Grasping the Future: Advances in Powered Upper Limb Prosthetics

Haptic devices for the simulation of upper limb in Virtual Reality

Author(s): M. Bergamasco, A. Frisoli, C. A. Avizzano and F. Salsedo

Pp: 92-103 (12)

DOI: 10.2174/978160805439811201010092


This contribution deals with a particular type of robotic systems, i.e. exoskeletons or wearable systems. With respect to conventional robots, exoskeletons present the main feature of being wearable and, consequently, always in contact with the human operator during operative conditions. The design and control of exoskeletons must then necessarily take into account this condition, not only for safety issues, but also in terms of transparency for user’s movement and fidelity in the generation of torques/forces to the operator. The experience of the PERCeptual RObotics laboratory of Scuola Superiore Sant’Anna in the design of exoskeletons is presented, by addressing the description of developed robotic exoskeletons. Implications for the usage of exoskeleton systems in the simulation of grasping in Virtual Environments are discussed, with an analysis of the issues associated to the test of myoelectric control of prostheses in Virtual Environments.

Keywords: Human-Robot Interaction, Exoskeleton, Haptic Devices.

Related Journals
Related Books
© 2024 Bentham Science Publishers | Privacy Policy