Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms

Author(s): Milad Ashrafizadeh, Reza Mohammadinejad, Saeed Samarghandian, Habib Yaribeygi*, Thomas P. Johnston and Amirhossein Sahebkar*

Volume 20, Issue 8, 2020

Page: [918 - 931] Pages: 14

DOI: 10.2174/1871520620666200228110704

Price: $65

conference banner
Abstract

Cancer management and/or treatment require a comprehensive understanding of the molecular and signaling pathways involved. Recently, much attention has been directed to these molecular and signaling pathways, and it has been suggested that a number of biomolecules/players involved in such pathways, such as PI3K/Akt, NF-κB, STAT, and Nrf2 contribute to the progression, invasion, proliferation, and metastasis of malignant cells. Synthetic anti-tumor agents and chemotherapeutic drugs have been a mainstay in cancer therapy and are widely used to suppress the progression and, hopefully, halt the proliferation of malignant cells. However, these agents have some undesirable side-effects and, therefore, naturally-occurring compounds with high potency and fewer side-effects are now of great interest. Osthole is a plant-derived chemical compound that can inhibit the proliferation of malignant cells and provide potent anti-cancer effects in various tissues. Therefore, in this review, we presented the main findings concerning the potential anti-tumor effects of osthole and its derivatives and described possible molecular mechanisms by which osthole may suppress malignant cell proliferation in different tissues.

Keywords: Osthole, cancer therapy, signaling pathway, herbal medicine, PI3K/Akt, NF-κB, STAT.

Graphical Abstract
[1]
Yaribeygi, H.; Zare, V.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. Antidiabetic potential of saffron and its active constituents. J. Cell. Physiol., 2019, 234(6), 8610-8617.
[http://dx.doi.org/10.1002/jcp.27843] [PMID: 30515777]
[2]
Zhang, A.; Sun, H.; Wang, X. Mass spectrometry-driven drug discovery for development of herbal medicine. Mass Spectrom. Rev., 2018, 37(3), 307-320.
[http://dx.doi.org/10.1002/mas.21529] [PMID: 28009933]
[3]
Shabeeb, D.; Keshavarz, M.; Shirazi, A.; Hassanzadeh, G.; Hadian, M.R.; Nowrouzi, A.; Najafi, M.; Musa, A.E. Evaluation of the radioprotective effects of melatonin against ionizing radiation-induced muscle tissue injury. Curr. Radiopharm., 2019, 12(3), 247-255.
[http://dx.doi.org/10.2174/1874471012666190219120329] [PMID: 30806333]
[4]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[5]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Najafi, M.; Sahebkar, A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J. Cell. Physiol., 2019, 234(5), 5613-5627.
[http://dx.doi.org/10.1002/jcp.27391] [PMID: 30238978]
[6]
Aliasgharzadeh, A. Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J. (Yakhteh) 2019, 12(3)
[7]
Shabeeb, D.; Musa, A.E.; Keshavarz, M.; Esmaely, F.; Hassanzadeh, G.; Shirazi, A.; Najafi, M. Histopathological and functional evaluation of radiation-induced sciatic nerve damage: Melatonin as radioprotector. Medicina (Kaunas), 2019, 55(8), 502.
[http://dx.doi.org/10.3390/medicina55080502] [PMID: 31430996]
[8]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241.
[http://dx.doi.org/10.1016/j.lfs.2019.05.009] [PMID: 31077716]
[9]
Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76105847
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[10]
Najafi, M.; Ahmadi, A.; Mortezaee, K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol. Int., 2019, 43(11), 1206-1222.
[http://dx.doi.org/10.1002/cbin.11187] [PMID: 31136035]
[11]
Mortezaee, K.; Ahmadi, A.; Haghi-Aminjan, H.; Khanlarkhani, N.; Salehi, E.; Shabani Nashtaei, M.; Farhood, B.; Najafi, M.; Sahebkar, A. Thyroid function following breast cancer chemotherapy: A systematic review. J. Cell. Biochem., 2019, 120(8), 12101-12107.
[http://dx.doi.org/10.1002/jcb.28771] [PMID: 31021464]
[12]
Mortezaee, K.; Salehi, E.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[13]
Luengo-Fernandez, R.; Leal, J.; Gray, A.; Sullivan, R. Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol., 2013, 14(12), 1165-1174.
[http://dx.doi.org/10.1016/S1470-2045(13)70442-X] [PMID: 24131614]
[14]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R.C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2019, 69(3), 184-210.
[http://dx.doi.org/10.3322/caac.21557] [PMID: 30875085]
[15]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2018, 68(4), 297-316.
[http://dx.doi.org/10.3322/caac.21446] [PMID: 29846940]
[16]
Ahmadi, A.; Najafi, M.; Farhood, B.; Mortezaee, K. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12173-12187.
[http://dx.doi.org/10.1002/jcp.27955] [PMID: 30537043]
[17]
Goradel, N.H.; Mohajel, N.; Malekshahi, Z.V.; Jahangiri, S.; Najafi, M.; Farhood, B.; Mortezaee, K.; Negahdari, B.; Arashkia, A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J. Cell. Physiol., 2019, 234(6), 8636-8646.
[http://dx.doi.org/10.1002/jcp.27850] [PMID: 30515798]
[18]
Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol., 2019, 234(6), 8381-8395.
[http://dx.doi.org/10.1002/jcp.27740] [PMID: 30417375]
[19]
Najafi, M.; Farhood, B.; Mortezaee, K. Contribution of regulatory T cells to cancer: A review. J. Cell. Physiol., 2019, 234(6), 7983-7993.
[http://dx.doi.org/10.1002/jcp.27553] [PMID: 30317612]
[20]
Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45), 5904-5912.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[21]
Carbone, M.; Adusumilli, P.S.; Alexander, H.R., Jr; Baas, P.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; Mansfield, A.S.; Minaai, M.; de Perrot, M.; Pesavento, P.; Rusch, V.; Severson, D.T.; Taioli, E.; Tsao, A.; Woodard, G.; Yang, H.; Zauderer, M.G.; Pass, H.I. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin., 2019, 69(5), 402-429.
[http://dx.doi.org/10.3322/caac.21572] [PMID: 31283845]
[22]
El-Deiry, W.S.; Goldberg, R.M.; Lenz, H.J.; Shields, A.F.; Gibney, G.T.; Tan, A.R.; Brown, J.; Eisenberg, B.; Heath, E.I.; Phuphanich, S.; Kim, E.; Brenner, A.J.; Marshall, J.L. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J. Clin., 2019, 69(4), 305-343.
[http://dx.doi.org/10.3322/caac.21560] [PMID: 31116423]
[23]
Licqurish, S.M.; Cook, O.Y.; Pattuwage, L.P.; Saunders, C.; Jefford, M.; Koczwara, B.; Johnson, C.E.; Emery, J.D. Tools to facilitate communication during physician-patient consultations in cancer care: An overview of systematic reviews. CA Cancer J. Clin., 2019, 69(6), 497-520.
[http://dx.doi.org/10.3322/caac.21573] [PMID: 31339560]
[24]
Najafi, M.; Mortezaee, K.; Majidpoor, J. Stromal reprogramming: A target for tumor therapy. Life Sci., 2019, 239117049
[http://dx.doi.org/10.1016/j.lfs.2019.117049] [PMID: 31730862]
[25]
Shakeri, A.; Zirak, M.R.; Wallace Hayes, A.; Reiter, R.; Karimi, G. Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol. Res., 2019, 146104335
[http://dx.doi.org/10.1016/j.phrs.2019.104335] [PMID: 31265891]
[26]
Shakeri, A.; Cicero, A.F.G.; Panahi, Y.; Mohajeri, M.; Sahebkar, A. Curcumin: A naturally occurring autophagy modulator. J. Cell. Physiol., 2019, 234(5), 5643-5654.
[http://dx.doi.org/10.1002/jcp.27404] [PMID: 30239005]
[27]
Shakeri, A.; Panahi, Y.; Johnston, T.P.; Sahebkar, A. Biological properties of metal complexes of curcumin. Biofactors, 2019, 45(3), 304-317.
[http://dx.doi.org/10.1002/biof.1504] [PMID: 31018024]
[28]
Mohtashami, L.; Shakeri, A.; Javadi, B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem. Int., 2019, 129104516
[http://dx.doi.org/10.1016/j.neuint.2019.104516] [PMID: 31376428]
[29]
Shakeri, A.; Ward, N.; Panahi, Y.; Sahebkar, A. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Curr. Vasc. Pharmacol., 2019, 17(3), 262-269.
[http://dx.doi.org/10.2174/1570161116666180209113014] [PMID: 29424316]
[30]
Naeini, M.B.; Momtazi, A.A.; Jaafari, M.R.; Johnston, T.P.; Barreto, G.; Banach, M.; Sahebkar, A. Antitumor effects of curcumin: A lipid perspective. J. Cell. Physiol., 2019, 234(9), 14743-14758.
[http://dx.doi.org/10.1002/jcp.28262] [PMID: 30741424]
[31]
Barati, N.; Momtazi-Borojeni, A.A.; Majeed, M.; Sahebkar, A. Potential therapeutic effects of curcumin in gastric cancer. J. Cell. Physiol., 2019, 234(3), 2317-2328.
[http://dx.doi.org/10.1002/jcp.27229] [PMID: 30191991]
[32]
You, L. Osthole: A promising lead compound for drug discovery from a Traditional Chinese medicine (TCM). Nat. Product Commun., 2009, 4(2) 1934578X0900400227
[33]
Zhang, Z-R. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid. Based Complement. Alternat. Med., 2015, 2015
[http://dx.doi.org/10.1155/2015/919616]
[34]
Ko, F-N.; Wu, T.S.; Liou, M.J.; Huang, T.F.; Teng, C.M. Vasorelaxation of rat thoracic aorta caused by osthole isolated from Angelica pubescens. Eur. J. Pharmacol., 1992, 219(1), 29-34.
[http://dx.doi.org/10.1016/0014-2999(92)90576-P] [PMID: 1327835]
[35]
Hu, X. Preparation of pH-sensitive osthol-nanoparticles and its pharmacokinetics in rats. Zhongguo Xin Yao Zazhi, 2012, 21(5), 490-456.
[36]
Hu, X.J.; Liu, Y.; Zhou, X.F.; Zhu, Q.L.; Bei, Y.Y.; You, B.G.; Zhang, C.G.; Chen, W.L.; Wang, Z.L.; Zhu, A.J.; Zhang, X.N.; Fan, Y.J. Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole. Int. J. Nanomedicine, 2013, 8, 3543-3558.
[PMID: 24106424]
[37]
Sun, C.; Gui, Y.; Hu, R.; Chen, J.; Wang, B.; Guo, Y.; Lu, W.; Nie, X.; Shen, Q.; Gao, S.; Fang, W. Preparation and pharmacokinetics evaluation of solid self-microemulsifying drug delivery system (S-SMEDDS) of osthole. AAPS PharmSciTech, 2018, 19(5), 2301-2310.
[http://dx.doi.org/10.1208/s12249-018-1067-3] [PMID: 29845504]
[38]
Zhang, C.G.; Zhu, Q.L.; Zhou, Y.; Liu, Y.; Chen, W.L.; Yuan, Z.Q.; Yang, S.D.; Zhou, X.F.; Zhu, A.J.; Zhang, X.N.; Jin, Y. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. Int. J. Nanomedicine, 2014, 9, 2919-2932.
[http://dx.doi.org/10.2147/IJN.S59799] [PMID: 24966673]
[39]
Wang, R.; Liu, Y.; Hu, X.; Pan, J.; Gong, D.; Zhang, G. New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Res. Int., 2019, 120, 226-234.
[http://dx.doi.org/10.1016/j.foodres.2019.02.042] [PMID: 31000234]
[40]
Du, M.; Sun, Z.; Lu, Y.; Li, Y.Z.; Xu, H.R.; Zeng, C.Q. Osthole inhibits proliferation and induces apoptosis in BV-2 microglia cells in kainic acid-induced epilepsy via modulating PI3K/AKt/mTOR signalling way. Pharm. Biol., 2019, 57(1), 238-244.
[http://dx.doi.org/10.1080/13880209.2019.1588905] [PMID: 30922159]
[41]
Fu, X.; Hong, C. Osthole attenuates mouse atopic dermatitis by inhibiting thymic stromal lymphopoietin production from keratinocytes. Exp. Dermatol., 2019, 28(5), 561-567.
[http://dx.doi.org/10.1111/exd.13910] [PMID: 30825337]
[42]
Tao, L.; Gu, X.; Xu, E.; Ren, S.; Zhang, L.; Liu, W.; Lin, X.; Yang, J.; Chen, C. Osthole protects against Ang II-induced endotheliocyte death by targeting NF-κB pathway and Keap-1/Nrf2 pathway. Am. J. Transl. Res., 2019, 11(1), 142-159.
[PMID: 30787975]
[43]
Wang, Y.; Che, J.; Zhao, H.; Tang, J.; Shi, G. Osthole alleviates oxidized low-density lipoprotein-induced vascular endothelial injury through suppression of transforming growth factor-β1/Smad pathway. Int. Immunopharmacol., 2018, 65, 373-381.
[http://dx.doi.org/10.1016/j.intimp.2018.10.031] [PMID: 30380512]
[44]
Wang, Y.; Zhou, Y.; Wang, X.; Zhen, F.; Chen, R.; Geng, D.; Yao, R. Osthole alleviates MPTP-induced Parkinson’s disease mice by suppressing Notch signaling pathway. Int. J. Neurosci., 2019, 129(9), 833-841.
[http://dx.doi.org/10.1080/00207454.2019.1573171] [PMID: 30668212]
[45]
Yao, F.; Zhang, L.; Jiang, G.; Liu, M.; Liang, G.; Yuan, Q. Osthole attenuates angiogenesis in an orthotopic mouse model of hepatocellular carcinoma via the downregulation of nuclear factor-κB and vascular endothelial growth factor. Oncol. Lett., 2018, 16(4), 4471-4479.
[http://dx.doi.org/10.3892/ol.2018.9213] [PMID: 30214582]
[46]
Zhao, X.; Xue, J.; Xie, M. Osthole inhibits oleic acid/lipopolysaccharide-induced lipid accumulation and inflammatory response through activating PPARα signaling pathway in cultured hepatocytes. Exp. Gerontol., 2019, 119, 7-13.
[http://dx.doi.org/10.1016/j.exger.2019.01.014] [PMID: 30659956]
[47]
Zhou, W.B.; Zhang, X.X.; Cai, Y.; Sun, W.; Li, H. Osthole prevents tamoxifen-induced liver injury in mice. Acta Pharmacol. Sin., 2019, 40(5), 608-619.
[http://dx.doi.org/10.1038/s41401-018-0171-y] [PMID: 30315252]
[48]
Jordan, V.C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov., 2003, 2(3), 205-213.
[http://dx.doi.org/10.1038/nrd1031] [PMID: 12612646]
[49]
Chern, C-M.; Zhou, H.; Wang, Y.H.; Chang, C.L.; Chiou, W.F.; Chang, W.T.; Yao, C.H.; Liou, K.T.; Shen, Y.C. Osthole ameliorates cartilage degradation by downregulation of NF-κB and HIF-2α pathways in an osteoarthritis murine model. Eur. J. Pharmacol., 2020, 867172799
[http://dx.doi.org/10.1016/j.ejphar.2019.172799] [PMID: 31765607]
[50]
Liu, S.; He, Y.; Shi, J.; Liu, L.; Ma, H.; He, L.; Guo, Y. Downregulation of miRNA-30a enhanced autophagy in osthole-alleviated myocardium ischemia/reperfusion injury. J. Cell. Physiol 2019. [Ahead of Print]
[http://dx.doi.org/10.1002/jcp.28556] [PMID: 31017665]
[51]
Zheng, X.; Yu, Y.; Shao, B.; Gan, N.; Chen, L.; Yang, D. Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells. Exp. Anim., 2019, 68(4), 453-463.
[http://dx.doi.org/10.1538/expanim.18-0178] [PMID: 31155553]
[52]
Chirumbolo, S.; Bjørklund, G. Use of anti-histamines and osthole in autistic children. Int. Immunopharmacol., 2019, 73, 201-202.
[http://dx.doi.org/10.1016/j.intimp.2019.05.016] [PMID: 31103875]
[53]
Ferrari, R.; Agnoletti, L.; Comini, L.; Gaia, G.; Bachetti, T.; Cargnoni, A.; Ceconi, C.; Curello, S.; Visioli, O. Oxidative stress during myocardial ischaemia and heart failure. Eur. Heart J., 1998, 19(Suppl. B), B2-B11.
[PMID: 9519346]
[54]
Wang, B.; Zheng, X.; Liu, J.; Zhang, Z.; Qiu, C.; Yang, L.; Zhang, L.; Zhang, Q.; Gao, H.; Wang, X. Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J. Pharmacol. Sci., 2018, 137(3), 290-298.
[http://dx.doi.org/10.1016/j.jphs.2018.07.007] [PMID: 30098910]
[55]
Sung, H.; Siegel, R.L.; Torre, L.A.; Pearson-Stuttard, J.; Islami, F.; Fedewa, S.A.; Goding Sauer, A.; Shuval, K.; Gapstur, S.M.; Jacobs, E.J.; Giovannucci, E.L.; Jemal, A. Global patterns in excess body weight and the associated cancer burden. CA Cancer J. Clin., 2019, 69(2), 88-112.
[PMID: 30548482]
[56]
Chinchalongporn, V.; Shukla, M.; Govitrapong, P. Melatonin ameliorates Aβ42 -induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J. Pineal Res., 2018, 64(4)e12470
[http://dx.doi.org/10.1111/jpi.12470] [PMID: 29352484]
[57]
Lin, Y.; Liang, X.; Yao, Y.; Xiao, H.; Shi, Y.; Yang, J. Osthole attenuates APP-induced Alzheimer’s disease through up-regulating miRNA-101a-3p. Life Sci., 2019, 225, 117-131.
[http://dx.doi.org/10.1016/j.lfs.2019.04.004] [PMID: 30951743]
[58]
Bloom, G.S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[59]
Yao, Y.; Wang, Y.; Kong, L.; Chen, Y.; Yang, J. Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease. Life Sci., 2019, 217, 16-24.
[http://dx.doi.org/10.1016/j.lfs.2018.11.038] [PMID: 30471283]
[60]
Wu, C.; Sun, Z.; Guo, B.; Ye, Y.; Han, X.; Qin, Y.; Liu, S. Osthole inhibits bone metastasis of breast cancer. Oncotarget, 2017, 8(35), 58480-58493.
[http://dx.doi.org/10.18632/oncotarget.17024] [PMID: 28938572]
[61]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049.
[http://dx.doi.org/10.1056/NEJMra0706596] [PMID: 18463380]
[62]
Yance, D.R., Jr; Sagar, S.M. Targeting angiogenesis with integrative cancer therapies. Integr. Cancer Ther., 2006, 5(1), 9-29.
[http://dx.doi.org/10.1177/1534735405285562] [PMID: 16484711]
[63]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[64]
Yu, H-B.; Zhang, H.F.; Zhang, X.; Li, D.Y.; Xue, H.Z.; Pan, C.E.; Zhao, S.H. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism. Hepatogastroenterology, 2010, 57(102-103), 1241-1246.
[PMID: 21410066]
[65]
Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004, 30(2), 193-204.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.007] [PMID: 15023437]
[66]
Shrivastav, A.; Murphy, L. Interactions of PI3K/Akt/mTOR and estrogen receptor signaling in breast cancer. Breast Cancer Manag., 2012, 1(3), 235-249.
[http://dx.doi.org/10.2217/bmt.12.37]
[67]
Shi, L.; Wang, L.; Wang, X. Osteopontin induces epithelial-to-mesenchymal transitions in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Chest, 2016, 149(4), A332.
[http://dx.doi.org/10.1016/j.chest.2016.02.345]
[68]
Riquelme, I.; Tapia, O.; Leal, P.; Sandoval, A.; Varga, M.G.; Letelier, P.; Buchegger, K.; Bizama, C.; Espinoza, J.A.; Peek, R.M.; Araya, J.C.; Roa, J.C. miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3K/AKT/mTOR pathway. Cell Oncol. (Dordr.), 2016, 39(1), 23-33.
[http://dx.doi.org/10.1007/s13402-015-0247-3] [PMID: 26458815]
[69]
McLean, L.; Patel, T. Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States. Liver Int., 2006, 26(9), 1047-1053.
[http://dx.doi.org/10.1111/j.1478-3231.2006.01350.x] [PMID: 17032404]
[70]
Khan, S.A.; Emadossadaty, S.; Ladep, N.G.; Thomas, H.C.; Elliott, P.; Taylor-Robinson, S.D.; Toledano, M.B. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J. Hepatol., 2012, 56(4), 848-854.
[http://dx.doi.org/10.1016/j.jhep.2011.11.015] [PMID: 22173164]
[71]
Zhu, X.; Song, X.; Xie, K.; Zhang, X.; He, W.; Liu, F. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int. J. Mol. Med., 2017, 40(4), 1143-1151.
[http://dx.doi.org/10.3892/ijmm.2017.3113] [PMID: 28902342]
[72]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[73]
Loh, C-Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells, 2019, 8(10), 1118.
[http://dx.doi.org/10.3390/cells8101118] [PMID: 31547193]
[74]
Thiery, J.P. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890.
[http://dx.doi.org/10.1016/j.cell.2009.11.007]
[75]
Cheng, J-T.; Wang, L.; Wang, H.; Tang, F.R.; Cai, W.Q.; Sethi, G.; Xin, H.W.; Ma, Z. Insights into biological role of LncRNAs in epithelial-mesenchymal transition. Cells, 2019, 8(10), 1178.
[http://dx.doi.org/10.3390/cells8101178] [PMID: 31575017]
[76]
Verma, R.P.; Hansch, C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg. Med. Chem., 2007, 15(6), 2223-2268.
[http://dx.doi.org/10.1016/j.bmc.2007.01.011] [PMID: 17275314]
[77]
Liu, L.; Mao, J.; Wang, Q.; Zhang, Z.; Wu, G.; Tang, Q.; Zhao, B.; Li, L.; Li, Q. In vitro anticancer activities of osthole against renal cell carcinoma cells. Biomed. Pharmacother., 2017, 94, 1020-1027.
[http://dx.doi.org/10.1016/j.biopha.2017.07.155] [PMID: 28810525]
[78]
Chen, T-J.; Zhou, Y.F.; Ning, J.J.; Yang, T.; Ren, H.; Li, Y.; Zhang, S.; Chen, M.W. NBM-T-BMX-OS01, an osthole derivative, sensitizes human lung cancer A549 cells to cisplatin through AMPK-dependent inhibition of ERK and Akt Pathway. Cell. Physiol. Biochem., 2015, 36(3), 893-906.
[http://dx.doi.org/10.1159/000430264] [PMID: 26065336]
[79]
Ma, J.; Urba, W.J.; Si, L.; Wang, Y.; Fox, B.A.; Hu, H.M. Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur. J. Immunol., 2003, 33(8), 2123-2132.
[http://dx.doi.org/10.1002/eji.200324034] [PMID: 12884286]
[80]
Zhang, L.; Jiang, G.; Yao, F.; Liang, G.; Wang, F.; Xu, H.; Wu, Y.; Yu, X.; Liu, H. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma. Immunopharmacol. Immunotoxicol., 2015, 37(3), 301-307.
[http://dx.doi.org/10.3109/08923973.2015.1035391] [PMID: 25975579]
[81]
Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol., 1995, 155(3), 1151-1164.
[PMID: 7636184]
[82]
Read, S.; Malmström, V.; Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med., 2000, 192(2), 295-302.
[http://dx.doi.org/10.1084/jem.192.2.295] [PMID: 10899916]
[83]
Piccirillo, C.A.; Shevach, E.M. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin. Immunol., 2004, 16(2), 81-88.
[http://dx.doi.org/10.1016/j.smim.2003.12.003] [PMID: 15036231]
[84]
Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol., 2020, 34(1), 11-19.
[http://dx.doi.org/10.1111/fcp.12498] [PMID: 31283051]
[85]
Raghunath, A.; Sundarraj, K.; Arfuso, F.; Sethi, G.; Perumal, E. Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers (Basel), 2018, 10(12), 481.
[http://dx.doi.org/10.3390/cancers10120481] [PMID: 30513925]
[86]
Ryoo, I.G.; Choi, B.H.; Ku, S.K.; Kwak, M.K. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol., 2018, 17, 246-258.
[http://dx.doi.org/10.1016/j.redox.2018.04.015] [PMID: 29729523]
[87]
Su, J.; Zhang, F.; Li, X.; Liu, Z. Osthole promotes the suppressive effects of cisplatin on NRF2 expression to prevent drug-resistant cervical cancer progression. Biochem. Biophys. Res. Commun., 2019, 514(2), 510-517.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.021] [PMID: 31056260]
[88]
Matsuoka, S.; Rotman, G.; Ogawa, A.; Shiloh, Y.; Tamai, K.; Elledge, S.J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10389-10394.
[http://dx.doi.org/10.1073/pnas.190030497] [PMID: 10973490]
[89]
Nambiar, D.K.; Rajamani, P.; Deep, G.; Jain, A.K.; Agarwal, R.; Singh, R.P. Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling. Mol. Cancer Ther., 2015, 14(12), 2722-2734.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0348] [PMID: 26516160]
[90]
Che, Y.; Li, J.; Li, Z.; Li, J.; Wang, S.; Yan, Y.; Zou, K.; Zou, L. Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF‑κB signaling. Oncol. Rep., 2018, 40(2), 737-747.
[http://dx.doi.org/10.3892/or.2018.6514] [PMID: 29989651]
[91]
Ahmed, K.M.; Li, J.J. NF-κ B-mediated adaptive resistance to ionizing radiation. Free Radic. Biol. Med., 2008, 44(1), 1-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.09.022] [PMID: 17967430]
[92]
Sinibaldi, D.; Wharton, W.; Turkson, J.; Bowman, T.; Pledger, W.J.; Jove, R. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene, 2000, 19(48), 5419-5427.
[http://dx.doi.org/10.1038/sj.onc.1203947] [PMID: 11114718]
[93]
Huang, Y-H.; Vakili, M.R.; Molavi, O.; Morrissey, Y.; Wu, C.; Paiva, I.; Soleimani, A.H.; Sanaee, F.; Lavasanifar, A.; Lai, R. Decoration of anti-CD38 on nanoparticles carrying a STAT3 inhibitor can improve the therapeutic efficacy against myeloma. Cancers (Basel), 2019, 11(2), 248.
[http://dx.doi.org/10.3390/cancers11020248] [PMID: 30791634]
[94]
Huang, Y-H.; Molavi, O.; Alshareef, A.; Haque, M.; Wang, Q.; Chu, M.P.; Venner, C.P.; Sandhu, I.; Peters, A.C.; Lavasanifar, A.; Lai, R. Constitutive activation of STAT3 in myeloma cells cultured in a three-dimensional, reconstructed bone marrow model. Cancers (Basel), 2018, 10(6), 206.
[http://dx.doi.org/10.3390/cancers10060206] [PMID: 29914181]
[95]
Gritsina, G.; Xiao, F.; O’Brien, S.W.; Gabbasov, R.; Maglaty, M.A.; Xu, R.H.; Thapa, R.J.; Zhou, Y.; Nicolas, E.; Litwin, S.; Balachandran, S.; Sigal, L.J.; Huszar, D.; Connolly, D.C. Targeted blockade of JAK/STAT3 signaling inhibits ovarian carcinoma growth. Mol. Cancer Ther., 2015, 14(4), 1035-1047.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0800] [PMID: 25646015]
[96]
Soleimani, A.H.; Garg, S.M.; Paiva, I.M.; Vakili, M.R.; Alshareef, A.; Huang, Y.H.; Molavi, O.; Lai, R.; Lavasanifar, A. Micellar nano-carriers for the delivery of STAT3 dimerization inhibitors to melanoma. Drug Deliv. Transl. Res., 2017, 7(4), 571-581.
[http://dx.doi.org/10.1007/s13346-017-0369-4] [PMID: 28290050]
[97]
Dai, X.; Yin, C.; Zhang, Y.; Guo, G.; Zhao, C.; Wang, O.; Xiang, Y.; Zhang, X.; Liang, G. Osthole inhibits triple negative breast cancer cells by suppressing STAT3. J. Exp. Clin. Cancer Res., 2018, 37(1), 322.
[http://dx.doi.org/10.1186/s13046-018-0992-z] [PMID: 30577812]
[98]
Zhen, G.; Cao, X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci., 2014, 35(5), 227-236.
[http://dx.doi.org/10.1016/j.tips.2014.03.005] [PMID: 24745631]
[99]
Buijs, J.T.; Stayrook, K.R.; Guise, T.A. The role of TGF-β in bone metastasis: novel therapeutic perspectives. Bonekey Rep., 2012, 1, 96.
[http://dx.doi.org/10.1038/bonekey.2012.96] [PMID: 23951484]
[100]
Juárez, P.; Guise, T.A. TGF-β in cancer and bone: implications for treatment of bone metastases. Bone, 2011, 48(1), 23-29.
[http://dx.doi.org/10.1016/j.bone.2010.08.004] [PMID: 20699127]
[101]
Wang, L.; Peng, Y.; Shi, K.; Wang, H.; Lu, J.; Li, Y.; Ma, C. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis. J. Biomed. Res., 2015, 29(2), 132-138.
[PMID: 25859268]
[102]
Yamazaki, T. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. CELL-D-19-03021 2019.
[http://dx.doi.org/10.2139/ssrn.3479440]
[103]
Song, X.; Liu, L.; Chang, M.; Geng, X.; Wang, X.; Wang, W.; Chen, T.C.; Xie, L.; Song, X. NEO212 induces mitochondrial apoptosis and impairs autophagy flux in ovarian cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 239.
[http://dx.doi.org/10.1186/s13046-019-1249-1] [PMID: 31174569]
[104]
Hu, Y.; Shao, Z.; Cai, X.; Liu, Y.; Shen, M.; Yao, Y.; Yuan, T.; Wang, W.; Ding, F.; Xiong, L. Mitochondrial pathway is involved in advanced glycation end products-induced apoptosis of rabbit annulus fibrosus cells. Spine, 2019, 44(10), E585-E595.
[http://dx.doi.org/10.1097/BRS.0000000000002930] [PMID: 30407277]
[105]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[106]
Dadsena, S.; Bockelmann, S.; Mina, J.G.M.; Hassan, D.G.; Korneev, S.; Razzera, G.; Jahn, H.; Niekamp, P.; Müller, D.; Schneider, M.; Tafesse, F.G.; Marrink, S.J.; Melo, M.N.; Holthuis, J.C.M. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat. Commun., 2019, 10(1), 1832.
[http://dx.doi.org/10.1038/s41467-019-09654-4] [PMID: 31015432]
[107]
Song, J.; Lin, C.; Yang, X.; Xie, Y.; Hu, P.; Li, H.; Zhu, W.; Hu, H. Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways. J. Control. Release, 2019, 294, 27-42.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.014] [PMID: 30445003]
[108]
Liu, W.; Yang, T.; Xu, Z.; Xu, B.; Deng, Y. Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radic. Res., 2019, 53(1), 26-44.
[http://dx.doi.org/10.1080/10715762.2018.1546852] [PMID: 30513015]
[109]
Park, W.; Park, S.; Song, G.; Lim, W. Inhibitory effects of osthole on human breast cancer cell progression via induction of cell Cycle arrest, mitochondrial dysfunction, and ER stress. Nutrients, 2019, 11(11), 2777.
[http://dx.doi.org/10.3390/nu11112777] [PMID: 31731635]
[110]
Zhang, Q.; Yu, S.; Lam, M.M.T.; Poon, T.C.W.; Sun, L.; Jiao, Y.; Wong, A.S.T.; Lee, L.T.O. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J. Exp. Clin. Cancer Res., 2019, 38(1), 116.
[http://dx.doi.org/10.1186/s13046-019-1127-x] [PMID: 30845964]
[111]
Li, J.; Li, T.X.; Ma, Y.; Zhang, Y.; Li, D.Y.; Xu, H.R. Bursopentin (BP5) induces G1 phase cell cycle arrest and endoplasmic reticulum stress/mitochondria-mediated caspase-dependent apoptosis in human colon cancer HCT116 cells. Cancer Cell Int., 2019, 19(1), 130.
[http://dx.doi.org/10.1186/s12935-019-0849-3] [PMID: 31123429]
[112]
Karagas, N.E.; Venkatachalam, K. Roles for the endoplasmic reticulum in regulation of neuronal calcium homeostasis. Cells, 2019, 8(10), 1232.
[http://dx.doi.org/10.3390/cells8101232] [PMID: 31658749]
[113]
Song, M.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress responses in intratumoral immune cells: Implications for cancer immunotherapy. Trends Immunol., 2019, 40(2), 128-141.
[http://dx.doi.org/10.1016/j.it.2018.12.001] [PMID: 30612925]
[114]
Galluzzi, L.; Green, D.R. Autophagy-independent functions of the autophagy machinery. Cell, 2019, 177(7), 1682-1699.
[http://dx.doi.org/10.1016/j.cell.2019.05.026] [PMID: 31199916]
[115]
Han, S. The ErbB2-targeting antibody trastuzumab and the small-molecule SRC inhibitor saracatinib synergistically inhibit ErbB2-overexpressing gastric cancer; Taylor & Francis, 2014.
[http://dx.doi.org/10.4161/mabs.27443]
[116]
Wang, L.; Yu, X.; Wang, C.; Pan, S.; Liang, B.; Zhang, Y.; Chong, X.; Meng, Y.; Dong, J.; Zhao, Y.; Yang, Y.; Wang, H.; Gao, J.; Wei, H.; Zhao, J.; Wang, H.; Hu, C.; Xiao, W.; Li, B. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer. Oncotarget, 2017, 8(32), 52877-52888.
[http://dx.doi.org/10.18632/oncotarget.17907] [PMID: 28881779]
[117]
Baselga, J.; Swain, S.M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer, 2009, 9(7), 463-475.
[http://dx.doi.org/10.1038/nrc2656] [PMID: 19536107]
[118]
Agus, D.B.; Akita, R.W.; Fox, W.D.; Lewis, G.D.; Higgins, B.; Pisacane, P.I.; Lofgren, J.A.; Tindell, C.; Evans, D.P.; Maiese, K.; Scher, H.I.; Sliwkowski, M.X. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002, 2(2), 127-137.
[http://dx.doi.org/10.1016/S1535-6108(02)00097-1] [PMID: 12204533]
[119]
Yang, Y.; Ren, F.; Tian, Z.; Song, W.; Cheng, B.; Feng, Z. Osthole synergizes with HER2 inhibitor, trastuzumab in HER2-overexpressed N87 gastric cancer by inducing apoptosis and inhibition of AKT pathway. Front. Pharmacol., 2018, 9, 1392.
[http://dx.doi.org/10.3389/fphar.2018.01392] [PMID: 30538636]
[120]
Xu, X.; Liu, X.; Zhang, Y. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT. PLoS One, 2018, 13(3)e0193449
[http://dx.doi.org/10.1371/journal.pone.0193449] [PMID: 29590128]
[121]
Feig, C. The pancreas cancer microenvironment; AACR: USA, 2012.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3114]
[122]
Long, K.B.; Gladney, W.L.; Tooker, G.M.; Graham, K.; Fraietta, J.A.; Beatty, G.L. IFNγ and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov., 2016, 6(4), 400-413.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1032] [PMID: 26896096]
[123]
Amit, M.; Gil, Z. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase. OncoImmunology, 2013, 2(12)e27231
[http://dx.doi.org/10.4161/onci.27231] [PMID: 24498570]
[124]
Weizman, N.; Krelin, Y.; Shabtay-Orbach, A.; Amit, M.; Binenbaum, Y.; Wong, R.J.; Gil, Z. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene, 2014, 33(29), 3812-3819.
[http://dx.doi.org/10.1038/onc.2013.357] [PMID: 23995783]
[125]
Wen, Y-C.; Lee, W.J.; Tan, P.; Yang, S.F.; Hsiao, M.; Lee, L.M.; Chien, M.H. By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer. Oncotarget, 2015, 6(25), 21120-21136.
[http://dx.doi.org/10.18632/oncotarget.4229] [PMID: 26110567]
[126]
Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol., 2012, 13(5), 283-296.
[http://dx.doi.org/10.1038/nrm3330] [PMID: 22473468]
[127]
Zhu, X.; Li, Z.; Li, T.; Long, F.; Lv, Y.; Liu, L.; Liu, X.; Zhan, Q. Osthole inhibits the PI3K/AKT signaling pathway via activation of PTEN and induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma. Biomed. Pharmacother., 2018, 102, 502-509.
[http://dx.doi.org/10.1016/j.biopha.2018.03.106] [PMID: 29579711]
[128]
Liu, P.Y.; Chang, D.C.; Lo, Y.S.; Hsi, Y.T.; Lin, C.C.; Chuang, Y.C.; Lin, S.H.; Hsieh, M.J.; Chen, M.K. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. Environ. Toxicol., 2018, 33(4), 446-453.
[http://dx.doi.org/10.1002/tox.22530] [PMID: 29319219]
[129]
Peng, L.; Huang, Y.T.; Chen, J.; Zhuang, Y.X.; Zhang, F.; Chen, J.Y.; Zhou, L.; Zhang, D.H. Osthole sensitizes with radiotherapy to suppress tumorigenesis of human nasopharyngeal carcinoma in vitro and in vivo. Cancer Manag. Res., 2018, 10, 5471-5477.
[http://dx.doi.org/10.2147/CMAR.S182798] [PMID: 30519095]
[130]
Ahmadi, Z. The targeting of autophagy and endoplasmic reticulum stress mechanisms by honokiol therapy. Rev. Clin. Med., 2019, 6(2), 66-73.
[131]
Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Katebi, M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J. Cell. Physiol., 2019, 234(11), 19471-19479.
[http://dx.doi.org/10.1002/jcp.28740] [PMID: 31032940]
[132]
Lin, Z-K.; Liu, J.; Jiang, G.Q.; Tan, G.; Gong, P.; Luo, H.F.; Li, H.M.; Du, J.; Ning, Z.; Xin, Y.; Wang, Z.Y. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol. Rep., 2017, 37(3), 1611-1618.
[http://dx.doi.org/10.3892/or.2017.5403] [PMID: 28184928]
[133]
Huber, M.A.; Azoitei, N.; Baumann, B.; Grünert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.; Wirth, T. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest., 2004, 114(4), 569-581.
[http://dx.doi.org/10.1172/JCI200421358] [PMID: 15314694]
[134]
Min, C.; Eddy, S.F.; Sherr, D.H.; Sonenshein, G.E. NF-kappaB and epithelial to mesenchymal transition of cancer. J. Cell. Biochem., 2008, 104(3), 733-744.
[http://dx.doi.org/10.1002/jcb.21695] [PMID: 18253935]
[135]
Willis, B.C.; Borok, Z. TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(3), L525-L534.
[http://dx.doi.org/10.1152/ajplung.00163.2007] [PMID: 17631612]
[136]
Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest., 2009, 119(6), 1429-1437.
[http://dx.doi.org/10.1172/JCI36183] [PMID: 19487819]
[137]
Feng, H.; Lu, J.J.; Wang, Y.; Pei, L.; Chen, X. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adhes. Migr., 2017, 11(5-6), 464-475.
[http://dx.doi.org/10.1080/19336918.2016.1259058] [PMID: 28146373]
[138]
Xu, X.M.; Zhang, M.L.; Zhang, Y.; Zhao, L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol. Lett., 2016, 12(5), 3779-3784.
[http://dx.doi.org/10.3892/ol.2016.5170] [PMID: 27895730]
[139]
Mohammadinejad, R.; Ahmadi, Z.; Tavakol, S.; Ashrafizadeh, M. Berberine as a potential autophagy modulator. J. Cell. Physiol, 2019. [Ahead of Print]
[http://dx.doi.org/10.1002/jcp.28325] [PMID: 30770555]
[140]
Hawley, S.A.; Boudeau, J.; Reid, J.L.; Mustard, K.J.; Udd, L.; Mäkelä, T.P.; Alessi, D.R.; Hardie, D.G. Complexes between the LKB1 tumor suppressor, STRAD α/β and MO25 α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol., 2003, 2(4), 28.
[http://dx.doi.org/10.1186/1475-4924-2-28] [PMID: 14511394]
[141]
Kim, J.; Yoon, M.Y.; Choi, S.L.; Kang, I.; Kim, S.S.; Kim, Y.S.; Choi, Y.K.; Ha, J. Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J. Biol. Chem., 2001, 276(22), 19102-19110.
[http://dx.doi.org/10.1074/jbc.M011579200] [PMID: 11262401]
[142]
Sasaki, H.; Moriyama, S.; Nakashima, Y.; Kobayashi, Y.; Kiriyama, M.; Fukai, I.; Yamakawa, Y.; Fujii, Y. Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer, 2004, 46(2), 171-178.
[http://dx.doi.org/10.1016/j.lungcan.2004.03.021] [PMID: 15474665]
[143]
Minamiya, Y.; Ono, T.; Saito, H.; Takahashi, N.; Ito, M.; Mitsui, M.; Motoyama, S.; Ogawa, J. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer, 2011, 74(2), 300-304.
[http://dx.doi.org/10.1016/j.lungcan.2011.02.019] [PMID: 21466904]
[144]
Pai, J.T.; Hsu, C.Y.; Hua, K.T.; Yu, S.Y.; Huang, C.Y.; Chen, C.N.; Liao, C.H.; Weng, M.S. NBM-T-BBX-OS01, semisynthesized from osthole, induced G1 growth arrest through HDAC6 inhibition in lung cancer cells. Molecules, 2015, 20(5), 8000-8019.
[http://dx.doi.org/10.3390/molecules20058000] [PMID: 25946558]
[145]
Chalhoub, N.; Baker, S.J. PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol., 2009, 4, 127-150.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311] [PMID: 18767981]
[146]
Salmena, L.; Carracedo, A.; Pandolfi, P.P. Tenets of PTEN tumor suppression. Cell, 2008, 133(3), 403-414.
[http://dx.doi.org/10.1016/j.cell.2008.04.013] [PMID: 18455982]
[147]
Castaneda, C.A.; Cortes-Funes, H.; Gomez, H.L.; Ciruelos, E.M. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev., 2010, 29(4), 751-759.
[http://dx.doi.org/10.1007/s10555-010-9261-0] [PMID: 20922461]
[148]
Wang, L.; Yang, L.; Lu, Y.; Chen, Y.; Liu, T.; Peng, Y.; Zhou, Y.; Cao, Y.; Bi, Z.; Liu, T.; Liu, Z.; Shan, H. Osthole induces cell cycle arrest and inhibits migration and invasion via PTEN/Akt pathways in osteosarcoma. Cell. Physiol. Biochem., 2016, 38(6), 2173-2182.
[http://dx.doi.org/10.1159/000445573] [PMID: 27185245]
[149]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Potential roles of microRNAs in redox state: An update. J. Cell. Biochem., 2018, 120(2), 1679-1684.
[http://dx.doi.org/10.1002/jcb.27475] [PMID: 30160790]
[150]
Soleimani, A.; Khazaei, M.; Ferns, G.A.; Ryzhikov, M.; Avan, A.; Hassanian, S.M. Role of TGF-β signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J. Cell. Physiol, 2019. [Ahead of Print]
[http://dx.doi.org/10.1002/jcp.28169] [PMID: 30684274]
[151]
Li, X.; Ling, N.; Bai, Y.; Dong, W.; Hui, G.Z.; Liu, D.; Zhao, J.; Hu, J. MiR-16-1 plays a role in reducing migration and invasion of glioma cells. Anat. Rec. (Hoboken), 2013, 296(3), 427-432.
[http://dx.doi.org/10.1002/ar.22626] [PMID: 23175429]
[152]
Lin, K.; Gao, Z.; Shang, B.; Sui, S.; Fu, Q. Osthole suppresses the proliferation and accelerates the apoptosis of human glioma cells via the upregulation of microRNA-16 and downregulation of MMP-9. Mol. Med. Rep., 2015, 12(3), 4592-4597.
[http://dx.doi.org/10.3892/mmr.2015.3929] [PMID: 26082082]
[153]
Singh, M.K.; Bhattacharya, D.; Chaudhuri, S.; Acharya, S.; Kumar, P.; Santra, P.; Basu, A.K.; Chaudhuri, S. T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin αv and TGF-β1 expressions. Tumour Biol., 2014, 35(3), 2231-2246.
[http://dx.doi.org/10.1007/s13277-013-1296-8] [PMID: 24242015]
[154]
Graham, T.R.; Zhau, H.E.; Odero-Marah, V.A.; Osunkoya, A.O.; Kimbro, K.S.; Tighiouart, M.; Liu, T.; Simons, J.W.; O’Regan, R.M. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res., 2008, 68(7), 2479-2488.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2559] [PMID: 18381457]
[155]
Schlenska-Lange, A.; Knüpfer, H.; Lange, T.J.; Kiess, W.; Knüpfer, M. Cell proliferation and migration in glioblastoma multiforme cell lines are influenced by insulin-like growth factor I in vitro. Anticancer Res., 2008, 28(2A), 1055-1060.
[PMID: 18507054]
[156]
Yin, S.; Girnita, A.; Strömberg, T.; Khan, Z.; Andersson, S.; Zheng, H.; Ericsson, C.; Axelson, M.; Nistér, M.; Larsson, O.; Ekström, T.J.; Girnita, L. Targeting the insulin-like growth factor-1 receptor by picropodophyllin as a treatment option for glioblastoma. Neuro-oncol., 2010, 12(1), 19-27.
[http://dx.doi.org/10.1093/neuonc/nop008] [PMID: 20150364]
[157]
Carapancea, M.; Cosaceanu, D.; Budiu, R.; Kwiecinska, A.; Tataranu, L.; Ciubotaru, V.; Alexandru, O.; Banita, M.; Pisoschi, C.; Bäcklund, M.L.; Lewensohn, R.; Dricu, A. Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. J. Neurooncol., 2007, 85(3), 245-254.
[http://dx.doi.org/10.1007/s11060-007-9417-0] [PMID: 17568996]
[158]
Lin, Y-C.; Lin, J.C.; Hung, C.M.; Chen, Y.; Liu, L.C.; Chang, T.C.; Kao, J.Y.; Ho, C.T.; Way, T.D. Osthole inhibits insulin-like growth factor-1-induced epithelial to mesenchymal transition via the inhibition of PI3K/Akt signaling pathway in human brain cancer cells. J. Agric. Food Chem., 2014, 62(22), 5061-5071.
[http://dx.doi.org/10.1021/jf501047g] [PMID: 24828835]
[159]
Tsai, C-F.; Yeh, W.L.; Chen, J.H.; Lin, C.; Huang, S.S.; Lu, D.Y. Osthole suppresses the migratory ability of human glioblastoma multiforme cells via inhibition of focal adhesion kinase-mediated matrix metalloproteinase-13 expression. Int. J. Mol. Sci., 2014, 15(3), 3889-3903.
[http://dx.doi.org/10.3390/ijms15033889] [PMID: 24599080]
[160]
Ding, D.; Wei, S.; Song, Y.; Li, L.; Du, G.; Zhan, H.; Cao, Y. Osthole exhibits anti-cancer property in rat glioma cells through inhibiting PI3K/Akt and MAPK signaling pathways. Cell. Physiol. Biochem., 2013, 32(6), 1751-1760.
[http://dx.doi.org/10.1159/000356609] [PMID: 24356539]
[161]
Selivanova, G. Therapeutic targeting of p53 by small molecules. Seminars in cancer biology Elsevier,, 2010.
[http://dx.doi.org/10.1016/j.semcancer.2010.02.006 ]
[162]
Junttila, M.R.; Karnezis, A.N.; Garcia, D.; Madriles, F.; Kortlever, R.M.; Rostker, F.; Brown Swigart, L.; Pham, D.M.; Seo, Y.; Evan, G.I.; Martins, C.P. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature, 2010, 468(7323), 567-571.
[http://dx.doi.org/10.1038/nature09526] [PMID: 21107427]
[163]
Feldser, D.M.; Kostova, K.K.; Winslow, M.M.; Taylor, S.E.; Cashman, C.; Whittaker, C.A.; Sanchez-Rivera, F.J.; Resnick, R.; Bronson, R.; Hemann, M.T.; Jacks, T. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature, 2010, 468(7323), 572-575.
[http://dx.doi.org/10.1038/nature09535] [PMID: 21107428]
[164]
Jackson, J.G.; Pant, V.; Li, Q.; Chang, L.L.; Quintás-Cardama, A.; Garza, D.; Tavana, O.; Yang, P.; Manshouri, T.; Li, Y.; El-Naggar, A.K.; Lozano, G. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell, 2012, 21(6), 793-806.
[http://dx.doi.org/10.1016/j.ccr.2012.04.027] [PMID: 22698404]
[165]
Huang, S.-M. p53 is a key regulator for osthole-triggered cancer pathogenesis. BioMed Res. Int., 2014. 2014
[166]
Chao, X.; Zhou, X.; Zheng, G.; Dong, C.; Zhang, W.; Song, X.; Jin, T. Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Pharm. Biol., 2014, 52(5), 544-550.
[http://dx.doi.org/10.3109/13880209.2013.850517] [PMID: 24236568]
[167]
Liu, L-Y.; Huang, W.J.; Lin, R.J.; Lin, S.Y.; Liang, Y.C. N-Hydroxycinnamide derivatives of osthole presenting genotoxicity and cytotoxicity against human colon adenocarcinoma cells in vitro and in vivo. Chem. Res. Toxicol., 2013, 26(11), 1683-1691.
[http://dx.doi.org/10.1021/tx400271n] [PMID: 24127835]
[168]
Ye, Y.; Han, X.; Guo, B.; Sun, Z.; Liu, S. Combination treatment with platycodin D and osthole inhibits cell proliferation and invasion in mammary carcinoma cell lines. Environ. Toxicol. Pharmacol., 2013, 36(1), 115-124.
[http://dx.doi.org/10.1016/j.etap.2013.03.012] [PMID: 23603464]
[169]
Yang, H-Y.; Hsu, Y.F.; Chiu, P.T.; Ho, S.J.; Wang, C.H.; Chi, C.C.; Huang, Y.H.; Lee, C.F.; Li, Y.S.; Ou, G.; Hsu, M.J. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis. PLoS One, 2013, 8(11)e81592
[http://dx.doi.org/10.1371/journal.pone.0081592] [PMID: 24312323]
[170]
Le Zou, T.; Wang, H.F.; Ren, T.; Shao, Z.Y.; Yuan, R.Y.; Gao, Y.; Zhang, Y.J.; Wang, X.A.; Liu, Y.B. Osthole inhibits the progression of human gallbladder cancer cells through JAK/STAT3 signal pathway both in vitro and in vivo. Anticancer Drugs, 2019, 30(10), 1022-1030.
[http://dx.doi.org/10.1097/CAD.0000000000000812] [PMID: 31283543]
[171]
Huang, L. Osthole represses growth of multiple myeloma cells by regulating PI3K/AKT and ERK pathways. Trop. J. Pharm. Res., 2019, 18(11), 2287-2292.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy