<![CDATA[Anti-Cancer Agents in Medicinal Chemistry (Volume 24 - Issue 10)]]> https://www.benthamscience.com/journal/1 RSS Feed for Journals | BenthamScience EurekaSelect (+https://www.benthamscience.com) 2024-03-28 <![CDATA[Anti-Cancer Agents in Medicinal Chemistry (Volume 24 - Issue 10)]]> https://www.benthamscience.com/journal/1 <![CDATA[Hyperoxic-hypoxic Paradox: Breast Cancer Microenvironment and an Innovative Treatment Strategy]]>https://www.benthamscience.com/article/1387922024-03-28 <![CDATA[Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy]]>https://www.benthamscience.com/article/1387092024-03-28 <![CDATA[Anticancer Activity of <i>Sargassum fluitans</i> Extracts in Different Cancer Cells]]>https://www.benthamscience.com/article/1386492024-03-28 Background: The arrival of large quantities of Sargassum in the Mexican Caribbean Sea has generated major environmental, health and economic problems. Although Sargassum has been used in the generation of some commercial products, few studies have described its possible applications as a source of compounds with anticancer activity.

Objective: This study aimed to evaluate the antiproliferative effects of different Sargassum extracts on various cancer cell lines. Furthermore, LC/QTOF-MS was used to identify the compounds related to the antiproliferative effect.

Methods: First, determination of the seaweed was performed, and dichloromethane, chloroform and methanol extracts were obtained. The extracts were evaluated for their antiproliferative effects by MTT in breast (MDAMB- 231 and MCF-7), prostate (DU-145), lung (A549) and cervical (SiHa) cancer cell lines. Finally, LC/QTOFMS identified the compounds related to the antiproliferative effect.

Results: The authentication showed Sargassum fluitans as the predominant species. The extracts of dichloromethane and chloroform showed an antiproliferative effect. Interestingly, the fractionation of the chloroform extract showed two fractions (FC1 and FC2) with antiproliferative activity in MDA-MB-231, SiHa and A549 cancer cell lines. On the other hand, three fractions of dichloromethane extract (FD1, FD4 and FD5) also showed antiproliferative effects in the MDA-MB-231, MCF-7, SiHa and DU-145 cancer cell lines. Furthermore, LC/QTOF-MS revealed the presence of eight major compounds in FC2. Three compounds with evidence of anticancer activity were identified (D-linalool-3-glucoside, (3R,4S,6E,10Z)-3,4,7,11-tetramethyl-6,10-tridecadienal and alpha-tocotrienol).

Conclusion: These findings showed that Sargassum fluitans extracts are a possible source of therapeutic agents against cancer and could act as scaffolds for new drug discovery.

]]>
<![CDATA[1,3-Diaryl Triazenes Incorporating Disulfonamides Show Both Antiproliferative Activity and Effective Inhibition of Tumor-associated Carbonic Anhydrases IX and XII]]>https://www.benthamscience.com/article/1385312024-03-28 Materials and Methods: A carbonic anhydrase inhibitory activity of the obtained compounds was evaluated against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII) by a stoppedflow CO2 hydrase assay. In addition, in vitro, cytotoxicity studies were applied by using A549 (lung cancer), BEAS-2B (normal lung), MCF-7 (breast cancer), MDA-MB-231 (breast cancer), CRL-4010 (normal breast epithelium), HT-29 (colon cancer), and HCT -116 (colon cancer) cell lines.

Results: As a result of the inhibition data, the 4-aminobenzenesulfonamide derivatives were more active than their 3-aminobenzenesulfonamide counterparts. More specifically, compounds TS-1 and TS-2, both of which have primary sulfonamides on both sides of the triazene linker, showed the best inhibitory activity against hCA IX with Ki values of 19.5 and 13.7 nM and also against hCA XII with Ki values of 6.6 and 8.3 nM, respectively. In addition, iin vitroi cytotoxic activity on the human breast cancer cell line MCF-7 showed that some derivatives of di-sulfa triazenes, such as TS-5 and TS-13, were more active than SLC-0111.

Conclusion: With the aim of developing more potent and isoform-selective CA inhibitors, these novel hybrid molecules containing sulfa drugs, triazene linkers, and the classical primary sulfonamide chemotype may be considered an interesting example of effective enzyme inhibitors and important anticancer agents.

]]>
<![CDATA[Tabersonine Induces the Apoptosis of Human Hepatocellular Carcinoma <i>In vitro</i> and <i>In vivo</i>]]>https://www.benthamscience.com/article/1390182024-03-28 Background: Tabersonine, a natural indole alkaloid derived from Apocynaceae plants, exhibits antiinflammatory and acetylcholinesterase inhibitory activities, among other pharmacological effects. However, its anti-tumor properties and the underlying molecular mechanisms remain underexplored.

Objective: The present study aims to investigate the anti-tumor effects of tabersonine and its mechanisms in inducing apoptosis in hepatocellular carcinoma.

Methods: The inhibitory effects of tabersonine on the viability and proliferation of liver cancer cells were evaluated using MTT assay and colony formation assay. AO/EB, Hoechst, and Annexin V-FITC/ PI staining techniques were employed to observe cell damage and apoptosis. JC-1 staining was used to detect changes in mitochondrial membrane potential. Western blot analysis was conducted to study the anti-tumor mechanism of tabersonine on liver cancer cells. Additionally, a xenograft model using mice hepatoma HepG2 cells was established to assess the anti-tumor potency of tabersonine in vivo.

Results and Discussion: Our findings revealed that tabersonine significantly inhibited cell viability and proliferation, inducing apoptosis in liver cancer cells. Treatment with tabersonine inhibited Akt phosphorylation, reduced mitochondrial membrane potential, promoted cytochrome c release from mitochondria to the cytoplasm, and increased the ratio of Bax to Bcl-2. These findings suggested that tabersonine induces apoptosis in liver cancer cells through the mitochondrial pathway. Furthermore, tabersonine treatment activated the death receptor pathway of apoptosis. In vivo studies demonstrated that tabersonine significantly inhibited xenograft tumor growth.

Conclusion: Our study is the first to demonstrate that tabersonine induces apoptosis in HepG2 cells through both mitochondrial and death receptor apoptotic pathways, suggesting its potential as a therapeutic agent candidate for hepatic cancer.

]]>
<![CDATA[Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis <i>via</i> Nano LC-MS/MS]]>https://www.benthamscience.com/article/1387462024-03-28 Background: Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated.

Objective: The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis.

Methods: The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis.

Results: The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses.

Conclusion: The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.

]]>
<![CDATA[Investigating the Effects of <i>Dorema hyrcanum</i> Root Extracts on Selective Induction of Programmed Cell Death in Glioblastoma, Ovarian Cancer and Breast Cancer Cell Lines]]>https://www.benthamscience.com/article/1391262024-03-28 Background: Despite remarkable advances, cancer has remained the second cause of death, which shows that more potent novel compounds should be found. Ethnobotanical compounds have a long history of treating diseases, and several approved chemotherapeutic compounds were isolated from plants.

Objective: The research aimed to evaluate the cytotoxic effects of Dorema hyrcanum root extract on ovarian, breast, and glioblastoma cells while examining its selectivity towards normal cells. Additionally, the study is directed to investigate cell death mechanisms, delineate modes of cell death, and explore intracellular ROS production.

Methods: Cytotoxic effects of alcoholic, dichloromethane, and petroleum ether fractions of Dorema hyrcanum were investigated on cancer and normal cells by using MTT assay, and the concentration around IC50 values was used for flow cytometric assessment of apoptosis, evaluation of the expression of selected genes via RT-qPCR and production of ROS.

Results: Methanolic extract exhibited the highest cytotoxicity, impacting A2780CP and MDA-MB-231. All fractions showed comparable effects on U251 cells. Notably, extracts displayed higher IC50 values in normal HDF cells, indicating cancer cell specificity. Flow cytometry revealed induction of apoptosis and non-apoptotic death in all three cancer cell lines. QPCR results showed upregulation of related genes, with RIP3K prominently increased in U251 glioblastoma. The DCFH-DA assay demonstrated ROS induction by the PE fraction exclusively in A2780CP cells after 30 minutes and up to 24 hours.

Conclusion: Dorema hyrcanum root extracts exhibited potent anti-tumor effects against all studied cell lines. The methanolic extract demonstrated the highest cytotoxicity, particularly against A2780CP and MDA-MB-231 cells. Importantly, all fractions displayed selectivity for cancer cells over normal HDF cells. Unique modes of action were observed, with the petroleum ether fraction inducing significant non-apoptotic cell death. These findings suggest promising therapeutic potential for Dorema hyrcanum in cancer treatment with subject to further mechanistic studies.

]]>
<![CDATA[Bee Venom Toxic Effect on MDA-MB-231 Breast Cancer Cells and <i>Caenorhabditis Elegans</i>]]>https://www.benthamscience.com/article/1392092024-03-28 Introduction: Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product.

Method: Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction.

Results: Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined.

Conclusion: Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.

]]>