Biomaterial Fabrication Techniques

3D Printed Biomaterials and their Scaffolds for Biomedical Engineering

Author(s): Rabail Zehra Raza, Arun Kumar Jaiswal, Muhammad Faheem, Sandeep Tiwari, Raees Khan, Siomar de Castro Soares, Asmat Ullah Khan, Vasco Azevedo and Syed Babar Jamal *

Pp: 133-165 (33)

DOI: 10.2174/9789815050479122010009

* (Excluding Mailing and Handling)

Abstract

Over the past decade, three-dimensional printing (3DP) has gained popularity among the public and the scientific community in a variety of disciplines, including engineering, medicine, manufacturing arts, and, more recently, education. The advantage of this technology is that it is capable of designing and printing almost any object shape using various materials such as ceramics, polymers, metals and bioinks. This has further favored the use of this technology for biomedical applications in both clinical and research settings. In biomedicine, there has been a remarkable development of a variety of biomaterials, which in turn has accelerated the significant role of this technology as synthetic scaffolds in various forms such as scaffolds, constructs or matrices. In this chapter, we would like to review the trailblazing literature on the application of 3DP technology in biomedical engineering. This chapter focuses on various 3DP techniques and biomaterials for tissue engineering applications (TE). 3DP technology has a variety of applications in biomedicine and TE (B- TE). Customized structures for B- TE applications using 3DP have several advantages, e.g., they are easy to fabricate and are inexpensive. On the other hand, conventional technologies, which are costly, time-consuming, and labor intensive, are generally not compatible with 3DP. Therefore, the capabilities of 3DP, which is a novel fabrication technology, need to be explored for many other potential applications. Here, we provide a comprehensive overview of the different types of 3DP technologies and how they can potentially be used.


Keywords: Three-Dimensional Printing (3DP), Scaffolds, Biomedical Engineering, Tissue Engineering.

Related Journals
Related Books
© 2024 Bentham Science Publishers | Privacy Policy