, found in P. corylifolia. Scientific data analysis revealed the biological importance and therapeutic benefit of bavachalcones in medicine. Pharmacological data analysis revealed their effectiveness against cancer, oxidative stress, Alzheimer's disease, angiogenesis, tissue repair, osteoclastogenesis, and various enzymes. Further pharmacokinetic and analytical data of bavachalcone have also been collected and analyzed in the present work.

Conclusion: Scientific data analysis revealed several molecular mechanisms to be responsible for the pharmacological activities of bavachalcone.

Keywords: P. corylifolia, bavachalcone, cancer, oxidative stress, alzheimer's disease, angiogenesis, osteoclastogenesis.

Graphical Abstract
[1]
Subedi, L.; Timalsena, S.; Duwadi, P.; Thapa, R.; Paudel, A.; Parajuli, K. Antioxidant activity and phenol and flavonoid contents of eight medicinal plants from Western Nepal. J. Tradit. Chin. Med., 2014, 34(5), 584-590.
[http://dx.doi.org/10.1016/S0254-6272(15)30067-4] [PMID: 25417410]
[2]
Patel, K. Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance.”. Curr. Tradit. Med., 2017, 3, 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[3]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[4]
Sengupta, B.; Banerjee, A.; Sengupta, P.K. Investigations on the binding and antioxidant properties of the plant flavonoid fisetin in model biomembranes. FEBS Lett., 2004, 570(1-3), 77-81.
[http://dx.doi.org/10.1016/j.febslet.2004.06.027] [PMID: 15251443]
[5]
Marques, G.S.; Leão, W.F.; Lyra, M.A.M.; Peixoto, M.S.; Monteiro, R.P.M.; Rolim, L.A. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev. Bras. Farmacogn., 2013, 23, 51-57.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[6]
Pereira, D.F.; Cazarolli, L.H.; Lavado, C.; Mengatto, V.; Figueiredo, M.S.R.B.; Guedes, A.; Pizzolatti, M.G.; Silva, F.R. Effects of flavo-noids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 2011, 27(11-12), 1161-1167.
[http://dx.doi.org/10.1016/j.nut.2011.01.008] [PMID: 21684120]
[7]
Mohan, S.; Nandhakumar, L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J. Med. Hypotheses Ideas, 2014, 8, 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[8]
De Souza, L.A.; Tavares, W.M.G.; Lopes, A.P.M.; Soeiro, M.M.; De Almeida, W.B. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chem. Phys. Lett., 2017, 676, 46-52.
[http://dx.doi.org/10.1016/j.cplett.2017.03.038]
[9]
Latunde-Dada, A.O.; Cabello-Hurtado, F.; Czittrich, N.; Didierjean, L.; Schopfer, C.; Hertkorn, N.; Werck-Reichhart, D.; Ebel, J. Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J. Biol. Chem., 2001, 276(3), 1688-1695.
[http://dx.doi.org/10.1074/jbc.M006277200] [PMID: 11027686]
[10]
Yanagihara, N.; Zhang, H.; Toyohira, Y.; Takahashi, K.; Ueno, S.; Tsutsui, M.; Takahashi, K. New insights into the pharmacological po-tential of plant flavonoids in the catecholamine system. J. Pharmacol. Sci., 2014, 124(2), 123-128.
[http://dx.doi.org/10.1254/jphs.13R17CP] [PMID: 24492414]
[11]
Govindarasu, M.; Palani, M.; Vaiyapuri, M. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int. J. Pharm. Pharm. Sci., 2017, 9, 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20500]
[12]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioana-lytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[13]
Suhartono, E.; Viani, E.; Rahmadhan, M.A.; Gultom, I.S.; Rakhman, M.F.; Indrawardhana, D. Total flavonoid and antioxidant activity of some selected medicinal plants in South Kalimantan of Indonesian. APCBEE Procedia, 2012, 4, 235-239.
[http://dx.doi.org/10.1016/j.apcbee.2012.11.039]
[14]
Morita, M.; Takahashi, I.; Kanai, M.; Okafuji, F.; Iwashima, M.; Hayashi, T.; Watanabe, S.; Hamazaki, T.; Shimozawa, N.; Suzuki, Y.; Furuya, H.; Yamada, T.; Imanaka, T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fi-broblasts of X-linked adrenoleukodystrophy. FEBS Lett., 2005, 579(2), 409-414.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102] [PMID: 15642351]
[15]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: a systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4, 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[16]
Yan, C.; Wu, Y.; Weng, Z.; Gao, Q.; Yang, G.; Chen, Z.; Cai, B.; Li, W. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J. Anal. Methods Chem., 2015, 2015, 792637.
[http://dx.doi.org/10.1155/2015/792637] [PMID: 26587307]
[17]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15, 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[18]
Shan, L.; Yang, S.; Zhang, G.; Zhou, D.; Qiu, Z.; Tian, L.; Yuan, H.; Feng, Y.; Shi, X. Comparison of the inhibitory potential of ba-vachalcone and corylin against UDP-glucuronosyl transferases. Evid. Based Complement. Alternat. Med., 2014, 2014, 958937.
[http://dx.doi.org/10.1155/2014/958937] [PMID: 24829606]
[19]
Nabi, N.G.; Shrivastava, M. Phytochemical screening and antioxidant activity of ethanol extract of Psoralea corylifolia seeds. UK. J. Pharm. Biosci., 2017, 5, 2.
[20]
Neve, V.; Bandivadekar, P.; Patil, P.; Kutal, P. Evaluation of anti-inflammatory activity of ethanolic extract of fruit of Psoralea corylifolia linn. J. Pharmacogn. Phytochem., 2018, 7, 35-37.
[http://dx.doi.org/10.22271/phyto.2018.v7.isp6.1.09]
[21]
Dang, Y.; Ling, S.; Ma, J.; Ni, R.; Xu, J-W. Bavachalcone enhances ROR α expression, controls bmal1 circadian transcription, and de-presses cellular senescence in human endothelial cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-11.
[22]
Murata, K. Chemical diversity of β-secretase inhibitors from natural resources. Nat. Prod. Commun., 2019, 14, 1-18.
[http://dx.doi.org/10.1177/1934578X19894819]
[23]
Song, H.S.; Jang, S.; Kang, S.C. Bavachalcone from Cullen corylifolium induces apoptosis and autophagy in HepG2 cells. Phytomedicine, 2018, 40, 37-47.
[http://dx.doi.org/10.1016/j.phymed.2017.12.030] [PMID: 29496173]
[24]
Wang, H-M.; Zhang, L.; Liu, J.; Yang, Z-L.; Zhao, H-Y.; Yang, Y.; Shen, D.; Lu, K.; Fan, Z.C.; Yao, Q.W.; Zhang, Y.M.; Teng, Y.O.; Peng, Y. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs. Eur. J. Med. Chem., 2015, 92, 439-448.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.007] [PMID: 25590864]
[25]
Park, C.K.; Lee, Y.; Chang, E-J.; Lee, M.H.; Yoon, J.H.; Ryu, J-H.; Kim, H.H. Bavachalcone inhibits osteoclast differentiation through suppression of NFATc1 induction by RANKL. Biochem. Pharmacol., 2008, 75(11), 2175-2182.
[http://dx.doi.org/10.1016/j.bcp.2008.03.007] [PMID: 18433733]
[26]
Ge, L.; Cheng, K.; Han, J. A network pharmacology approach for uncovering the osteogenic mechanisms of Psoralea corylifolia Linn. Evid. Based Complement. Alternat. Med., 2019, 2019, e2160175.
[http://dx.doi.org/10.1155/2019/2160175] [PMID: 31781261]
[27]
Xu, Q-X.; Hu, Y.; Li, G-Y.; Xu, W.; Zhang, Y-T.; Yang, X-W. Multi-target anti-alzheimer activities of four prenylated compounds from Psoralea Fructus. Molecules, 2018, 23(3), 614.
[http://dx.doi.org/10.3390/molecules23030614] [PMID: 29518051]
[28]
Lee, M.H.; Kim, J.Y.; Ryu, J-H. Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kappaB-alpha degradation in activated microglial cells. Biol. Pharm. Bull., 2005, 28(12), 2253-2257.
[http://dx.doi.org/10.1248/bpb.28.2253] [PMID: 16327160]
[29]
Dang, Y.; Ling, S.; Duan, J.; Ma, J.; Ni, R.; Xu, J-W. Bavachalcone-induced manganese superoxide dismutase expression through the AMP-activated protein kinase pathway in human endothelial cells. Pharmacology, 2015, 95(3-4), 105-110.
[http://dx.doi.org/10.1159/000375452] [PMID: 25766656]
[30]
Qian, Y.; Yang, Y.; Wang, K.; Zhou, W.; Dang, Y.; Zhu, M.; Li, F.; Ji, G. 2′-Hydroxychalcone induced cytotoxicity via oxidative stress in the lipid-loaded Hepg2 cells. Front. Pharmacol., 2019, 10, e1390.
[http://dx.doi.org/10.3389/fphar.2019.01390] [PMID: 31824319]
[31]
Ling, S.; Ni, R-Z.; Yuan, Y.; Dang, Y-Q.; Zhou, Q-M.; Liang, S.; Guo, F.; Feng, W.; Chen, Y.; Ikeda, K.; Yamori, Y.; Xu, J.W. Natural compound bavachalcone promotes the differentiation of endothelial progenitor cells and neovascularization through the RORα-erythropoietin-AMPK axis. Oncotarget, 2017, 8(49), 86188-86205.
[http://dx.doi.org/10.18632/oncotarget.21036] [PMID: 29156787]
[32]
Zhou, D.; An, L.; Xia, Y.; Wang, Y.; Li, X. Quantitative bioanalysis of bavachalcone in rat plasma by LC-MS/MS and its application in a pharmacokinetics study. Biomed. Chromatogr., 2017, 31(12), e4031.
[http://dx.doi.org/10.1002/bmc.4031] [PMID: 28618051]
[33]
Yang, Y-F.; Zhang, Y-B.; Chen, Z-J.; Zhang, Y-T.; Yang, X-W. Plasma pharmacokinetics and cerebral nuclei distribution of major constit-uents of Psoraleae fructus in rats after oral administration. Phytomedicine, 2018, 38, 166-174.
[http://dx.doi.org/10.1016/j.phymed.2017.12.002] [PMID: 29425649]
[34]
Tang, X.Y.; Dai, Z.Q.; Wu, Q.C.; Zeng, J.X.; Gao, M.X.; Xiao, H.H.; Yao, Z.H.; Dai, Y.; Yao, X.S. Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 177, 112836.
[http://dx.doi.org/10.1016/j.jpba.2019.112836] [PMID: 31473481]
[35]
Zhou, Z.X.; Yang, L.; Cheng, L.Y.; Yu, Y.L.; Song, L.; Zhou, K.; Wu, Y.L.; Zhang, Y. Simultaneous characterization of multiple Psoraleae fructus bioactive compounds in rat plasma by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spec-trometry for application in sex-related differences in pharmacokinetics. J. Sep. Sci., 2020, 43(14), 2804-2816.
[http://dx.doi.org/10.1002/jssc.202000286] [PMID: 32384213]
[36]
Yin, F.Z.; Li, L.; Lu, T.L.; Li, W.D.; Cai, B.C.; Yin, W. Quality assessment of Psoralea fructus by HPLC fingerprint coupled with multi-components analysis. Indian J. Pharm. Sci., 2015, 77(6), 715-722.
[http://dx.doi.org/10.4103/0250-474X.174996] [PMID: 26997699]
[37]
Zhang, Y.; Chen, Z.; Xu, X.; Zhou, Q.; Liu, X.; Liao, L.; Zhang, Z.; Wang, Z. Rapid separation and simultaneous quantitative determina-tion of 13 constituents in Psoraleae fructus by a single marker using high-performance liquid chromatography with diode array detection. J. Sep. Sci., 2017, 40(21), 4191-4202.
[http://dx.doi.org/10.1002/jssc.201700482] [PMID: 28869337]
[38]
Qiu, R-L.; Li, L.; Zhu, M-H.; Liu, J. Study on the chemical constituents of Psoralea corylifolia. Zhong Yao Cai, 2011, 34(8), 1211-1213.
[PMID: 22233033]
[39]
Choi, Y.H.; Yon, G.H.; Hong, K.S.; Yoo, D.S.; Choi, C.W.; Park, W-K.; Kong, J.Y.; Kim, Y.S.; Ryu, S.Y. In vitro BACE-1 inhibitory phe-nolic components from the seeds of Psoralea corylifolia. Planta Med., 2008, 74(11), 1405-1408.
[http://dx.doi.org/10.1055/s-2008-1081301] [PMID: 18666047]
[40]
Yang, T.T.; Qin, M.J. [Isolation and structure identification of a new isoflavone from Psoralea corylifolias] Yao Xue Xue Bao, 2006, 41(1), 76-79.
[PMID: 16683532]
[41]
Katsuyama, Y.; Funa, N.; Miyahisa, I.; Horinouchi, S. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol., 2007, 14(6), 613-621.
[http://dx.doi.org/10.1016/j.chembiol.2007.05.004] [PMID: 17584609]
[42]
Stahlhut, S.G.; Siedler, S.; Malla, S.; Harrison, S.J.; Maury, J.; Neves, A.R.; Forster, J. Assembly of a novel biosynthetic pathway for pro-duction of the plant flavonoid fisetin in Escherichia coli. Metab. Eng., 2015, 31, 84-93.
[http://dx.doi.org/10.1016/j.ymben.2015.07.002] [PMID: 26192693]
[43]
Filippi, A.; Petrussa, E.; Peresson, C.; Bertolini, A.; Vianello, A.; Braidot, E. In vivo assay to monitor flavonoid uptake across plant cell membranes. FEBS Open Bio, 2015, 5, 748-752.
[http://dx.doi.org/10.1016/j.fob.2015.08.009] [PMID: 26504740]
[44]
Borate, A.; Udgire, M.; Khambhapati, A. Antifungal activity associated with Psoralea corylifolia linn. (bakuchi) seed and chemical profile crude methanol seed extract. Mintage J. Pharm. Med. Sci., 2014, 3, 4-6.
[45]
Khushboo, P.S.; Jadhav, V.M.; Kadam, V.J. Development and validation of a HPTLC method for determination of psoralen in Psoralea corylifolia (Bavachi). Int. J. Pharm. Tech. Res., 2009, 1, 1122-1128.
[46]
Liu, R.; Li, A.; Sun, A.; Kong, L. Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography. J. Chromatogr. A, 2004, 1057(1-2), 225-228.
[http://dx.doi.org/10.1016/j.chroma.2004.09.049] [PMID: 15584243]

© 2024 Bentham Science Publishers | Privacy Policy