Frontiers in Clinical Drug Research - CNS and Neurological Disorders

Volume: 3

Potential Roles of Cannabinoids in Cell Therapy for CNS Neurodegenerative Disorders

Author(s): Massimo Nabissi, Maria Beatrice Morelli, Consuelo Amantini, Sonia Liberati, Valerio Napolioni, Matteo Santoni, Valerio Farfariello, Claudio Cardinali and Giorgio Santoni

Pp: 19-40 (22)

DOI: 10.2174/9781608059263114030004

* (Excluding Mailing and Handling)


Neural stem cells (NSCs) are self-renewing cells that can differentiate into multiple neural lineages and repopulate regions of the brain after injury. Mesenchymal stem cells (MSCs) are multipotent stromal cells that could differentiate into a variety of cell types, including neuronal cells. Recently, repair of human central nervous system (CNS) has become a therapeutic approach that is under preclinical investigation for CNS neurodegenerative disorders (CNSnd). However, CNSnd differ in the types and groups of cells involved and in the clinical manifestations. Consequently, the cells used for the potential cellular therapies will depend upon the affected cell population. Theoretically, NSCs and MSCs have the potential to produce all cell types of the CNS under specific stimuli, but the molecular targets governing the maturation and the differentiation of specific neuronal populations are not yet well identified. Cannabinoids (CBs) by cannabinoid receptors (CB1 and CB2) and by CB related receptors as Peroxisome proliferator-activated receptor gamma (PPAR-γ) Transient Receptor Potential Vanilloid type 1 (TRPV1) and type 2 (TRPV2), were found to modulate neuronal functions including neurogenesis. The aim of this review is to highlight recent researches regarding CB receptors and CB related receptors, in the regulation of NSCs differentiation and their potential use in CNSnd stem cell-based therapies.

Keywords: Cannabinoid Receptors, CNS neurodegenerative disorders, Mesenchimal stem cells, Neural differentiation, Neural stem cells, Peroxisome proliferator-activated receptor gamma, Stem cell Therapy, Transient Receptor Potential Channels.

Related Journals
Related Books
© 2024 Bentham Science Publishers | Privacy Policy