Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Plant Extracts as a Natural Source of Bioactive Compounds and Potential Remedy for the Treatment of Certain Skin Diseases

Author(s): Przemysław Sitarek*, Tomasz Kowalczyk, Joanna Wieczfinska, Anna Merecz-Sadowska, Karol Górski, Tomasz Śliwiński and Ewa Skała

Volume 26, Issue 24, 2020

Page: [2859 - 2875] Pages: 17

DOI: 10.2174/1381612826666200417160049

Price: $65

conference banner
Abstract

Skin ailments present a major health burden in both developed and undeveloped countries. Maintaining healthy skin is important for a healthy body. Medicinal plants have long provided reliable therapy in the treatment of skin diseases in humans through a diverse range of bioactive molecules. Skin diseases may have a various basis, or may be genetically determined; together, they constitute approximately 34% of all occupational diseases encountered in people of all ages. Of these, melanoma is one of the most dangerous forms, with very poor prognosis for patients if it is diagnosed too late. This review of the literature over the past five years examines the role and utilities of plant extracts in treating various skin diseases such as atopic dermatitis, acne or melanoma with various potential mechanisms of action.

Keywords: Plant natural extracts, acne, melanoma, atopic dermatitis, bioactive molecules, genetically.

[1]
Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol 2008; 17(12): 1063-72.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x] [PMID: 19043850]
[2]
Madison KC. Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol 2003; 121(2): 231-41.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12359.x] [PMID: 12880413]
[3]
Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol 2014; 134(6): 1527-34.
[http://dx.doi.org/10.1038/jid.2013.446] [PMID: 24166134]
[4]
Karimkhani C, Dellavalle RP, Coffeng LE, et al. Global skin disease morbidity and mortality: An update from the global burden of disease study 2013. JAMA Dermatol 2017; 153(5): 406-12.
[http://dx.doi.org/10.1001/jamadermatol.2016.5538] [PMID: 28249066]
[5]
Seth D, Cheldize K, Brown D, Freeman EF. Global burden of skin disease: inequities and innovations. Curr Dermatol Rep 2017; 6(3): 204-10.
[http://dx.doi.org/10.1007/s13671-017-0192-7] [PMID: 29226027]
[6]
Basra MKA, Shahrukh M. Burden of skin diseases. Expert Rev Pharmacoecon Outcomes Res 2009; 9(3): 271-83.
[http://dx.doi.org/10.1586/erp.09.23] [PMID: 19527100]
[7]
Ozkan G, Kamiloglu S, Ozdal T, Boyacioglu D, Capanoglu E. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules 2016; 21(3): 257.
[http://dx.doi.org/10.3390/molecules21030257] [PMID: 26927038]
[8]
Mota AH. A review of medicinal plants used in therapy of cardiovascular diseases. Int J Pharmacog Phytochem Res 2016; 8(4): 572-91.
[9]
Pandey A, Tripathi T. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacog Phytochem 2014; 2(5): 115-9.
[10]
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. 2017; Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts Plants (Basel) 22 6(4) pii: E42
[http://dx.doi.org/10.3390/plants6040042]
[11]
Dekebo A. Plant Extracts. London, UK: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.79069]
[12]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 2014; 9: 1-15.
[http://dx.doi.org/10.2147/IJN.S52634] [PMID: 24363556]
[13]
Hitesh V, Prasad SB. Herbal drug delivery system: A modern era prospective. Int J of Curr Pharm Rev Res 2013; 4(3): 88-101.
[14]
Sarangi MK, Padhi S. Novel herbal drug delivery system: An overview. Arch Med Health Sci 2018; 6: 171-9.
[http://dx.doi.org/10.4103/amhs.amhs_88_17]
[15]
Ordaz-Trinidad N, Dorantes-Alvarez L, Salas-Benito J. Patents on phytochemicals: Methodologies of extraction, application in food and pharmaceutical industry. Recent Pat Biotechnol 2015; 9(3): 158-67.
[http://dx.doi.org/10.2174/1872208310999160317145333] [PMID: 27316220]
[16]
Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacogn Rev 2014; 8(15): 52-60.
[http://dx.doi.org/10.4103/0973-7847.125531] [PMID: 24600196]
[17]
Gupta P, Kumar A, Sharma N, Patel M, Maurya A, Srivastava S. A Review on phytomedicines used in treatment of most common skin diseases. Indian J Drugs 2017; 5(4): 150-64.
[18]
Placek W. 1999; Budowa molekularna, metabolizm oraz fizjologia skóry [W:] Miklaszewska M, Wąsik F (red) Dermatologia pediatryczna. 1: 4.
[19]
Piérard-Franchimont C, Piérard GE. [Between factoids and facts, between dry skin and rough skin]. Rev Med Liege 2000; 55(10): 945-9.
[PMID: 11244804]
[20]
Kaszuba A, Trznadel-Budźko E, Drobnik G, et al. Etiopatogeneza, fizjologia i klinika suchej skóry. Dermatol Estet 1999; 1(2): 72.
[21]
Herskovitz I, Macquhae F, Fox JD, Kirsner RS. Skin movement, wound repair and development of engineered skin. Exp Dermatol 2016; 25(2): 99-100.
[http://dx.doi.org/10.1111/exd.12916] [PMID: 26660718]
[22]
Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids 2015; 103: 72-88.
[http://dx.doi.org/10.1016/j.steroids.2015.04.006] [PMID: 25988614]
[23]
Ribeiro CS, Leal F, Jeunon T. Skin anatomy, histology, and physiology. Daily routine in cosmetic dermatology Clinical Approaches and Procedures in Cosmetic Dermatology. 2017; 3-4.
[24]
Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol 2016; 33(1): 1-5.
[http://dx.doi.org/10.5114/pdia.2015.48037] [PMID: 26985171]
[25]
Dainichi T, Hanakawa S, Kabashima K. Classification of inflammatory skin diseases: a proposal based on the disorders of the three-layered defense systems, barrier, innate immunity and acquired immunity. J Dermatol Sci 2014; 76(2): 81-9.
[http://dx.doi.org/10.1016/j.jdermsci.2014.08.010] [PMID: 25242498]
[26]
Bickers DR, Lim HW, Margolis D, et al. The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol 2006; 55(3): 490-500.
[http://dx.doi.org/10.1016/j.jaad.2006.05.048] [PMID: 16908356]
[27]
Lindberg M, Isacson D, Bingefors K. Self-reported skin diseases, quality of life and medication use: a nationwide pharmaco-epidemiological survey in Sweden. Acta Derm Venereol 2014; 94(2): 188-91.
[http://dx.doi.org/10.2340/00015555-1672] [PMID: 24002657]
[28]
Godkin A, Smith KA. Chronic infections with viruses or parasites: breaking bad to make good. Immunology 2017; 150(4): 389-96.
[http://dx.doi.org/10.1111/imm.12703] [PMID: 28009488]
[29]
Leong SP, Mihm MC Jr, Murphy GF, et al. 2012; Progression of cutaneous melanoma: implications for treatment. Clin Exp Metastasis 29 755-96. 60
[http://dx.doi.org/10.1007/s10585-012-9521-1]
[30]
Lens M. Current clinical overview of cutaneous melanoma. Br J Nurs 2008; 17(5): 300-5.
[http://dx.doi.org/10.12968/bjon.2008.17.5.28825] [PMID: 18414292]
[32]
Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin Cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb) 2017; 7(Suppl. 1): 5-19.
[http://dx.doi.org/10.1007/s13555-016-0165-y] [PMID: 28150105]
[33]
World Health Organisation - Statistical Information System Available from:. https://www.who.int/uv/faq/skincancer/en/index1.html
[34]
Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight. Adv Exp Med Biol 2008; 624: 89-103.
[http://dx.doi.org/10.1007/978-0-387-77574-6_8] [PMID: 18348450]
[35]
Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014; 28(6): 1005-11.
[PMID: 25398793]
[36]
Chen ST, Geller AC, Tsao H. Update on the epidemiology of melanoma. Curr Dermatol Rep 2013; 2(1): 24-34.
[http://dx.doi.org/10.1007/s13671-012-0035-5] [PMID: 23580930]
[37]
Das A, Panda S. Use of topical corticosteroids in dermatology: An evidence-based approach. Indian J Dermatol 2017; 62(3): 237-50.
[PMID: 28584365]
[38]
Fukaya M, Sato K, Sato M, et al. Topical steroid addiction in atopic dermatitis. Drug Healthc Patient Saf 2014; 6: 131-8.
[http://dx.doi.org/10.2147/DHPS.S69201] [PMID: 25378953]
[39]
Gutfreund K, Bienias W, Szewczyk A, Kaszuba A. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. Postepy Dermatol Alergol 2013; 30(3): 165-9.
[http://dx.doi.org/10.5114/pdia.2013.35619] [PMID: 24278069]
[40]
Gupta AK, Adamiak A, Chow M. Tacrolimus: a review of its use for the management of dermatoses. J Eur Acad Dermatol Venereol 2002; 16(2): 100-14.
[http://dx.doi.org/10.1046/j.1468-3083.2002.00380.x] [PMID: 12046809]
[41]
Gisondi P, Ellis CN, Girolomoni G. Pimecrolimus in dermatology: atopic dermatitis and beyond. Int J Clin Pract 2005; 59(8): 969-74.
[http://dx.doi.org/10.1111/j.1368-5031.2005.00587.x] [PMID: 16033622]
[42]
Megna M, Napolitano M, Patruno C, et al. Systemic treatment of adult atopic dermatitis: a review. Dermatol Ther (Heidelb) 2017; 7(1): 1-23.
[http://dx.doi.org/10.1007/s13555-016-0170-1] [PMID: 28025775]
[43]
Patrizi A, Raone B, Ravaioli GM. Management of atopic dermatitis: safety and efficacy of phototherapy. Clin Cosmet Investig Dermatol 2015; 8: 511-20.
[http://dx.doi.org/10.2147/CCID.S87987] [PMID: 26491366]
[44]
Fox L, Csongradi C, Aucamp M, du Plessis J, Gerber M. Treatment modalities for acne. Molecules 2016; 21(8): 1063.
[http://dx.doi.org/10.3390/molecules21081063] [PMID: 27529209]
[45]
Seth V, Mishra A. Acne vulgaris management: what’s new and what’s still true? Int J Adv Med 2015; 2(1): 1-5.
[http://dx.doi.org/10.5455/2349-3933.ijam20150201]
[46]
Maverakis E, Cornelius LA, Bowen GM, et al. Metastatic melanoma - a review of current and future treatment options. Acta Derm Venereol 2015; 95(5): 516-24.
[http://dx.doi.org/10.2340/00015555-2035] [PMID: 25520039]
[47]
Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTargets Ther 2018; 7: 35-49.
[http://dx.doi.org/10.2147/ITT.S134842] [PMID: 29922629]
[48]
Leonardi GC, Falzone L, Salemi R, et al. Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol 2018; 52(4): 1071-80.
[http://dx.doi.org/10.3892/ijo.2018.4287] [PMID: 29532857]
[49]
Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: A Review. IJPSR 2019; 10(2): 494-504.
[50]
Bellamy D, Pfister A. World medicine - plants, patients and people. Oxford, UK: Blackwell Publishers 1992.
[51]
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2015; 2(3): 251-86.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[52]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[53]
Ahmad SN, Ahmed SE, Arshad M, et al. Secondary metabolites and their multidimensional prospective in plant life. J Pharmacog Phytochem 2017; 6(2): 205-14.
[54]
Croteau R, Kutchan TM, Lewis NG. 2000.Biochemistry & Molecular Biology of Plants.Buchanan B, Gruissem W, Jones R. American Society of Plan Physiologists
[55]
Edreva A, Velikova V, Tsonev T, et al. Stress- protective role of secondary metabolites: Diversity of functions and mechanisms. Gen Appl Plant Physiol 2008; 34(1-2): 67-78.
[56]
Kabera JN, Semana E, Mussa AR, He X. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2014; 377-92.
[57]
Goldberg G. Plants: diet and health 2003.
[http://dx.doi.org/10.1002/9780470774465]
[58]
Mazid M, Khan TA, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biol Med (Aligarh) 2011; 3(2): 232-49.
[59]
Harborne JB, Walton NJ, Brown DE. Classes and functions of secondary products in chemicals from Plants. Perspectives on Secondary plant products Imperial college press 1996; 1-25.
[60]
Crozier A, Jaganath IB, Clifford MN. Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing Ltd. 2006.
[http://dx.doi.org/10.1002/9780470988558]
[61]
Kumar S, Pandey AK. 2013; Chemistry and biological activities of flavonoids: an overview. The Scientific World J 2013 2013 162750
[62]
Sarfraz I, Rasul A, Jabeen F, et al. Fraxinus: A plant with versatile pharmacological and biological activities. Evid Based Complement Alternat Med 2017; 2017 4269868
[http://dx.doi.org/10.1155/2017/4269868] [PMID: 29279716]
[63]
Komakech R, Kim YG, Matsabisa GM, Kang Y. Anti-inflammatory and analgesic potential of Tamarindus indica Linn. (Fabaceae): a narrative review. Integr Med Res 2019; 8(3): 181-6.
[http://dx.doi.org/10.1016/j.imr.2019.07.002] [PMID: 31453087]
[64]
Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B. Resources and biological activities of natural polyphenols. Nutrients 2014; 6(12): 6020-47.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[65]
Geller MJ. Ancient Babylonian medicine: Theory and practice. Chichester, West Sussex, U.K.: Wiley-Blackwell 2010.
[http://dx.doi.org/10.1002/9781444319996]
[66]
Jastrow M. 1914.The Medicine of the Babylonians and Assyrians
[http://dx.doi.org/10.1177/003591571400701610]
[67]
Kamboj VP. Herbal medicine. Curr Sci 2000; 78: 35-9.
[68]
Policepatel SS, Manikrao VG. Ethnomedicinal plants used in the treatment of skin diseases in Hyderabad Karnataka region, Karnataka, India. Asian Pac J Trop Biomed 2013; 3: 882-6.
[http://dx.doi.org/10.1016/S2221-1691(13)60173-2]
[69]
Abbasi AM, Khan MA, Ahmad M, Zafar M, Jahan S, Sultana S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J Ethnopharmacol 2010; 128(2): 322-35.
[http://dx.doi.org/10.1016/j.jep.2010.01.052] [PMID: 20138210]
[70]
Suresh M, Ayyanar M, Amalraj L, Mehalingam P. Ethnomedicinal plants used to treat skin diseases in Pothigai hills of Western Ghats, Tirunelveli district, Tamil Nadu, India. J Biosci Res 2012; 3: 112-21.
[71]
Rasheed A, Shama SN, Joy JM, Reddy BS, Roja C. Formulation and evaluation of herbal anti-acne moisturizer. Pak J Pharm Sci 2012; 25(4): 867-70.
[PMID: 23010007]
[72]
Mahmood T, Akhtar N, Khan BA. Herbs as alternate in treating acne. Bratisl Lek Listy 2012; 113(2): 125.
[PMID: 22394047]
[73]
Lutomski J. The appreciated herbal medicinals for dermatologic uses. Postepy Fitoter 2002; 9(3/4): 39-44.
[74]
Ożarowski A Warszawa:. Comes 1993; 189. Leksykon leków naturalnych
[75]
Wolski T, Karwat ID, Najda A. Contamination and supplementation of food and health safety. Postepy Fitoter 2005; 15(1): 35-41.
[76]
Maleszka R. The practical usage of the herb medicaments in dermatology. Postepy Fitoter 2002; 9(3/4): 53-63.
[77]
Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy 2018; 73(6): 1284-93.
[http://dx.doi.org/10.1111/all.13401] [PMID: 29319189]
[78]
Asher MI, Montefort S, Björkstén B, et al. ISAAC Phase Three Study Group: Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006; 368: 733-43.
[http://dx.doi.org/10.1016/S0140-6736(06)69283-0] [PMID: 16935684]
[79]
Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab 2015; 66(Suppl. 1): 8-16.
[http://dx.doi.org/10.1159/000370220] [PMID: 25925336]
[80]
Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J Allergy Clin Immunol 2016; 138(2): 350-358.e1.
[http://dx.doi.org/10.1016/j.jaci.2016.06.002] [PMID: 27497277]
[81]
Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers 2018; 4(1): 1.
[http://dx.doi.org/10.1038/s41572-018-0001-z] [PMID: 29930242]
[82]
Bieber T. Atopic dermatitis. N Engl J Med 2008; 358(14): 1483-94.
[http://dx.doi.org/10.1056/NEJMra074081] [PMID: 18385500]
[83]
Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol 2013; 132(5): 1132-8.
[http://dx.doi.org/10.1016/j.jaci.2013.08.031] [PMID: 24094544]
[84]
Wang D, Beck LA. Immunologic targets in atopic dermatitis and emerging therapies: an update. Am J Clin Dermatol 2016; 17(5): 425-43.
[http://dx.doi.org/10.1007/s40257-016-0205-5] [PMID: 27371134]
[85]
Cha KJ, Im MA, Gu A, et al. Inhibitory effect of Patrinia scabiosifolia Link on the development of atopic dermatitis-like lesions in human keratinocytes and NC/Nga mice. J Ethnopharmacol 2017; 206(206): 135-43.
[http://dx.doi.org/10.1016/j.jep.2017.03.045] [PMID: 28347830]
[86]
Jo BG, Park NJ, Jegal J, et al. Stellera chamaejasme and its main compound luteolin 7-O-glucoside alleviates skin lesions in oxazolone- and 2,4-dinitrochlorobenzene-stimulated murine models of atopic dermatitis. Planta Med 2019; 85(7): 583-90.
[http://dx.doi.org/10.1055/a-0746-8698] [PMID: 30273950]
[87]
Choi EJ, Debnath T, Tang Y, Ryu YB, Moon SH, Kim EK. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance. Biomed Pharmacother 2016; 84: 870-7.
[http://dx.doi.org/10.1016/j.biopha.2016.09.085] [PMID: 27744247]
[88]
Kang H, Lee CH, Kim JR, et al. Theobroma cacao extract attenuates the development of Dermatophagoides farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Food Chem 2017; 216(216): 19-26.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.141] [PMID: 27596387]
[89]
Amagai Y, Katsuta C, Nomura Y, et al. Amelioration of atopic-like skin conditions in NC/Tnd mice by topical application with distilled Alpinia intermedia Gagnep extracts. J Dermatol 2017; 44(11): 1238-47.
[http://dx.doi.org/10.1111/1346-8138.13995] [PMID: 28815692]
[90]
Choi Y-A, Choi J-K, Jang Y-H, et al. Anti‑inflammatory effect of Amomum xanthioides in a mouse atopic dermatitis model. Mol Med Rep 2017; 16(6): 8964-72.
[http://dx.doi.org/10.3892/mmr.2017.7695] [PMID: 28990098]
[91]
Ku J-M, Hong S-H, Kim HI, Seo HS, Shin Y-C, Ko S-G. Effects of Angelicae dahuricae Radix on 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice model. BMC Complement Altern Med 2017; 17(1): 98.
[http://dx.doi.org/10.1186/s12906-017-1584-8] [PMID: 28173791]
[92]
Han H-M, Kim S-J, Kim J-S, et al. Ameliorative effects of Artemisia argyi Folium extract on 2,4‑dinitrochlorobenzene‑induced atopic dermatitis‑like lesions in BALB/c mice. Mol Med Rep 2016; 14(4): 3206-14.
[http://dx.doi.org/10.3892/mmr.2016.5657] [PMID: 27571702]
[93]
Choo G-S, Lim D-P, Kim S-M, et al. Anti‑inflammatory effects of Dendropanax morbifera in lipopolysaccharide‑stimulated RAW264.7 macrophages and in an animal model of atopic dermatitis. Mol Med Rep 2019; 19(3): 2087-96.
[http://dx.doi.org/10.3892/mmr.2019.9887] [PMID: 30747232]
[94]
Jegal J, Park N-J, Bong S-K, Jegal H, Kim S-N, Yang M-H. Dioscorea quinqueloba ameliorates oxazolone- and 2,4-dinitrochlorobenzene-induced atopic dermatitis symptoms in murine models. Nutrients 2017; 9(12): 1324.
[http://dx.doi.org/10.3390/nu9121324] [PMID: 29206209]
[95]
Yang J-H, Yoo J-M, Cho W-K, Ma J-Y. Ethanol extract of sanguisorbae radix inhibits mast cell degranulation and suppresses 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions. Mediators Inflamm 2016; 2016 2947390
[http://dx.doi.org/10.1155/2016/2947390] [PMID: 27065570]
[96]
Yang J-H, Lee E, Lee B, Cho W-K, Ma J-Y, Park K-I. Ethanolic extracts of artemisia apiacea hance improved atopic dermatitis-like skin lesions in vivo and suppressed TNF-Alpha/IFN-gamma-induced proinflammatory chemokine production in vitro. Nutrients 2018; 10: 806.
[http://dx.doi.org/10.3390/nu10070806]
[97]
Kawahara T, Tsutsui K, Nakanishi E, Inoue T, Hamauzu Y. Effect of the topical application of an ethanol extract of quince seeds on the development of atopic dermatitis-like symptoms in NC/Nga mice. BMC Complement Altern Med 2017; 17(1): 80.
[http://dx.doi.org/10.1186/s12906-017-1606-6] [PMID: 28137259]
[98]
Sung Y-Y, Yoon T, Jang S, Ho Kim K. 2016; Forsythia suspensa Suppresses House Dust Mite Extract-Induced Atopic Dermatitis in NC/Nga Mice PLoS One 9 11(12)
[99]
Jegal J, Park NJ, Jo BG, et al. 2018; Anti-atopic properties of gracillin isolated from Dioscorea quinqueloba on 2,4- dinitrochlorobenzene-induced skin lesions in mice nutrients 10: 1205.
[100]
Kang Y-M, Lee K-Y, An H-J. Inhibitory effects of helianthus tuberosus ethanol extract on dermatophagoides farina body-induced atopic dermatitis mouse model and human keratinocytes. Nutrients 2018; 10(11): 1657.
[http://dx.doi.org/10.3390/nu10111657] [PMID: 30400334]
[101]
Choi YY, Kim MH, Ahn KS, Um J-Y, Lee S-G, Yang WM. Immunomodulatory effects of Pseudostellaria heterophylla (Miquel) Pax on regulation of Th1/Th2 levels in mice with atopic dermatitis. Mol Med Rep 2017; 15(2): 649-56.
[http://dx.doi.org/10.3892/mmr.2016.6093] [PMID: 28035398]
[102]
Cha H-S, Kim W-J, Lee M-H, et al. Inhibitory effect of Pterocarpus indicus Willd water extract on IgE/Ag-induced mast cell and atopic dermatitis-like mouse models. Biosci Biotechnol Biochem 2016; 80(5): 911-9.
[http://dx.doi.org/10.1080/09168451.2015.1135044] [PMID: 26943486]
[103]
Jegal J, Park N-J, Park SA, et al. Juniperus chinensis fruits attenuate oxazolone- and 2,4-dinitrochlorobenzene-induced atopic dermatitis symptoms in mice. Biol Pharm Bull 2018; 41(2): 259-65.
[http://dx.doi.org/10.1248/bpb.b17-00818] [PMID: 29386485]
[104]
Ha H, Lim H-S, Lee M-Y, et al. Luffa cylindrica suppresses development of Dermatophagoides farinae-induced atopic dermatitis-like skin lesions in Nc/Nga mice. Pharm Biol 2015; 53(4): 555-62.
[http://dx.doi.org/10.3109/13880209.2014.932392] [PMID: 25327534]
[105]
Komatsu K-I, Takanari J, Maeda T, et al. Perilla leaf extract prevents atopic dermatitis induced by an extract of Dermatophagoides farinae in NC/Nga mice. Asian Pac J Allergy Immunol 2016; 34(4): 272-7.
[PMID: 27001658]
[106]
Bae M-J, See H-J, Choi G, Kang C-Y, Shon D-H, Shin H-S. Regulatory t cell induced by Poria cocos bark exert therapeutic effects in murine models of atopic dermatitis and food allergy. Mediators Inflamm 2016; 2016 3472608
[http://dx.doi.org/10.1155/2016/3472608] [PMID: 27445434]
[107]
Cho K, Kang MC, Parveen A, Yumnam S, Kim SY. Anti-inflammatory effect of chloroform fraction of Pyrus ussuriensis maxim. leaf extract on 2, 4-dinitrochlorobenzene-induced atopic dermatitis in nc/nga mice. Nutrients 2019; 11(2): 276.
[http://dx.doi.org/10.3390/nu11020276] [PMID: 30691219]
[108]
Yang HR, Lee H, Kim J-H, et al. Therapeutic effect of Rumex japonicus Houtt. on DNCB-induced atopic dermatitis-like skin lesions in balb/c mice and human keratinocyte HaCaT cells. Nutrients 2019; 11(3): 573.
[http://dx.doi.org/10.3390/nu11030573] [PMID: 30866501]
[109]
Lim H-S, Ha H, Shin H-K, Jeong S-J. The genome-wide expression profile of Saussurea lappa extract on house dust mite-induced atopic dermatitis in Nc/Nga mice. Mol Cells 2015; 38(9): 765-72.
[http://dx.doi.org/10.14348/molcells.2015.0062] [PMID: 26299330]
[110]
Kang MA, Choung S-Y. Solanum tuberosum L. cv Hongyoung extract inhibits 2,4‑dinitrochlorobenzene‑induced atopic dermatitis in NC/Nga mice. Mol Med Rep 2016; 14(4): 3093-103.
[http://dx.doi.org/10.3892/mmr.2016.5595] [PMID: 27510042]
[111]
Nam JH, Jung HW, Chin Y-W, Yang W-M, Bae HS, Kim W-K. Spirodela polyrhiza extract modulates the activation of atopic dermatitis-related ion channels, Orai1 and TRPV3, and inhibits mast cell degranulation. Pharm Biol 2017; 55(1): 1324-9.
[http://dx.doi.org/10.1080/13880209.2017.1300819] [PMID: 28290212]
[112]
Park JG, Yi Y-S, Han SY, et al. Tabetri™ (Tabebuia avellanedae ethanol Extract) ameliorates atopic dermatitis symptoms in mice. Mediators Inflamm 2018. 9079527
[113]
Kim K-H, Choung S-Y. Oral administration of Vaccinium uliginosum L. extract alleviates DNCB-induced atopic dermatitis in NC/Nga mice. J Med Food 2014; 17(12): 1350-60.
[http://dx.doi.org/10.1089/jmf.2013.3053] [PMID: 25260029]
[114]
Choi YY, Kim MH, Lee H, et al. Cynanchum atratum inhibits the development of atopic dermatitis in 2,4-dinitrochlorobenzene-induced mice. Biomed Pharmacother 2017; 90: 321-7.
[http://dx.doi.org/10.1016/j.biopha.2017.03.065] [PMID: 28365521]
[115]
Cho BO, Che DN, Yin HH, Shin JY, Jang SI. Diospyros lotus leaf and grapefruit stem extract synergistically ameliorate atopic dermatitis-like skin lesion in mice by suppressing infiltration of mast cells in skin lesions. Biomed Pharmacother 2017; 89: 819-26.
[http://dx.doi.org/10.1016/j.biopha.2017.01.145] [PMID: 28282783]
[116]
Lee S, Park N-J, Bong S-K, et al. Ameliorative effects of Juniperus rigida fruit on oxazolone- and 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. J Ethnopharmacol 2018; 214: 160-7.
[http://dx.doi.org/10.1016/j.jep.2017.12.022] [PMID: 29258854]
[117]
Yang G, Cheon S-Y, Chung K-S, et al. Solanum tuberosum L. cv jayoung epidermis extract inhibits mite antigen-induced atopic dermatitis in Nc/Nga mice by regulating the th1/th2 balance and expression of filaggrin. J Med Food 2015; 18(9): 1013-21.
[http://dx.doi.org/10.1089/jmf.2014.3338] [PMID: 26102094]
[118]
Lim SJ, Kim M, Randy A, Nam EJ, Nho CW. Effects of Hovenia dulcis Thunb. extract and methyl vanillate on atopic dermatitis-like skin lesions and TNF-α/IFN-γ-induced chemokines production in HaCaT cells. J Pharm Pharmacol 2016; 68(11): 1465-79.
[http://dx.doi.org/10.1111/jphp.12640] [PMID: 27696405]
[119]
Lee J, Choi YY, Kim MH, et al. Topical application of angelica sinensis improves pruritus and skin inflammation in mice with atopic dermatitis-like symptoms. J Med Food 2016; 19(1): 98-105.
[http://dx.doi.org/10.1089/jmf.2015.3489] [PMID: 26305727]
[120]
Sung Y-Y, Lee AY, Kim HK. The Gardenia jasminoides extract and its constituent, geniposide, elicit anti-allergic effects on atopic dermatitis by inhibiting histamine in vitro and in vivo. J Ethnopharmacol 2014; 156: 33-40.
[http://dx.doi.org/10.1016/j.jep.2014.07.060] [PMID: 25153023]
[121]
Shim E-H, Choung S-Y. Inhibitory effects of Solanum tuberosum L. var. vitelotte extract on 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. J Pharm Pharmacol 2014; 66(9): 1303-16.
[http://dx.doi.org/10.1111/jphp.12254] [PMID: 24961480]
[122]
Choi YA, Yu JH, Jung HD, et al. Inhibitory effect of ethanol extract of Ampelopsis brevipedunculata rhizomes on atopic dermatitis-like skin inflammation. J Ethnopharmacol 2019; 238 111850
[http://dx.doi.org/10.1016/j.jep.2019.111850] [PMID: 30953820]
[123]
Lee H-S, Park J-W, Kwon O-K, et al. Anti-inflammatory effects of ethanol extract from the leaves and shoots of Cedrela odorata L. in cytokine-stimulated keratinocytes. Exp Ther Med 2019; 18(1): 833-40.
[http://dx.doi.org/10.3892/etm.2019.7639] [PMID: 31281457]
[124]
Sutaria AH, Masood S, Schlessinger J. Acne Vulgaris. Treasure Island, FL: StatPearls Publishing 2019.
[125]
Nasri H, Bahmani M, Shahinfard N, Moradi Nafchi A, Saberianpour S, Rafieian Kopaei M. Medicinal plants for the treatment of acne vulgaris: a review of recent evidences. Jundishapur J Microbiol 2015; 8(11) e25580
[http://dx.doi.org/10.5812/jjm.25580] [PMID: 26862380]
[126]
Bojar RA, Holland KT. Acne and Propionibacterium acnes. Clin Dermatol 2004; 22(5): 375-9.
[http://dx.doi.org/10.1016/j.clindermatol.2004.03.005] [PMID: 15556721]
[127]
Gupta A, Sharma YK, Dash KN, Chaudhari ND, Jethani S. Quality of life in acne vulgaris: Relationship to clinical severity and demographic data. Indian J Dermatol Venereol Leprol 2016; 82(3): 292-7.
[http://dx.doi.org/10.4103/0378-6323.173593] [PMID: 27088931]
[128]
Tan JK, Bhate K. 2015; A global perspective on the epidemiology of acne. Br J Dermatol 172(1): 3-12.
[http://dx.doi.org/10.1111/bjd.13462]
[129]
Seattle WI. GBD Compare. Seattle: University of Washington 2013.
[130]
Pawin H, Beylot C, Chivot M, et al. Physiopathology of acne vulgaris: recent data, new understanding of the treatments. Eur J Dermatol 2004; 14(1): 4-12.
[PMID: 14965788]
[131]
Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J Am Acad Dermatol 1986; 14(2 Pt 1): 221-5.
[http://dx.doi.org/10.1016/S0190-9622(86)70025-X] [PMID: 2936775]
[132]
Mallon E, Newton JN, Klassen A, Stewart-Brown SL, Ryan TJ, Finlay AY. The quality of life in acne: a comparison with general medical conditions using generic questionnaires. Br J Dermatol 1999; 140(4): 672-6.
[http://dx.doi.org/10.1046/j.1365-2133.1999.02768.x] [PMID: 10233319]
[133]
Gollnick H, Cunliffe W, Berson D, et al. Management of acne: a report from a global alliance to improve outcomes in acne. J Am Acad Dermatol 2003; 49(1)(Suppl.): S1-S37.
[http://dx.doi.org/10.1067/mjd.2003.618] [PMID: 12833004]
[134]
Scheinfeld NS. Acne: a review of diagnosis and treatment. P&T 2007; 32: 340.
[135]
Bettoli V, Zauli S, Virgili A. 2015; Is hormonal treatment still an option in acne today? Br J Dermatol (1): 37-46.
[http://dx.doi.org/10.1111/bjd.13681]
[136]
Zouboulis CC. Sebaceous gland receptors. Dermatoendocrinol 2009; 1(2): 77-80.
[http://dx.doi.org/10.4161/derm.1.2.7804] [PMID: 20224688]
[137]
Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 2002; 169(3): 1535-41.
[http://dx.doi.org/10.4049/jimmunol.169.3.1535] [PMID: 12133981]
[138]
Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front Pharmacol 2019; 10: 486.
[http://dx.doi.org/10.3389/fphar.2019.00486] [PMID: 31139079]
[139]
Huang WC, Tsai TH, Huang CJ, et al. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food Funct 2015; 6(8): 2550-60.
[http://dx.doi.org/10.1039/C5FO00550G] [PMID: 26098998]
[140]
Kwon HH, Yoon JY, Park SY, et al. Activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent multiple pathogenic factors of acne. J Invest Dermatol 2015; 135(6): 1491-500.
[http://dx.doi.org/10.1038/jid.2015.29] [PMID: 25647437]
[141]
Jin S, Lee M-Y. Kaempferia parviflora extract as a potential anti-acne agent with anti-inflammatory, sebostatic and anti-Propionibacterium acnes Activity. Int J Mol Sci 2018; 19(11): 3457.
[http://dx.doi.org/10.3390/ijms19113457] [PMID: 30400322]
[142]
Guo M, Lu Y, Yang J, Zhao X, Lu Y. Inhibitory effects of Schisandra chinensis extract on acne-related inflammation and UVB-induced photoageing. Pharm Biol 2016; 54(12): 2987-94.
[http://dx.doi.org/10.1080/13880209.2016.1199041] [PMID: 27328727]
[143]
Feuillolay C, Pecastaings S, Le Gac C, et al. A Myrtus communis extract enriched in myrtucummulones and ursolic acid reduces resistance of Propionibacterium acnes biofilms to antibiotics used in acne vulgaris. Phytomedicine 2016; 23(3): 307-15.
[http://dx.doi.org/10.1016/j.phymed.2015.11.016] [PMID: 26969384]
[144]
Chuang L-T, Tsai T-H, Lien T-J, et al. Ethanolic extract of Origanum vulgare Suppresses Propionibacterium acnes-induced Inflammatory responses in human monocyte and mouse ear edema models. Molecules 2018; 23(8): 1987.
[http://dx.doi.org/10.3390/molecules23081987] [PMID: 30096960]
[145]
Lee C-J, Chen L-G, Liang W-L, Wang C-C. Multiple activities of Punica granatum linne against acne vulgaris. Int J Mol Sci 2017; 18(1): 141.
[http://dx.doi.org/10.3390/ijms18010141] [PMID: 28085116]
[146]
Tsai T-H, Chuang L-T, Lien T-J, Liing Y-R, Chen W-Y, Tsai P-J. Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses. J Med Food 2013; 16(4): 324-33.
[http://dx.doi.org/10.1089/jmf.2012.2577] [PMID: 23514231]
[147]
Sharma R, Kishore N, Hussein A, Lall N. Antibacterial and anti-inflammatory effects of Syzygium jambos L. (Alston) and isolated compounds on acne vulgaris. BMC Complement Altern Med 2013; 13: 292.
[http://dx.doi.org/10.1186/1472-6882-13-292] [PMID: 24168697]
[148]
Poomanee W, Chaiyana W, Mueller M, Viernstein H, Khunkitti W, Leelapornpisid P. In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism of action against Propionibacterium acnes. Anaerobe 2018; 52: 64-74.
[http://dx.doi.org/10.1016/j.anaerobe.2018.05.004] [PMID: 29906773]
[149]
Lee EH, Shin JH, Kim SS, Joo J-H, Choi E, Seo SR. Suppression of Propionibacterium acnes-induced skin inflammation by laurus nobilis extract and its major constituent eucalyptol. Int J Mol Sci 2019; 20(14): 3510.
[http://dx.doi.org/10.3390/ijms20143510] [PMID: 31319552]
[150]
Hou JH, Shin H, Jang KH, et al. Anti-acne properties of hydrophobic fraction of red ginseng (Panax ginseng C.A. Meyer) and its active components. Phytother Res 2019; 33(3): 584-90.
[http://dx.doi.org/10.1002/ptr.6243] [PMID: 30506753]
[151]
Ali MJ, Obaid RF, Obaid RF. Antibacterial activity for acne treatment through medicinal plants extracts: novel alternative therapies for acne. J Pure Appl Microbiol 2019; 13(2): 1245-50.
[http://dx.doi.org/10.22207/JPAM.13.2.66]
[152]
Revan K, Mahendrakumar CB, Kiran B. Evaluation of anti-acne activity of hydroalcoholic extract of Embelia ribes Burm. International J Pharmacog Phytochem Res 2015; 7(6): 1116-20.
[153]
Julianti E, Rajah KK, Fidrianny I. Antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination effects against acne-causing bacteria. Sci Pharm 2017; 85(2): 19.
[http://dx.doi.org/10.3390/scipharm85020019] [PMID: 28398231]
[154]
Park H, Woo S, Hyun J, et al. Effect and tolerability of the combined plant extract (pac) in treatment of acne vulgaris. J cosmetics. Dermatol Sci App 2018; 8: 55-72.
[http://dx.doi.org/10.4236/jcdsa.2018.82009]
[155]
Smida I, Sweidan A, Souissi Y, et al. Anti-acne, antioxidant and cytotoxic properties of ludwigia peploides leaf extract. Intern J Pharmacog Phytochem Res 2018; 10(7): 271-8.
[156]
Prasad SB, Kaur D. In vitro anti acne activity of ethanolic extract of stem of Berberis aristata. Int J Pharmacog PhytochemRes 2017; 9(2): 190-2.
[http://dx.doi.org/10.25258/phyto.v9i2.8061]
[157]
Shafiq Y, Naqvi BS, Rizwani GH, Usman M, Shah BA, Hina MAB. Anti-acne activity of Casuarina equisetifolia bark extract: A randomized clinical trial. Bangladesh J Pharmacol 2014; 9: 337-41.
[http://dx.doi.org/10.3329/bjp.v9i3.19342]
[158]
Abu-Qatouseh L, Mallah E, Mansour K. Evaluation of anti-propionibacterium acnes and anti-inflammatory effects of polyphenolic extracts of medicinal herbs in Jordan. Biomed Pharmacol J 2019; 12(1)
[http://dx.doi.org/10.13005/bpj/1629]
[159]
Shahtalebi MA, Asghari GR, Rahmani F, Shafiee F, Jahanian-Najafabadi A. Formulation of herbal gel of Antirrhinum majus Extract and evaluation of its Anti-Propionibacterium acne effects. Adv Biomed Res 2018; 7: 53.
[http://dx.doi.org/10.4103/abr.abr_99_17] [PMID: 29657938]
[160]
Teymouri GS, Teimouri MS. The comparative effect of hydro alcoholic and hydro distillation extracts of Melissa officinalis on acne and pimple. Int J Pharmacol. Phytochem Ethnomed 2019; 12: 35-43.
[http://dx.doi.org/10.18052/www.scipress.com/IJPPE.12.35]
[161]
Budiman A, Aulifa DL, Kusuma ASW, Sulastri A. Antibacterial and antioxidant activity of black mulberry (Morus nigra L.) extract for acne treatment. Pharmacogn J 2017; 9(5): 611-4.
[http://dx.doi.org/10.5530/pj.2017.5.97]
[162]
Kaur D, Prasad SB. Anti-acne activity of acetone extract of Plumbago indica root. Asian J Pharm Clin Res 2016; 9(2): 285-7.
[163]
Geller AC, Clapp RW, Sober AJ, et al. Melanoma epidemic: an analysis of six decades of data from the Connecticut Tumor Registry. J Clin Oncol 2013; 31(33): 4172-8.
[http://dx.doi.org/10.1200/JCO.2012.47.3728] [PMID: 24043747]
[164]
Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D. Epidemiological trends in skin cancer. Dermatol Pract Concept 2017; 7(2): 1-6.
[http://dx.doi.org/10.5826/dpc.0702a01] [PMID: 28515985]
[165]
Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56(2): 106-30.
[http://dx.doi.org/10.3322/canjclin.56.2.106] [PMID: 16514137]
[166]
Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 2001; 19(16): 3622-34.
[http://dx.doi.org/10.1200/JCO.2001.19.16.3622] [PMID: 11504744]
[167]
Mattia G, Puglisi R, Ascione B, Malorni W, Carè A, Matarrese P. Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death Dis 2018; 9(2): 112.
[http://dx.doi.org/10.1038/s41419-017-0059-7] [PMID: 29371600]
[168]
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19(8): 11679-721.
[http://dx.doi.org/10.3390/molecules190811679] [PMID: 25102117]
[169]
Katiyar SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch Biochem Biophys 2011; 508(2): 152-8.
[http://dx.doi.org/10.1016/j.abb.2010.11.015] [PMID: 21094124]
[170]
Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 114(4): 513-21.
[http://dx.doi.org/10.1002/ijc.20785] [PMID: 15609335]
[171]
Chan LP, Chou TH, Ding HY, et al. Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochim Biophys Acta 2012; 1820(7): 1081-91.
[http://dx.doi.org/10.1016/j.bbagen.2012.04.013] [PMID: 22554915]
[172]
Lee CJ, Park SK, Kang JY, et al. Melanogenesis regulatory activity of the ethyl acetate fraction from Arctium lappa L. leaf on α-MSH-induced B16/F10 melanoma cells. Ind Crops Prod 2019; 138 111581
[http://dx.doi.org/10.1016/j.indcrop.2019.111581]
[173]
Chatatikun M, Yamauchi T, Yamasaki K, Aiba S, Chiabchalard A. Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. J Tradit Complement Med 2018; 9(1): 66-72.
[http://dx.doi.org/10.1016/j.jtcme.2017.12.002] [PMID: 30671368]
[174]
Tsuyoshi Hiramatsu, Castro D, Ferreira Campos J, Damião MJ, et al. Ethanolic extract of Senna velutina roots: Chemical composition, in vitro and in vivo antitumor effects, and B16F10-Nex2 melanoma cell death mechanisms. Oxid Med Cell Longev 2019. 5719483
[175]
Uscanga-Palomeque AC, Zapata-Benavides P, Saavedra-Alonso S, et al. Inhibitory effect of Cuphea aequipetala extracts on murine b16f10 melanoma in vitro and in vivo. BioMed Res Int 2019; 2019 8560527
[http://dx.doi.org/10.1155/2019/8560527]
[176]
Siveen KS, Kuttan G. Inhibition of B16F-10 melanoma-induced lung metastasis in C57BL/6 mice by Aerva lanata via induction of apoptosis. Integr Cancer Ther 2013; 12(1): 81-92.
[http://dx.doi.org/10.1177/1534735412443853] [PMID: 23182907]
[177]
Yanarojana M, Nararatwanchai T, Thairat S, Tancharoen S. Antiproliferative activity and induction of apoptosis in human melanoma cells by Houttuynia cordata Thunb extract. Anticancer Res 2017; 37(12): 6619-28.
[PMID: 29187437]
[178]
Looi CY, Moharram B, Paydar M, et al. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BMC Complement Altern Med 2013; 13: 166.
[http://dx.doi.org/10.1186/1472-6882-13-166] [PMID: 23837445]
[179]
Krajarng A, Chulasiri M, Watanapokasin R. Etlingera elatior Extract promotes cell death in B16 melanoma cells via down-regulation of ERK and Akt signaling pathways. BMC Complement Altern Med 2017; 17(1): 415.
[http://dx.doi.org/10.1186/s12906-017-1921-y] [PMID: 28830513]
[180]
Pandey S. In vivo antitumor potential of extracts from different parts of Bauhinia variegata linn. against b16f10 melanoma tumour model in c57bl/6 mice. Appl Cancer Res 2017; 37: 33.
[http://dx.doi.org/10.1186/s41241-017-0039-3]
[181]
Fong SY, Piva T, Dekiwadia C, Urban S, Huynh T. Comparison of cytotoxicity between extracts of Clinacanthus nutans (Burm. f.) Lindau leaves from different locations and the induction of apoptosis by the crude methanol leaf extract in D24 human melanoma cells. BMC Complement Altern Med 2016; 16: 368.
[http://dx.doi.org/10.1186/s12906-016-1348-x] [PMID: 27646974]
[182]
Wang Y, Lv J, Cheng Y, et al. Apoptosis Induced by Ginkgo biloba (EGb761) in melanoma cells Is Mcl-1-Dependent. PLoS One 2015; 10:10(4)
[183]
Massaoka MH, Matsuo AL, Figueiredo CR, et al. Jacaranone induces apoptosis in melanoma cells via ROS-mediated downregulation of Akt and p38 MAPK activation and displays antitumor activity in vivo. PLoS One 2012; 7(6) e38698
[http://dx.doi.org/10.1371/journal.pone.0038698] [PMID: 22701695]
[184]
van der Walt NB, Zakeri Z, Cronjé MJ. The induction of apoptosis in a375 malignant melanoma cells by Sutherlandia frutescens. Evid Based Complement Alternat Med 2016; 2016 4921067
[http://dx.doi.org/10.1155/2016/4921067] [PMID: 27656236]
[185]
Russo A, Cardile V, Graziano ACE, et al. Antigrowth activity and induction of apoptosis in human melanoma cells by Drymis winteri forst extract and its active components. Chem Biol Interact 2019; 305(305): 79-85.
[http://dx.doi.org/10.1016/j.cbi.2019.03.029] [PMID: 30935903]
[186]
Lima E Silva MCB, Bogo D, Alexandrino CAF, et al. Antiproliferative activity of extracts of Campomanesia adamantium (Cambess.) O. Berg and isolated compound dimethylchalcone against b16-f10 murine melanoma. J Med Food 2018; 21(10): 1024-34.
[http://dx.doi.org/10.1089/jmf.2018.0001] [PMID: 29715052]
[187]
Zhang Y-Q, Yang H, Sun W-D, et al. Ethanol extract of Ilex hainanensis Merr. exhibits anti-melanoma activity by induction of G1/S cell-cycle arrest and apoptosis. Chin J Integr Med 2018; 24(1): 47-55.
[http://dx.doi.org/10.1007/s11655-017-2544-8] [PMID: 28741062]
[188]
George BPA, Abrahamse H, Hemmaragala NM. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts. Biomed Pharmacother 2016; 80: 193-9.
[http://dx.doi.org/10.1016/j.biopha.2016.03.022] [PMID: 27133056]
[189]
Schink M, Garcia-Käufer M, Bertrams J, et al. Differential cytotoxic properties of Helleborus niger L. on tumour and immunocompetent cells. J Ethnopharmacol 2015; 159: 129-36.
[http://dx.doi.org/10.1016/j.jep.2014.11.003] [PMID: 25446603]
[190]
Ghosh S, Sikdar S, Mukherjee A, Khuda-Bukhsh AR. Evaluation of chemopreventive potentials of ethanolic extract of Ruta graveolens against A375 skin melanoma cells in vitro and induced skin cancer in mice in vivo. J Integr Med 2015; 13(1): 34-44.
[http://dx.doi.org/10.1016/S2095-4964(15)60156-X] [PMID: 25609370]
[191]
Halder B, Singh S, Thakur SS. Withania somnifera root extract has potent cytotoxic effect against human malignant melanoma cells. PLoS One 2015; 10(9) e0137498
[http://dx.doi.org/10.1371/journal.pone.0137498] [PMID: 26334881]
[192]
Boubaker J, Mokdad Bzeouich I, Nasr N, et al. Phytochemical capacity of Nitraria retusa leaves extracts inhibiting growth of melanoma cells and enhancing melanogenesis of B16F10 melanoma. BMC Complement Altern Med 2015; 15: 300.
[http://dx.doi.org/10.1186/s12906-015-0743-z] [PMID: 26329604]
[193]
Sitarek P, Kowalczyk T, Picot L, et al. Growth of Leonurus sibiricus L. roots with over-expression of AtPAP1 transcriptional factor in closed bioreactor, production of bioactive phenolic compounds and evaluation of their biological activity. Ind Crops Prod 2018; 122: 732-9.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.059]
[194]
Chaabane F, Mustapha N, Mokdad-Bzeouich I, et al. In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system. Tumour Biol 2016; 37(5): 6511-7.
[http://dx.doi.org/10.1007/s13277-015-4492-x] [PMID: 26637225]
[195]
Skała E, Picot L, Bijak M, et al. An efficient plant regeneration from Rhaponticum carthamoides transformed roots, enhanced caffeoylquinic acid derivatives production in pRi-transformed plants and their biological activity. Ind Crops Prod 2019; 129: 327-38.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.020]
[196]
Kowalczyk T, Sitarek P, Skała E, et al. Induction of apoptosis by in vitro and in vivo plant extracts derived from Menyanthes trifoliata L. in human cancer cells. Cytotechnology 2019; 71(1): 165-80.
[http://dx.doi.org/10.1007/s10616-018-0274-9] [PMID: 30610508]
[197]
Kowalczyk T, Sitarek P, Skała E, et al. An Evaluation of the DNA-protective effects of extracts from Menyanthes trifoliata L. plants derived from in vitro culture associated with redox balance and other biological activities. Oxid Med Cell Longev 2019; 2019 9165784
[http://dx.doi.org/10.1155/2019/9165784] [PMID: 31737178]
[198]
Sitarek P, Synowiec E, Kowalczyk T, Śliwiński T, Skała E. An in vitro estimation of the cytotoxicity and genotoxicity of root extract from Leonurus sibiricus L overexpressing AtPAP1 against different cancer cell lines molecules Molecules 16; 23(8): pii: E2049
[http://dx.doi.org/10.3390/molecules23082049]
[199]
Skała E, Synowiec E, Kowalczyk T, Śliwiński T, Sitarek P. Rhaponticum carthamoides transformed root extract has potent anticancer activity in human leukemia and lung adenocarcinoma cell lines. Oxid Med Cell Longev 2018; 2018 8198652
[http://dx.doi.org/10.1155/2018/8198652] [PMID: 30622675]
[200]
Sitarek P, Kowalczyk T, Rijo P, et al. Over-expression of AtPAP1 transcriptional factor enhances phenolic acid production in transgenic roots of Leonurus sibiricus L. and their biological activities. Mol Biotechnol 2018; 60(1): 74-82.
[http://dx.doi.org/10.1007/s12033-017-0048-1] [PMID: 29196986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy