Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Naturally Occurring O-Heterocycles as Anticancer Agents

Author(s): Satya Kumar Avula, Biswanath Das*, Rene Csuk and Ahmed Al-Harrasi*

Volume 22, Issue 19, 2022

Published on: 12 January, 2022

Page: [3208 - 3218] Pages: 11

DOI: 10.2174/1871520621666211108091444

Price: $65

Abstract

Cancer is a leading cause of death worldwide. Proper efficient drugs are required to treat this deadly disease. Natural products have long been a vital source of anticancer agents and they have generated various “lead compounds” suitable for drug developments. With the recent advancement of chemical synthesis and bioevaluation techniques, these lead compounds of natural origins have been utilized for the production of useful anticancer drugs. Among the naturally occurring bioactive compounds, various O-heterocycles have been evaluated as remarkable cancer therapeutic agents. These compounds generally possess unique structures and novel mechanisms of action.

In the present review article, some selected O-heterocycles as promoting anticancer agents have been discussed in brief. Various natural sources and chemistry, as well as bioactivities of these compounds, have been described. The development of improved analogues of these compounds through synthetic modifications and efficient bioevaluation, along with proper studies on structure-activity relationship and mechanism of actions, has been mentioned. The article has demonstrated the recent relevance of naturally occurring O-heterocyclic compounds in the current anticancer drug discovery and development scenario.

Keywords: Natural products, anticancer agents, O-heterocycles, bioactivities, drug development, bioevolution.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Kinghorn, A.D.; Chin, Y.W.; Swanson, S.M. Discovery of natural product anticancer agents from biodiverse organisms. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 189-196.
[PMID: 19333864]
[3]
Kinghorn, A.D.; De Blanco, E.J.C.; Blanco, E.; Lucas, D.M.; Rakotondraibe, H.N.; Orjala, O. Discovery of anticancer agents of diverse natural origin. Anticancer Res., 2016, 36, 5623-5637.
[http://dx.doi.org/10.1351/PAC-CON-08-10-16] [PMID: 20046887]
[4]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[5]
Nicolaou, K.C.; Chen, J.S.; Dalby, S.M. From nature to the laboratory and into the clinic. Bioorg. Med. Chem., 2009, 17(6), 2290-2303.
[http://dx.doi.org/10.1016/j.bmc.2008.10.089] [PMID: 19028103]
[6]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[7]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M.; Sanagi, M. Heterocyclic Scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[8]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[9]
Kingston, D.G.I. The chemistry of taxol. Pharmacol. Ther., 1991, 52(1), 1-34.
[http://dx.doi.org/10.1016/0163-7258(91)90085-Z] [PMID: 1687170]
[10]
Das, B.; Kashinatham, A. New phytoconstituents of yew plants. J. Sci. Ind. Res. (India), 1996, 55, 246-258.
[11]
Das, B.; Kashinatham, A.; Anjani, G. Natural taxols. Indian J. Chem., 1999, 38B, 1018-1024.
[12]
Altmann, K-H.; Gertsch, J. Anticancer drugs from nature-natural products as a unique source of new microtubule-stabilizing agents. Nat. Prod. Rep., 2007, 24(2), 327-357.
[http://dx.doi.org/10.1039/B515619J] [PMID: 17390000]
[13]
Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol®: History and future challenges. Molecules, 2020, 25(24), 1-24.
[http://dx.doi.org/10.3390/molecules25245986] [PMID: 33348838]
[14]
Rowinsky, E.K.; Donehower, R.C. Taxol: twenty years later, the story unfolds. J. Natl. Cancer Inst., 1991, 83(24), 1778-1781.
[http://dx.doi.org/10.1093/jnci/83.24.1778] [PMID: 1683907]
[15]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[16]
Manfredi, J.J.; Horwitz, S.B. Taxol: An antimitotic agent with a new mechanism of action. Pharmacol. Ther., 1984, 25(1), 83-125.
[http://dx.doi.org/10.1016/0163-7258(84)90025-1] [PMID: 6149569]
[17]
Kingston, D.G.I. Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol., 1994, 12(6), 222-227.
[http://dx.doi.org/10.1016/0167-7799(94)90120-1] [PMID: 7765351]
[18]
Bissery, M-C.; Guénard, D.; Guéritte-Voegelein, F.; Lavelle, F. Experimental antitumor activity of taxotere and a taxol analogue. Cancer Res., 1991, 51, 4845-4852.
[PMID: 1680023]
[19]
Guenard, D.; Gueritte-Voegelein, F.; Potier, P. Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc. Chem. Res., 1993, 26, 160-167.
[http://dx.doi.org/10.1021/ar00028a005]
[20]
Nightingale, G.; Ryu, J. Cabazitaxel (jevtana): A novel agent for metastatic castration-resistant prostate cancer. Pham. Ther., 2012, 37(8), 440-448.
[PMID: 23091336]
[21]
Nicolaou, K.C.; Riemer, C.; Kerr, M.A.; Rideout, D.; Wrasidlo, W. Design, synthesis and biological activity of protaxols. Nature, 1993, 364(6436), 464-466.
[http://dx.doi.org/10.1038/364464a0] [PMID: 8101355]
[22]
Ettinger, D.S.; Finkelstein, D.M.; Sarma, R.P.; Johnson, D.H. Phase II study of paclitaxel in patients with extensive-disease small-cell lung cancer: An Eastern cooperative oncology group study. J. Clin. Oncol., 1995, 13(6), 1430-1435.
[http://dx.doi.org/10.1200/JCO.1995.13.6.1430] [PMID: 7751889]
[23]
Wiernik, P.H.; Schwartz, E.L.; Strauman, J.J.; Dutcher, J.P.; Lipton, R.B.; Paietta, E.; Phase, I. Phase I clinical and pharmacokinetic study of taxol. Cancer Res., 1987, 47(9), 2486-2493.
[PMID: 2882837]
[24]
Holmes, F.A.; Walters, R.S.; Theriault, R.L.; Forman, A.D.; Newton, L.K.; Raber, M.N.; Buzdar, A.U.; Frye, D.K.; Hortobagyi, G.N. Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J. Natl. Cancer Inst., 1991, 83(24), 1797-1805.
[http://dx.doi.org/10.1093/jnci/83.24.1797-a] [PMID: 1683908]
[25]
ten Bokkel Huinink, W.W.; Prove, A.M.; Piccart, M.; Steward, W.; Tursz, T.; Wanders, J.; Franklin, H.; Clavel, M.; Verweij, J.; Alakl, M.; Bayssas, M.; Kaye, S.B. A phase II trial with docetaxel (Taxotere) in second line treatment with chemotherapy for advanced breast cancer. A study of the EORTC Early Clinical Trials Group. Ann. Oncol., 1994, 5(6), 527-532.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058907] [PMID: 7918124]
[26]
Couteau, C.; Risse, M.L.; Ducreux, M.; Lefresne-Soulas, F.; Riva, A.; Lebecq, A.; Ruffié, P.; Rougier, P.; Lokiec, F.; Bruno, R.; Armand, J.P. Phase I and pharmacokinetic study of docetaxel and irinotecan in patients with advanced solid tumors. J. Clin. Oncol., 2000, 18(20), 3545-3552.
[http://dx.doi.org/10.1200/JCO.2000.18.20.3545] [PMID: 11032597]
[27]
Antonarakis, E.S.; Eisenberger, M.A. Phase III trials with docetaxel-based combinations for metastatic castration-resistant prostate cancer: time to learn from past experiences. J. Clin. Oncol., 2013, 31(14), 1709-1712.
[http://dx.doi.org/10.1200/JCO.2013.48.8825] [PMID: 23569320]
[28]
Jones, S.E.; Erban, J.; Overmoyer, B.; Budd, G.T.; Hutchins, L.; Lower, E.; Laufman, L.; Sundaram, S.; Urba, W.J.; Pritchard, K.I.; Mennel, R.; Richards, D.; Olsen, S.; Meyers, M.L.; Ravdin, P.M. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J. Clin. Oncol., 2005, 23(24), 5542-5551.
[http://dx.doi.org/10.1200/JCO.2005.02.027] [PMID: 16110015]
[29]
Witherup, K.M.; Look, S.A.; Stasko, M.W.; Ghiorzi, T.J.; Muschik, G.M.; Cragg, G.M. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J. Nat. Prod., 1990, 53(5), 1249-1255.
[http://dx.doi.org/10.1021/np50071a017] [PMID: 1981374]
[30]
Das, B.; Rao, S.P. Naturally occurring oxetane-type taxoids. Indian J. Chem., 1996, 35B, 883-893.
[31]
Baloglu, E.; Kingston, D.G.I. The taxane diterpenoids. J. Nat. Prod., 1999, 62(10), 1448-1472.
[http://dx.doi.org/10.1021/np990176i] [PMID: 10543916]
[32]
Das, B.; Das, R. Taxoids from the Himalayan yew, a potent anticancer plant. Indian J. Pharm. Sci., 1994, 56, 199-204.
[33]
Das, B.; Rao, S.P.; Srinivas, K.V.N.S.; Yadav, J.S.; Das, R. A taxoid from needles of himalayan Taxus baccata. Phytochemistry, 1995, 38, 671-674.
[http://dx.doi.org/10.1016/0031-9422(94)00751-E]
[34]
Das, B.; Padma Rao, S.; Srinivas, K.V.N.S.; Yadav, J.S. Lignans, biflavones and taxoids from Himalayan Taxus baccata. Phytochemistry, 1995, 38, 715-717.
[http://dx.doi.org/10.1016/0031-9422(94)00678-M]
[35]
Das, B.; Anjani, G. Chemical constituents of the Himalyan yeild: A Review. Nat. Prod. Sci., 1998, 4, 185-202.
[36]
Das, B.; Rao, S.P.; Kashinatham, A. Taxol content in the storage samples of the needles of Himalayan Taxus baccata and their extracts. Planta Med., 1998, 64(1), 96.
[http://dx.doi.org/10.1055/s-2006-957383] [PMID: 9491774]
[37]
Das, B.; Anjani, G.; Kashinatham, A.; Venkataiah, B.; Padma Rao, S. Taxoids, lignans and simple needles of Himalyon Taxus baccata. Nat. Prod. Sci., 1998, 4, 78-83. [b]
[38]
Fett-Neto, A.G.; Melanson, S.J.; Sakata, K.; DiCosmo, F. Improved growth and taxol yield in developing calli of Taxus cuspidata by medium composition modification. Biotechnology (N. Y.), 1993, 11(6), 731-734.
[http://dx.doi.org/10.1038/nbt0693-731] [PMID: 7765304]
[39]
Chatterjee, A.; Das, B.; Das, R. Future of taxol as antitumour agent. Sci. Cult., 2002, 68, 19-23.
[40]
Kingston, D.G.I. Tubulin-interactive natural products as anticancer agents. J. Nat. Prod., 2009, 72(3), 507-515.
[http://dx.doi.org/10.1021/np800568j] [PMID: 19125622]
[41]
Das, B.; Kashinatham, A.; Anjani, G. The first isolation of taxol C-13 side chain from Himalyon Taxus baccata. Nat. Prod. Lett., 1999, 13, 71.
[http://dx.doi.org/10.1080/10575639908048494]
[42]
Holton, R.A.; Somoza, C.; Kim, H.B.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc., 1994, 116, 1597-1598.
[http://dx.doi.org/10.1021/ja00083a066]
[43]
Holton, R.A.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc., 1994, 116, 1599-1600.
[http://dx.doi.org/10.1021/ja00083a067]
[44]
Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K.; Sorensen, E.J. Total synthesis of taxol. Nature, 1994, 367(6464), 630-634.
[http://dx.doi.org/10.1038/367630a0] [PMID: 7906395]
[45]
Hartwell, J.L.; Schrecker, A.W. Components of Podophyllin. V. The constitution of podophyllotoxin1. J. Am. Chem. Soc., 1951, 73, 2909-2916.
[http://dx.doi.org/10.1021/ja01150a143]
[46]
Hartwell, J.L.; Schrecker, A.W. The chemistry of Podophyllum. Fortschr. Chem. Org. Naturst., 1958, 15, 83-166.
[http://dx.doi.org/10.1007/978-3-7091-7162-2_3] [PMID: 13597975]
[47]
Jackson, D.E.; Dewick, P.M. Aryltetralin lignans from Podophyllum hexandrum and Podophyllum peltatum. Phytochemistry, 1984, 23, 1147-1152.
[http://dx.doi.org/10.1016/S0031-9422(00)82628-X]
[48]
Keller-Juslén, C.; Kuhn, M.; Stähelin, H.; von Wartburg, A. Synthesis and antimitotic activity of glycosidic lignan derivatives related to podophyllotoxin. J. Med. Chem., 1971, 14(10), 936-940.
[http://dx.doi.org/10.1021/jm00292a012] [PMID: 5165570]
[49]
Zhang, Y.L.; Guo, X.; Cheng, Y.C.; Lee, K.H. Antitumor agents. 148. Synthesis and biological evaluation of novel 4 beta-amino derivatives of etoposide with better pharmacological profiles. J. Med. Chem., 1994, 37(4), 446-452.
[http://dx.doi.org/10.1021/jm00030a003] [PMID: 8120864]
[50]
Cho, S.J.; Kashiwada, Y.; Bastow, K.F.; Cheng, Y-C.; Lee, K-H. Antitumor agents. 164. Podophenazine, 2′',3′'-dichloropodophenazine, benzopodophenazine, and their 4 β-p-nitroaniline derivatives as novel DNA topoisomerase II inhibitors. J. Med. Chem., 1996, 39(7), 1396-1402.
[http://dx.doi.org/10.1021/jm950548u] [PMID: 8691469]
[51]
Subrahmanyam, D.; Renuka, B.; Rao, C.V.; Sagar, P.S.; Deevi, D.S.; Babu, J.M.; Vyas, K. Novel D-ring analogues of podophyllotoxin as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 1998, 8(11), 1391-1396.
[http://dx.doi.org/10.1016/S0960-894X(98)00232-7] [PMID: 9871772]
[52]
Andrews, R.C.; Teague, S.J.; Meyers, A.I. Asymmetric total synthesis of (-)-podophyllotoxin. J. Am. Chem. Soc., 1988, 110, 7854-7858.
[http://dx.doi.org/10.1021/ja00231a041]
[53]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294.
[http://dx.doi.org/10.22038/ajp.2017.8779] [PMID: 28884079]
[54]
Gordaliza, M.; Castro, M.A.; del Corral, J.M.; Feliciano, A.S. Antitumor properties of podophyllotoxin and related compounds. Curr. Pharm. Des., 2000, 6(18), 1811-1839.
[http://dx.doi.org/10.2174/1381612003398582] [PMID: 11102564]
[55]
Gordaliza, M.; García, P.A.; del Corral, J.M.; Castro, M.A.; Gómez-Zurita, M.A. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon, 2004, 44(4), 441-459.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.008] [PMID: 15302526]
[56]
Issell, B.F. The podophyllotoxin derivatives VP16-213 and VM26. Cancer Chemother. Pharmacol., 1982, 7(2-3), 73-80.
[http://dx.doi.org/10.1007/BF00254525] [PMID: 7044593]
[57]
Mascaux, C.; Paesmans, M.; Berghmans, T.; Branle, F.; Lafitte, J.J.; Lemaître, F.; Meert, A.P.; Vermylen, P.; Sculier, J.P. A systematic review of the role of etoposide and cisplatin in the chemotherapy of small cell lung cancer with methodology assessment and meta-analysis. Lung Cancer, 2000, 30(1), 23-36.
[http://dx.doi.org/10.1016/S0169-5002(00)00127-6] [PMID: 11008007]
[58]
Penson, R.T.; Seiden, M.V.; Matulonis, U.A.; Appleman, L.J.; Fuller, A.F.; Goodman, A.; Campos, S.M.; Clark, J.W.; Roche, M.; Eder, J.P. A phase I clinical trial of continual alternating etoposide and topotecan in refractory solid tumours. Br. J. Cancer, 2005, 93(1), 54-59.
[http://dx.doi.org/10.1038/sj.bjc.6602671] [PMID: 15986034]
[59]
Rassmann, I.; Thödtmann, R.; Mross, M.; Hüttmann, A.; Berdel, W.E.; Manegold, C.; Fiebig, H.H.; Kaeser-Fröhlich, A.; Burk, K.; Hanauske, A.R. Phase I clinical and pharmacokinetic trial of the podophyllotoxin derivative NK611 administered as intravenous short infusion. Invest. New Drugs, 1998-1999, 16(4), 319-324.
[http://dx.doi.org/10.1023/A:1006293830585] [PMID: 10426664]
[60]
Schwartsmann, G.; Sprinz, E.; Kronfeld, M.; Vinholes, J.; Sander, E.; Zampese, M.; Preger, R.; Kalakun, L.; Brunetto, A.L. Phase II study of teniposide in patients with AIDS-related Kaposi’s sarcoma. Eur. J. Cancer, 1991, 27(12), 1637-1639.
[http://dx.doi.org/10.1016/0277-5379(91)90434-F] [PMID: 1782075]
[61]
Tsuchiya, R.; Suzuki, K.; Ichinose, Y.; Watanabe, Y.; Yasumitsu, T.; Ishizuka, N.; Kato, H. Phase II trial of postoperative adjuvant cisplatin and etoposide in patients with completely resected stage I-IIIa small cell lung cancer: the Japan clinical oncology lung cancer study group trial (JCOG9101). J. Thorac. Cardiovasc. Surg., 2005, 129(5), 977-983.
[http://dx.doi.org/10.1016/j.jtcvs.2004.05.030] [PMID: 15867769]
[62]
Yu, X.; Che, Z.; Xu, H. Recent advances in the chemistry and biology of podophyllotoxins. Chemistry, 2017, 23(19), 4467-4526.
[http://dx.doi.org/10.1002/chem.201602472] [PMID: 27726183]
[63]
Herz, W.; Watanabe, H.; Miyazaki, M.; Kishida, Y. The Structures of parthenin and ambrosin. J. Am. Chem. Soc., 1962, 84, 2601-2610.
[http://dx.doi.org/10.1021/ja00872a027]
[64]
Patil, T.M.; Hegde, B.A. Isolation and purification of a sesquiterpene lactone from the leaves of Parthenium Hysterophorus L. Its allelopathic and cytotoxic effects. Curr. Sci., 1988, 57, 1178-1181. Available from: http://www.jstor.org/stable/24090880
[65]
Mukherjee, B.; Chatterjee, M. Antitumor activity of Parthenium hysterophorus and its effect in the modulation of biotransforming enzymes in transplanted murine leukemia. Planta Med., 1993, 59(6), 513-516.
[http://dx.doi.org/10.1055/s-2006-959750] [PMID: 8302949]
[66]
Das, B.; Salvanna, N.; Rathod, A.K.; Das, R. Our phytochemical research on Parthenium hysterophorous. Mini Rev. Org. Chem., 2020, 17, 843-854.
[http://dx.doi.org/10.2174/1570193X17666191218092812]
[67]
Gupta, V.K.; Goswami, K.N.; Bhutani, K.K. X-ray crystal structure analysis of parthenin–A sesquiterpene lactone. Cryst. Res. Technol., 1994, 29, 373-378.
[http://dx.doi.org/10.2174/1570193X17666191218092812]
[68]
Heathcock, C.H.; Tice, C.M.; Germroth, T.C. Synthesis of sesquiterpene antitumor lactones. Total synthesis of (+)-parthenin. J. Am. Chem. Soc., 1982, 104, 6081-6091.
[http://dx.doi.org/10.1021/ja00386a040]
[69]
Asaoka, M.; Ohkubo, T.; Itahana, H.; Kosaka, T.; Takei, H. Enantioselective synthesis of neoambrosin, parthenin, and dihydroisoparthenin. Tetrahedron, 1995, 51, 3115-3128.
[http://dx.doi.org/10.1016/0040-4020(95)00068-J]
[70]
Barbero, M.; Prandi, C. Pseudoguaianolides: Recent advances in synthesis and applications. Nat. Prod. Commun., 2018, 13, 241-248.
[http://dx.doi.org/10.1177/1934578X1801300303]
[71]
Kupchan, S.M.; Eakin, M.A.; Thomas, A.M. Tumor inhibitors. 69. Structure-cytotoxicity relationships among the sesquiterpene lactones. J. Med. Chem., 1971, 14(12), 1147-1152.
[http://dx.doi.org/10.1021/jm00294a001] [PMID: 5116225]
[72]
Mew, D.; Balza, F.; Towers, G.H.N.; Levy, I.G. Antitumour effects of the sesquiterpene lactone parthenin. Planta Med., 1982, 45, 23-27.
[http://dx.doi.org/10.1055/s-2007-971234]
[73]
Goswami, A.; Shah, B.A.; Kumar, A.; Rizvi, M.A.; Kumar, S.; Bhushan, S.; Malik, F.A.; Batra, N.; Joshi, A.; Singh, J. Antiproliferative potential of a novel parthenin analog P16 as evident by apoptosis accompanied by down-regulation of PI3K/AKT and ERK pathways in human acute lymphoblastic leukemia MOLT-4 cells. Chemico-Biological Inter., 2014, 222, 60-67.
[http://dx.doi.org/10.1016/j.cbi.2014.08.011]
[74]
Khoi, N.M.; Dat, N.T.; Na, M.K.; Thuong, P.T.; Min, B.S.; Bae, K.H. Cytotoxic activity of parthenin, a sesquiterpene isolated from a Crinum ensifolium. Nat. Prod. Sci., 2011, 17, 100-103.
[75]
Rodríguez, E.; Dillon, M.O.; Mabry, T.J.; Mitchell, J.C.; Towers, G.H.N. Dermatologically active sesquiterpene lactones in trichomes of Parthenium hysterophorus L. (Compositae). Experientia, 1976, 32(2), 236-238.
[http://dx.doi.org/10.1007/BF01937785] [PMID: 1269624]
[76]
Narasimhan, T.R.; Ananth, M.; Swamy, M.N.; Babu, M.R.; Mangala, A.; Rao, P.V.S. Toxicity of Parthenium hysterophorus L. to cattle and buffaloes. Experientia, 1977, 33(10), 1358-1359.
[http://dx.doi.org/10.1007/BF01920179] [PMID: 908415]
[77]
Das, R.; Geethangili, M.; Majhi, A.; Das, B.; Rao, Y.K.; Tzeng, Y.M. A new highly oxygenated pseudoguaianolide from a collection of the flowers of Parthenium hysterophorus. Chem. Pharm. Bull. (Tokyo), 2005, 53(7), 861-862.
[http://dx.doi.org/10.1248/cpb.53.861] [PMID: 15997155]
[78]
Das, B.; Mahender, G.; Rao, Y.K.; Ramesh, C.; Venkateswarlu, K.; Ravikumar, K.; Geethangili, M.; Tzeng, Y-M. Pseudoguaianolides from the flowers of Parthenium hysterophorus. Helv. Chim. Acta, 2006, 89, 285-290.
[http://dx.doi.org/10.1002/hlca.200690032]
[79]
Das, B.; Reddy, V.S.; Krishnaiah, M.; Sharma, A.V.S.; Ravi Kumar, K.; Rao, J.V.; Sridhar, V. Acetylated pseudoguaianolides from Parthenium hysterophorus and their cytotoxic activity. Phytochemistry, 2007, 68(15), 2029-2034.
[http://dx.doi.org/10.1016/j.phytochem.2007.05.002] [PMID: 17570445]
[80]
Das, B.; Reddy, K.R.; Ravikanth, B.; Sarma, A.V.S.; Sridhar, B. Two new pseudoguaianolides from the flowers of Parthenium hysterophorus. Helv. Chim. Acta, 2008, 91, 1137-1143.
[http://dx.doi.org/10.1002/hlca.200890122]
[81]
Kumar, A.; Malik, F.; Bhushan, S.; Shah, B.A.; Taneja, S.C.; Pal, H.C.; Wani, Z.A.; Mondhe, D.M.; Kaur, J.; Singh, J. A novel parthenin analog exhibits anti-cancer activity: Activation of apoptotic signaling events through robust NO formation in human leukemia HL-60 cells. Chem. Biol. Interact., 2011, 193(3), 204-215.
[http://dx.doi.org/10.1016/j.cbi.2011.06.006] [PMID: 21741372]
[82]
Das, B.; Ramesh, C.; Ravindranath, N.; Mahender, G.; Harish, H. Synthesis of novel spiro-2-isoxazolines derived from parthenin. Indian J. Chem., 2005, 44B, 2149-2151.
[83]
Reddy, D.M.; Qazi, N.A.; Sawant, S.D.; Bandey, A.H.; Srinivas, J.; Shankar, M.; Singh, S.K.; Verma, M.; Chashoo, G.; Saxena, A.; Mondhe, D.; Saxena, A.K.; Sethi, V.K.; Taneja, S.C.; Qazi, G.N.; Sampath Kumar, H.M. Design and synthesis of spiro derivatives of parthenin as novel anti-cancer agents. Eur. J. Med. Chem., 2011, 46(8), 3210-3217.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.030] [PMID: 21620534]
[84]
Gunasekera, S.P.; Gunasekera, M.; Longley, R.E.; Schulte, G.K. Discodermolide: A new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J. Org. Chem., 1990, 55, 4912-4915.
[http://dx.doi.org/10.1021/jo00303a029]
[85]
Longley, R.E.; Caddigan, D.; Harmody, D.; Gunasekera, M.; Gunasekera, S.P. Discodermolide-a new, marine-derived immunosuppressive compound I. in vitro studies. Transplantation, 1991, 52(4), 650-656.
[http://dx.doi.org/10.1097/00007890-199110000-00014] [PMID: 1833864]
[86]
Longley, R.E.; Gunasekera, S.P.; Faherty, D.; Mclane, J.; Dumont, F. Immunosuppression by discodermolide. Ann. N. Y. Acad. Sci., 1993, 696, 94-107.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb17145.x] [PMID: 8109858]
[87]
ter Haar, E.; Kowalski, R.J.; Hamel, E.; Lin, C.M.; Longley, R.E.; Gunasekera, S.P.; Rosenkranz, H.S.; Day, B.W. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry, 1996, 35(1), 243-250.
[http://dx.doi.org/10.1021/bi9515127] [PMID: 8555181]
[88]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[89]
Gunasekera, S.P.; Longley, R.E.; Isbrucker, R.A. Acetylated analogues of the microtubule-stabilizing agent discodermolide: preparation and biological activity. J. Nat. Prod., 2001, 64(2), 171-174.
[http://dx.doi.org/10.1021/np000423e] [PMID: 11429994]
[90]
Gunasekera, S.P.; Longley, R.E.; Isbrucker, R.A. Semisynthetic analogues of the microtubule-stabilizing agent discodermolide: preparation and biological activity. J. Nat. Prod., 2002, 65(12), 1830-1837.
[http://dx.doi.org/10.1021/np0203234] [PMID: 12502323]
[91]
Shaw, S.J.; Sundermann, K.F.; Burlingame, M.A.; Myles, D.C.; Freeze, B.S.; Xian, M.; Brouard, I.; Smith, A.B., III Toward understanding how the lactone moiety of discodermolide affects activity. J. Am. Chem. Soc., 2005, 127(18), 6532-6533.
[http://dx.doi.org/10.1021/ja051185i] [PMID: 15869264]
[92]
Hung, D.T.; Nerenberg, J.B.; Schreiber, S.L. Syntheses of discodermolides useful for investigating microtubule binding and stabilization. J. Am. Chem. Soc., 1996, 118, 11054-11080.
[http://dx.doi.org/10.1021/ja961374o]
[93]
Harried, S.S.; Yang, G.; Strawn, M.A.; Myles, D.C. Total Synthesis of (−)-discodermolide: An application of a chelation-controlled alkylation reaction. J. Org. Chem., 1997, 62, 6098-6099.
[http://dx.doi.org/10.1021/jo9708093]
[94]
Marshall, J.A.; Johns, B.A. Total synthesis of (+)-discodermolide. J. Org. Chem., 1998, 63, 7885-7892.
[http://dx.doi.org/10.1021/jo9811423]
[95]
Smith, A.B.; Beauchamp, T.J.; LaMarche, M.J.; Kaufman, M.D.; Qiu, Y.; Arimoto, H.; Jones, D.R.; Kobayashi, K. Evolution of a gram-scale synthesis of (+)-discodermolide. J. Am. Chem. Soc., 2000, 122, 8654-8664.
[http://dx.doi.org/10.1021/ja0015287]
[96]
Mickel, S.J.; Sedelmeier, G.H.; Niederer, D.; Daeffler, R.; Osmani, A.; Schreiner, K.; Seeger-Weibel, M.; Bérod, B.; Schaer, K.; Gamboni, R.; Chen, S.; Chen, W.; Jagoe, C.T. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: Synthetic strategy and preparation of a common precursor. Org. Process Res. Dev., 2004, 8, 92-100.
[http://dx.doi.org/10.1021/op034130e]
[97]
Hartwell, J.L. Plants used against cancer. A survey. Lloydia, 1969, 32(2), 153-205.
[PMID: 4897906]
[98]
Kupchan, S.M.; Sigel, C.W.; Matz, M.J.; Saenz Renauld, J.A.; Haltiwanger, R.C.; Bryan, R.F. Jatrophone, a novel macrocyclic diterpenoid tumor inhibitor from Jatropha gossypiifolia. J. Am. Chem. Soc., 1970, 92, 4476-4477.
[http://dx.doi.org/10.1021/ja00717a066]
[99]
Das, B.; Salvanna, N.; Reddy, P.R.; Paramesh, J.; Das, R. Our phytochemical research on Jatropha species. ARKIVOC, 2018, 1, 114-133.
[http://dx.doi.org/10.24820/ark.5550190.p010.285]
[100]
Kupchan, S.M.; Fessler, D.C.; Eakin, M.A.; Giacobbe, T.J. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science, 1970, 168(3929), 376-378.
[http://dx.doi.org/10.1126/science.168.3929.376] [PMID: 5435896]
[101]
Devappa, R.K.; Makkar, H.P.S.; Becker, K. Jatropha diterpenes: A review. J. Am. Oil Chem. Soc., 2011, 88, 301-322.
[http://dx.doi.org/10.1007/s11746-010-1720-9]
[102]
Han, Q.; Wiemer, D.F. Total synthesis of (+)-jatrophone. J. Am. Chem. Soc., 1992, 114, 7692-7697.
[http://dx.doi.org/10.1021/ja00046a014]
[103]
Taylor, M.D.; Smith, A.B.; Furst, G.T.; Gunasekara, S.P.; Bevelle, C.A.; Cordell, G.A.; Farnsworth, N.R.; Kupchan, S.M.; Uchida, H. New antileukemic jatrophone derivatives from Jatropha gossypiifolia: structural and stereochemical assignment through nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc., 1983, 105, 3177-3183.
[http://dx.doi.org/10.1021/ja00348a036]
[104]
Das, B.; Ravikanth, B.; Reddy, K.R.; Thirupathi, P.; Raju, T.V.; Sridhar, B. Diterpenoids from Jatropha multifida. Phytochemistry, 2008, 69(14), 2639-2641.
[http://dx.doi.org/10.1016/j.phytochem.2008.08.011] [PMID: 18823921]
[105]
Das, B.; Reddy, K.R.; Ravikanth, B.; Raju, T.V.; Sridhar, B.; Khan, P.U.; Rao, J.V. Multifidone: A novel cytotoxic lathyrane-type diterpene having an unusual six-membered A ring from Jatropha multifida. Bioorg. Med. Chem. Lett., 2009, 19(1), 77-79.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.014] [PMID: 19036584]
[106]
Das, B.; Laxminarayana, K.; Krishnaiah, M.; Srinivas, Y.; Raju, T.V. Multidione, a novel diterpenoid from Jatropha multifida. Tetrahedron Lett., 2009, 50, 4885-4887.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.054]
[107]
Das, B.; Ravikanth, B.; Laxminarayana, K.; Ramarao, B.; Raju, T.V. New macrocyclic diterpenoids from Jatropha multifida. Chem. Pharm. Bull. (Tokyo), 2009, 57(3), 318-320.
[http://dx.doi.org/10.1248/cpb.57.318] [PMID: 19252329]
[108]
Das, B.; Satya Kumar, A.; Narayan Kumar, J.; Venugopal Raju, T. A new macrocyclic diterpenoid from Jatropha multifida. Nat. Prod. Res., 2010, 24(16), 1510-1513.
[http://dx.doi.org/10.1080/14786411003792207] [PMID: 20835950]
[109]
Kanth, B.S.; Kumar, A.S.; Shinde, D.B.; Babu, K.H.; Raju, T.V.; Kumar, C.G.; Sujitha, P.; Das, B. New bioactive macrocyclic diterpenoids from Jatropha multifida. Bioorg. Med. Chem. Lett., 2011, 21(22), 6808-6810.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.032] [PMID: 21996519]
[110]
Pertino, M.; Schmeda-Hirschmann, G.; Santos, L.S.; Rodríguez, J.A.; Theoduloz, C. Biotransformation of jatrophone by Aspergillus niger ATCC 16404, Zeitschrift Fur Naturforschung - Section B. J. Chem. Sci., 2007, 62b, 275-279.
[http://dx.doi.org/10.1515/znb-2007-0221]
[111]
Hwang, B.Y.; Su, B-N.; Chai, H.; Mi, Q.; Kardono, L.B.S.; Afriastini, J.J.; Riswan, S.; Santarsiero, B.D.; Mesecar, A.D.; Wild, R.; Fairchild, C.R.; Vite, G.D.; Rose, W.C.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Swanson, S.M.; Kinghorn, A.D. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J. Org. Chem., 2004, 69(10), 3350-3358.
[http://dx.doi.org/10.1021/jo040120f] [PMID: 15132542]
[112]
Hwang, B.Y.; Su, B.N.; Chai, H.; Mi, Q.; Kardono, L.B.S.; Afriastini, J.J.; Riswan, S.; Santarsiero, B.D.; Mesecar, A.D.; Wild, R.; Fairchild, C.R.; Vite, G.D.; Rose, W.C.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Swanson, S.M.; Kinghorn, A.D. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J. Org. Chem., 2004, 69, 6156.
[http://dx.doi.org/10.1021/jo040008h]
[113]
Salim, A.A.; Chai, H-B.; Rachman, I.; Riswan, S.; Kardono, L.B.S.; Farnsworth, N.R.; Carcache-Blanco, E.J.; Kinghorn, A.D. Constituents of the leaves and stem bark of Aglaia foveolata. Tetrahedron, 2007, 63(33), 7926-7934.
[http://dx.doi.org/10.1016/j.tet.2007.05.074] [PMID: 18698338]
[114]
Rizzacasa, M.A. Biomimetic synthesis of the novel 1,4-dioxanyloxy fragment of silvestrol and episilvestrol. Tetrahedron Lett., 2005, 46, 293-295.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.057]
[115]
Kim, S.; Hwang, B.Y.; Su, B.N.; Chai, H.; Mi, Q.; Kinghorn, A.D.; Wild, R.; Swanson, S.M. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res., 2007, 27(4B), 2175-2183.
[PMID: 17695501]
[116]
MI. Q.; Kim, S.; Holloway, G.; Hwang, B.Y.; Su, B.N.; Chai, H. Silvestrol regulates G2/M checkpoint genes independent of p53 activity. Cancer Res., 2006, 26(5A), 3349-3356.ar.iiarjournals.org/content/26/5A/3349
[117]
El Sous, M.; Khoo, M.L.; Holloway, G.; Owen, D.; Scammells, P.J.; Rizzacasa, M.A. Total synthesis of (-)-episilvestrol and (-)-silvestrol. Angew. Chem. Int. Ed., 2007, 46(41), 7835-7838.
[http://dx.doi.org/10.1002/anie.200702700] [PMID: 17823902]
[118]
Gerard, B.; Cencic, R.; Pelletier, J.; Porco, J.A. Jr. Enantioselective synthesis of the complex rocaglate (-)-silvestrol. Angew. Chem. Int. Ed., 2007, 46(41), 7831-7834.
[http://dx.doi.org/10.1002/anie.200702707] [PMID: 17806093]
[119]
Adams, T.E.; El Sous, M.; Hawkins, B.C.; Hirner, S.; Holloway, G.; Khoo, M.L.; Owen, D.J.; Savage, G.P.; Scammells, P.J.; Rizzacasa, M.A. Total synthesis of the potent anticancer Aglaia metabolites (-)-silvestrol and (-)-episilvestrol and the active analogue (-)-4′-desmethoxyepisilvestrol. J. Am. Chem. Soc., 2009, 131(4), 1607-1616.
[http://dx.doi.org/10.1021/ja808402e] [PMID: 19140688]
[120]
Diyabalanage, T.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Palmerolide A, a cytotoxic macrolide from the Antarctic tunicate Synoicum adareanum. J. Am. Chem. Soc., 2006, 128(17), 5630-5631.
[http://dx.doi.org/10.1021/ja0588508] [PMID: 16637618]
[121]
Lebar, M.D.; Baker, B.J. On the stereochemistry of palmerolide A. Tetrahedron Lett., 2007, 48, 8009-8010.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.053]
[122]
Jiang, X.; Liu, B.; Lebreton, S.; Brabander, J.K. Total synthesis and structure revision of the marine metabolite palmerolide A. J. Am. Chem. Soc., 2007, 129(20), 6386-6387.
[http://dx.doi.org/10.1021/ja0715142] [PMID: 17458968]
[123]
Nicolaou, K.C.; Guduru, R.; Sun, Y.P.; Banerji, B.; Chen, D.Y-K. Total synthesis of the originally proposed and revised structures of palmerolide A. Angew. Chem. Int. Ed., 2007, 46(31), 5896-5900.
[http://dx.doi.org/10.1002/anie.200702243] [PMID: 17600809]
[124]
Nicolaou, K.C.; Sun, Y-P.; Guduru, R.; Banerji, B.; Chen, D.Y-K. Total synthesis of the originally proposed and revised structures of palmerolide A and isomers thereof. J. Am. Chem. Soc., 2008, 130(11), 3633-3644.
[http://dx.doi.org/10.1021/ja710485n] [PMID: 18298117]
[125]
Nicolaou, K.C.; Leung, G.Y.C.; Dethe, D.H.; Guduru, R.; Sun, Y-P.; Lim, C.S.; Chen, D.Y-K. Chemical synthesis and biological evaluation of palmerolide A analogues. J. Am. Chem. Soc., 2008, 130(30), 10019-10023.
[http://dx.doi.org/10.1021/ja802803e] [PMID: 18598030]
[126]
Penner, M.; Rauniyar, V.; Kaspar, L.T.; Hall, D.G. Catalytic asymmetric synthesis of palmerolide A via organoboron methodology. J. Am. Chem. Soc., 2009, 131(40), 14216-14217.
[http://dx.doi.org/10.1021/ja906429c] [PMID: 19764721]
[127]
Prasad, K.R.; Pawar, A.B. Enantioselective formal synthesis of palmerolide A. Org. Lett., 2011, 13(16), 4252-4255.
[http://dx.doi.org/10.1021/ol201604c] [PMID: 21793548]
[128]
Jena, B.K.; Mohapatra, D.K. Synthesis of the C1–C15 fragment of palmerolide A via protecting group dependent RCM reaction. Tetrahedron Lett., 2013, 54, 3415-3418.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.069]
[129]
Ravu, V.R.; Leung, G.Y.C.; Lim, C.S.; Ng, S.Y.; Sum, R.J.; Chen, D.Y-K. Chemical synthesis and biological evaluation of second-generation palmerolide A analogues. Eur. J. Org. Chem., 2011, 463-468.
[http://dx.doi.org/10.1002/ejoc.201001562]
[130]
Holla, H.; Srinivas, Y.; Majhi, A.; Srinivasulu, G.; Sridhar, B.; Krishna, A.S.; Rao, J.V.; Das, B. Novel cytotoxic constituents of orthosiphon diffusus. Tetrahedron Lett., 2011, 52, 49-52.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.140]
[131]
Sadashiva, C.T.; Sharanappa, P.; Naidoo, Y.; Sulaimon, C.T.; Balachandran, I. Chemical composition of essential oil from orthosiphon diffuses Benth. J. Med. Plants Res., 2013, 7(4), 170-172.
[http://dx.doi.org/10.5897/JMPR.9000352]
[132]
Liu, J.; Liu, Y.; Zhang, X.; Zhang, C.; Gao, Y.; Wang, L.; Du, Y. Total synthesis of (-)-orthodiffenes A and C. J. Org. Chem., 2012, 77(21), 9718-9723.
[http://dx.doi.org/10.1021/jo301829p] [PMID: 23051061]
[133]
Rashid, M.A.; Cantrell, C.L.; Gustafson, K.R.; Boyd, M.R. Chondropsin D, a new 37-membered-ring macrolide lactam from the marine sponge chondropsis species. J. Nat. Prod., 2001, 64(10), 1341-1344.
[http://dx.doi.org/10.1021/np0101907] [PMID: 11678663]
[134]
Kutrzeba, L.M.; Li, X.C.; Ding, Y.; Ferreira, D.; Zjawiony, J.K. Intramolecular transacetylation in salvinorins D and E. J. Nat. Prod., 2010, 73(4), 707-708.
[http://dx.doi.org/10.1021/np900447w] [PMID: 20337449]
[135]
Plumb, J.A.; Milroy, R.; Kaye, S.B. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res., 1989, 49(16), 4435-4440.
[PMID: 2743332]
[136]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata 1,2. J. Am. Chem. Soc., 1966, 88, 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[137]
Chrencik, J.E.; Staker, B.L.; Burgin, A.B.; Pourquier, P.; Pommier, Y.; Stewart, L.; Redinbo, M.R. Mechanisms of camptothecin resistance by human topoisomerase I mutations. J. Mol. Biol., 2004, 339(4), 773-784.
[http://dx.doi.org/10.1016/j.jmb.2004.03.077] [PMID: 15165849]
[138]
Holla, H.; Sharma, A.; Bhat, P.; Shinde, D.; Das, B. Two new substituted polychiral 5, 6-dihydro-α-pyrones from Orthosiphon diffusus and molecular docking studies. Phytochem. Lett., 2017, 22, 21-26.
[http://dx.doi.org/10.1016/j.phytol.2017.08.006]
[139]
Majhi, A.; Holla, H.; Shinde, D.; Srinivasulu, G.; Krishna, A.S.; Rao, J.V.; Das, B. Two novel polychiral furanopyrans from orthosiphon diffusus (Benth). Indian J. Chem., 2017, 56B, 855-861.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy