A compelling case for the potential utility of vasopressin (AVP) antagonists as a novel therapeutic class for the treatment of stress-related affective illness has emerged based on observations in depressed individuals, findings in animal models of anxiety and depression, and an understanding of changes in hypothalamic-pituitary-adrenal (HPA) axis regulation under chronic stress. The scientific bases for vasopressin antagonists as a pharmacotherapy for anxiety and depression include: 1) the neuroadaptation and dysregulation of HPA function that accompanies chronic stress in affected humans and in animal models of anxiety and depression, 2) recognition that AVP, not corticotrophin releasing factor (CRF), drives HPA function associated with chronic psychological stress, 3) the CNS localization of vasopressin V1a and V1b receptors in limbic system regions involved in HPA regulation and control of social behaviors, and 4) preclinical data showing efficacy in animal models employed as screens for anxiolytic and antidepressant activity.
The public health need for new pharmaceutical treatments for stress-related affective illness is well documented. In the United States alone, anxiety and depression affect some 35 million people each year and carry a conservatively estimated annual total economic burden of at least $125 billion. Existing pharmacotherapies for both indications are not uniformly effective and frequently have undesirable side effects. These limitations demonstrate that a new treatment approach through vasopressin receptor antagonism in the CNS may offer significant opportunities for improved outcomes. In this review, the development of compounds in this class since 2005 is considered. The most advanced clinical candidates and newer compounds described in recent patents are presented.
Keywords: Arginine vasopressin, V1a receptor, V1b receptor, anxiety depression, HPA axis