Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Dendrimer Based Nanoarchitectures in Diabetes Management: An Overview

Author(s): Vijay Mishra, Nishika Yadav, Gaurav K. Saraogi , Murtaza M. Tambuwala and Namita Giri*

Volume 25, Issue 23, 2019

Page: [2569 - 2583] Pages: 15

DOI: 10.2174/1381612825666190716125332

Price: $65

conference banner
Abstract

Diabetes has turned out to be one of the biggest worldwide health and economic burdens, with its expanded predominance and high complexity proportion. The quantity of diabetic patients is expanding enormously around the world. Several reports have demonstrated the sharp increment in the sufferers. Stable and acceptable blood glucose control is fundamental to diminish diabetes-related complications. Consequently, ceaseless endeavors have been made in antidiabetic drugs, treatment strategies, and nanotechnology based products to accomplish better diabetes control. The nanocarriers pertaining hypoglycaemics provide improved diabetes management with minimum risk of associated side effects. Dendrimers have caught an incredible attention in the field of drug delivery and personalized medicines. Dendrimers are three-dimensional well-defined homogenous nanosized structures consisting tree-like branches. The present review highlights the different aspects of dendrimers including fabrication, surface engineering, toxicological profile as well as delivery of antidiabetic drugs for the effective cure of diabetes.

Keywords: Diabetes, dendrimer, drug delivery, toxicity, nanocarrier, toxicological profile.

[1]
Kliegman RM, Stanton BM, Geme JS, Schor NF. Nelson Textbook of Pediatrics E-Book: 2-Volume Set. Elsevier Health Sciences 2016; pp. 2760-90.
[2]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[3]
Hu C, Jia W. Therapeutic medications against diabetes: What we have and what we expect. Adv Drug Deliv Rev 2019; 139: 3-15.
[http://dx.doi.org/10.1016/j.addr.2018.11.008] [PMID: 30529309]
[4]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Baltimore) 2010; 38: 602-6.
[http://dx.doi.org/10.1016/j.mpmed.2010.08.007]
[5]
Flaws B, Kuchinski LM, Casanas R. The Treatment of diabetes mellitus with Chinese Medicine: A textbook & clinical manual. Blue Poppy Enterprises, Inc 2002; pp. 225-32.
[6]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[7]
Lin C, Gokhale R, Trivedi JS, Ranade V. Recent strategies and methods for improving insulin delivery. Drug Dev Res 2004; 63: 151-60.
[http://dx.doi.org/10.1002/ddr.10426]
[8]
Groenning M, Frokjaer S, Vestergaard B. Formation mechanism of insulin fibrils and structural aspects of the insulin fibrillation process. Curr Protein Pept Sci 2009; 10(5): 509-28.
[http://dx.doi.org/10.2174/138920309789352038] [PMID: 19538143]
[9]
Fändrich M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 2007; 64(16): 2066-78.
[http://dx.doi.org/10.1007/s00018-007-7110-2] [PMID: 17530168]
[10]
Rekas A, Lo V, Gadd GE, Cappai R, Yun SI. PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson’s disease-related protein. Macromol Biosci 2009; 9(3): 230-8.
[http://dx.doi.org/10.1002/mabi.200800242] [PMID: 19116892]
[11]
Onkamo P, Väänänen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of Type I diabetes--the analysis of the data on published incidence trends. Diabetologia 1999; 42(12): 1395-403.
[http://dx.doi.org/10.1007/s001250051309] [PMID: 10651256]
[12]
Kesharwani P, Gorain B, Low SY, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018; 136: 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[13]
Khalil H. Diabetes microvascular complications-A clinical update. Diabetes Metab Syndr 2017; 11(Suppl. 1): S133-9.
[http://dx.doi.org/10.1016/j.dsx.2016.12.022] [PMID: 27993541]
[14]
Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of Diabetes 2016. J Diabetes Res 2016; 20166989453
[http://dx.doi.org/10.1155/2016/6989453] [PMID: 27822482]
[15]
Ahmad Z, Rasouli M, Azman AZF, Omar AR. Evaluation of insulin expression and secretion in genetically engineered gut K and L-cells. BMC Biotechnol 2012; 12: 64.
[http://dx.doi.org/10.1186/1472-6750-12-64] [PMID: 22989329]
[16]
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab 2016; 20(4): 546-51.
[http://dx.doi.org/10.4103/2230-8210.183480] [PMID: 27366724]
[17]
Sharma RB, Alonso LC. Lipotoxicity in the pancreatic beta cell: Not just survival and function, but proliferation as well? Curr Diab Rep 2014; 14(6): 492.
[http://dx.doi.org/10.1007/s11892-014-0492-2] [PMID: 24740729]
[18]
Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2012; 2(4)A007781
[http://dx.doi.org/10.1101/cshperspect.a007781] [PMID: 22474615]
[19]
Yang LJ. Big mac attack: Does it play a direct role for monocytes/macrophages in type 1 diabetes? Diabetes 2008; 57(11): 2922-3.
[http://dx.doi.org/10.2337/db08-1007] [PMID: 18971442]
[20]
Moullé VS, Vivot K, Tremblay C, Zarrouki B, Ghislain J, Poitout V. Glucose and fatty acids synergistically and reversibly promote beta cell proliferation in rats. Diabetologia 2017; 60(5): 879-88.
[http://dx.doi.org/10.1007/s00125-016-4197-8] [PMID: 28078385]
[21]
Cernea S, Dobreanu M. Diabetes and beta cell function: From mechanisms to evaluation and clinical implications. Biochem Med (Zagreb) 2013; 23(3): 266-80.
[http://dx.doi.org/10.11613/BM.2013.033] [PMID: 24266296]
[22]
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: An emerging role for chemokines. J Mol Endocrinol 2017; 59(1): R33-46.
[http://dx.doi.org/10.1530/JME-17-0042] [PMID: 28420714]
[23]
Artham SM, Lavie CJ, Milani RV, Ventura HO. Obesity and hypertension, heart failure, and coronary heart disease-risk factor, paradox, and recommendations for weight loss. Ochsner J 2009; 9(3): 124-32.
[PMID: 21603427]
[24]
Wang X, Bao W, Liu J, et al. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2013; 36(1): 166-75.
[http://dx.doi.org/10.2337/dc12-0702] [PMID: 23264288]
[25]
Zhang Y, Wang P, Heaton A, Winkler H. Health information searching behavior in MedlinePlus and the impact of tasks. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium.
[http://dx.doi.org/10.1145/2110363.2110434]
[26]
Amery CM, Nattrass M. Fatty acids and insulin secretion. Diabetes Obes Metab 2000; 2(4): 213-21.
[http://dx.doi.org/10.1046/j.1463-1326.2000.00059.x] [PMID: 11225654]
[27]
Montane J, Cadavez L, Novials A. Stress and the inflammatory process: A major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes 2014; 7: 25-34.
[PMID: 24520198]
[28]
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48E219
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[29]
Holst JJ. Incretin hormones and the satiation signal. Int J Obes 2013; 37(9): 1161-8.
[http://dx.doi.org/10.1038/ijo.2012.208] [PMID: 23295502]
[30]
Zand H, Morshedzadeh N, Naghashian F. Signaling pathways linking inflammation to insulin resistance. Diabetes Metab Syndr 2017; 11(Suppl. 1): S307-9.
[http://dx.doi.org/10.1016/j.dsx.2017.03.006] [PMID: 28365222]
[31]
Xu X, Ren J. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity. Int J Obes 2015; 39(3): 387-96.
[http://dx.doi.org/10.1038/ijo.2014.174] [PMID: 25248618]
[32]
Li Y, Soos TJ, Li X, et al. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem 2004; 279(44): 45304-7.
[http://dx.doi.org/10.1074/jbc.C400186200] [PMID: 15364919]
[33]
Beers MH, Berkow R, Eds. The Merck manual of diagnosis and therapy. Whitehouse Station, NJ: Merck and Co. Inc 1999.
[34]
Ozougwu JC, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol 2013; 4: 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[35]
International Diabetes Federation. Types of diabetes, available from. http://www.idf.org/types-diabetes [Accessed on 3 February 2019].
[36]
Mas A, Montané J, Anguela XM, et al. Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle. Diabetes 2006; 55(6): 1546-53.
[http://dx.doi.org/10.2337/db05-1615] [PMID: 16731816]
[37]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37(Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[38]
Taplin CE, Barker JM. Autoantibodies in type 1 diabetes. Autoimmunity 2008; 41(1): 11-8.
[http://dx.doi.org/10.1080/08916930701619169] [PMID: 18176860]
[39]
Dharmananda S. Treatment of diabetes with Chinese herbs and acupuncture Institute for Traditional Medicine Portland, Oregon: ITM 2002.
[40]
Derosa G. Efficacy and tolerability of pioglitazone in patients with type 2 diabetes mellitus: Comparison with other oral antihyperglycaemic agents. Drugs 2010; 70(15): 1945-61.
[http://dx.doi.org/10.2165/11538100-000000000-00000] [PMID: 20883052]
[41]
Tahrani AA, Piya MK, Barnett AH. Drug evaluation: Vildagliptin-metformin single-tablet combination. Adv Ther 2009; 26(2): 138-54.
[http://dx.doi.org/10.1007/s12325-009-0010-0] [PMID: 19288260]
[42]
Lefkovits YR, Stewart ZA, Murphy HR. Gestational diabetes. Medicine (Baltimore) 2019; 47(2): 114-8.
[http://dx.doi.org/10.1016/j.mpmed.2018.11.006]
[43]
Egan AM, Dinneen SF. What is diabetes? Medicine (Baltimore) 2019; 47: 1-4.
[http://dx.doi.org/10.1016/j.mpmed.2018.10.002]
[44]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[45]
Saluja V, Mankoo A, Saraogi GK, et al. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J Drug Deliv Sci Technol 2019; 52: 15-26.
[http://dx.doi.org/10.1016/j.jddst.2019.04.014]
[46]
Huang D, Wu D. Biodegradable dendrimers for drug delivery. Mater Sci Eng C 2018; 90: 713-27.
[http://dx.doi.org/10.1016/j.msec.2018.03.002] [PMID: 29853143]
[47]
Vogtle F, Buhleier EW, Wehner W. Cascade and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis 1978; 2: 155-8.
[48]
Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J 1985; 17: 117-32.
[http://dx.doi.org/10.1295/polymj.17.117]
[49]
De Brabander-van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: Large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 1993; 32: 1308-11.
[http://dx.doi.org/10.1002/anie.199313081]
[50]
Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules: A new approach to micelles. A [27]-arborol. J Org Chem 1985; 50: 2003-4.
[http://dx.doi.org/10.1021/jo00211a052]
[51]
Mishra V, Gupta U, Jain NK. Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Pharmazie 2010; 65(12): 891-5.
[PMID: 21284258]
[52]
Tomalia DA. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 2005; 30: 294-324.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007]
[53]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[54]
Taghavi N, Azar P, Mutlu P, Khodadust R, Gunduz U. Poly(amidoamine) (PAMAM) nanoparticles: Synthesis and biomedical applications. Hacettepe J Biol Chem 2013; 41: 289-99.
[55]
Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J Polym Sci A Polym Chem 2002; 40: 2719-28.
[http://dx.doi.org/10.1002/pola.10301]
[56]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39: 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[57]
Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: Emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009; 38(3): 185-96.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[58]
Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[59]
Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: Applications in different routes of drug administration. J Pharm Sci 2008; 97(1): 123-43.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[60]
Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 2009; 71(3): 445-62.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.023] [PMID: 18976707]
[61]
Duro-Castano A, Movellan J, Vicent MJ. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater Sci 2015; 3(10): 1321-34.
[http://dx.doi.org/10.1039/C5BM00166H] [PMID: 26266272]
[62]
Myung JH, Hsu HJ, Bugno J, Tam KA, Hong S. Chemical structure and surface modification of dendritic nanomaterials tailored for therapeutic and diagnostic applications. Curr Top Med Chem 2017; 17(13): 1542-54.
[http://dx.doi.org/10.2174/1568026616666161222104112] [PMID: 28017148]
[63]
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J Intern Med 2014; 276(6): 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[64]
Fischer M, Vögtle F. Dendrimers: From design to application- a progress report. Angew Chem Int Ed Engl 1999; 38(7): 884-905.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990401)38:7<884:AID-ANIE884>3.0.CO;2-K] [PMID: 29711851]
[65]
Maiti PK, Çagin T, Wang G, Goddard WA. Structure of PAMAM dendrimers: Generations 1 through 11. Macromol 2004; 37: 6236-54.
[http://dx.doi.org/10.1021/ma035629b]
[66]
da Silva Santos S, Igne Ferreira E, Giarolla J. Dendrimer Prodrugs. Molecules 2016; 21(6): 686.
[http://dx.doi.org/10.3390/molecules21060686] [PMID: 27258239]
[67]
Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical applications. Drug Discov Today 2010; 15(5-6): 171-85.
[http://dx.doi.org/10.1016/j.drudis.2010.01.009] [PMID: 20116448]
[68]
Kaminskas LM, McLeod VM, Porter CJH, Boyd BJ. Association of chemotherapeutic drugs with dendrimer nanocarriers: An assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol Pharm 2012; 9(3): 355-73.
[http://dx.doi.org/10.1021/mp2005966] [PMID: 22250750]
[69]
Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 2007; 14(1): 107-15.
[http://dx.doi.org/10.1016/j.chembiol.2006.11.015] [PMID: 17254956]
[70]
Araújo RV, Santos SDS, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018; 23(11): 2849.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[71]
Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Engineering nanomaterials for smart drug release: Recent advances and challenges Applications of targeted nano drugs and delivery systems. Elsevier 2019; pp. 411-49.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00015-6]
[72]
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548(1): 707-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[73]
Seebach D, Rheiner PB, Greiveldinger G, Butz T, Sellner H. Chiral dendrimers Dendrimers. Berlin, Heidelberg: Springer 1998; pp. 125-64.
[http://dx.doi.org/10.1007/3-540-69779-9_4]
[74]
Percec V, Chu P, Ungar G, Zhod J. Rational design of the first nonspherical dendrimer which displays calamitic nematic and smectic thermotropic liquid crystalline phases. J Am Chem Soc 1995; 117: 11441-54.
[http://dx.doi.org/10.1021/ja00151a008]
[75]
Pedziwiatr-Werbicka E, Fuentes E, Dzmitruk V, et al. Novel ‘Si-C’ carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids Surf B Biointerfaces 2013; 109: 183-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.045] [PMID: 23643914]
[76]
Darbre T, Reymond JL. Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc Chem Res 2006; 39(12): 925-34.
[http://dx.doi.org/10.1021/ar050203y] [PMID: 17176031]
[77]
Tam JP. Peptide Dendrimers and Protein Mimetics Stuttgart: Thieme 2000.
[78]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39: 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[79]
Pushechnikov A, Jalisatgi SS, Hawthorne MF. Dendritic closomers: Novel spherical hybrid dendrimers. Chem Commun (Camb) 2013; 49(34): 3579-81.
[http://dx.doi.org/10.1039/c3cc40597d] [PMID: 23525129]
[80]
Twibanire K, Jean-d’Amour G, Bruce T. Polyester dendrimers: Smart carriers for drug delivery. Polymers (Basel) 2014; 6: 179-213.
[http://dx.doi.org/10.3390/polym6010179]
[81]
Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: Let’s meet the challenge. Int J Pharm 2010; 394(1-2): 122-42.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027] [PMID: 20433913]
[82]
Antoni P, Hed Y, Nordberg A, et al. Bifunctional dendrimers: From robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angew Chem Int Ed Engl 2009; 48(12): 2126-30.
[http://dx.doi.org/10.1002/anie.200804987] [PMID: 19117006]
[83]
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016; 21(5): 766-78.
[http://dx.doi.org/10.1016/j.drudis.2016.02.006] [PMID: 26891979]
[84]
Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov Today 2018; 23(6): 1219-32.
[http://dx.doi.org/10.1016/j.drudis.2018.01.006] [PMID: 29366761]
[85]
Caminade AM, Majoral JP. Engineering CNDP’s of dendrimers containing phosphorous interior compositions to produce new emerging properties. J Nanopart Res 2018; 20: 74.
[http://dx.doi.org/10.1007/s11051-018-4170-1]
[86]
Kumar PMK, Kumar P, Choudhary C, et al. Den¬drimer: A novel polymer for drug delivery. J Innovative Trends Pharm Sci 2010; 1: 252-69.
[87]
Boas U, Christensen JB, Heegaard PMH. Dendrimers: Design, synthesis and chemical properties Dendrimers in Medicine and Biotechnology New Molecular Tools. RSC Publishing 2006.
[88]
Juris A. Recent developments in photo- and redox-active dendrimers. Annu Rep Sect “C” (Phys Chem) 2003; 99: 177-241.
[89]
Hoogenboom R. Thiol-yne chemistry: A powerful tool for creating highly functional materials. Angew Chem Int Ed Engl 2010; 49(20): 3415-7.
[http://dx.doi.org/10.1002/anie.201000401] [PMID: 20394091]
[90]
Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 2010; 1: 17-36.
[http://dx.doi.org/10.1039/B9PY00216B]
[91]
Cervera-Procas R, Sánchez-Somolinos C, Serrano JL, Omenat A. A polymer network prepared by the thiol-yne photocrosslinking of a liquid crystalline dendrimer. Macromol Rapid Commun 2013; 34(6): 498-503.
[http://dx.doi.org/10.1002/marc.201200730] [PMID: 23322378]
[92]
Lowe AB, Harvison MA. Thiol-based “click” chemistries in polymer: Synthesis and modification. Aust J Chem 2010; 63: 1251-66.
[http://dx.doi.org/10.1071/CH10214]
[93]
Svenson S, Tomalia DA. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 2012; 64: 102-15.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[94]
Gottis S, Rodriguez LI, Laurent R, et al. Janus carbosilane/phosphorhydrazone dendrimers synthesized by the “click” Staudinger reaction. Tetrahedron Lett 2013; 54: 6864-7.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.024]
[95]
Katir N, El Brahmi N, El Kadib A, et al. Synthesis of onion-peel nanodendritic structures with sequential functional phosphorus diversity. Chemistry 2015; 21(17): 6400-8.
[http://dx.doi.org/10.1002/chem.201500138] [PMID: 25754619]
[96]
Karver MR, Weissleder R, Hilderbrand SA. Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. Angew Chem Int Ed Engl 2012; 51(4): 920-2.
[http://dx.doi.org/10.1002/anie.201104389] [PMID: 22162316]
[97]
Dong J, Krasnova L, Finn MG, Sharpless KB. Sulfur(VI) fluoride exchange (SuFEx): Another good reaction for click chemistry. Angew Chem Int Ed Engl 2014; 53(36): 9430-48.
[http://dx.doi.org/10.1002/anie.201309399] [PMID: 25112519]
[98]
Becer CR, Hoogenboom R, Schubert US. Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed Engl 2009; 48(27): 4900-8.
[http://dx.doi.org/10.1002/anie.200900755] [PMID: 19475588]
[99]
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 2015; 20(5): 9263-94.
[http://dx.doi.org/10.3390/molecules20059263] [PMID: 26007183]
[100]
Labieniec M, Ulicna O, Vancova O, et al. PAMAM G4 dendrimers lower high glucose but do not improve reduced survival in diabetic rats. Int J Pharm 2008; 364(1): 142-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.001] [PMID: 18761397]
[101]
Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[102]
Labieniec M, Ulicna O, Vancova O, Kucharska J, Gabryelak T, Watala C. Effect of poly(amido)amine (PAMAM) G4 dendrimer on heart and liver mitochondria in an animal model of diabetes. Cell Biol Int 2009; 34(1): 89-97.
[http://dx.doi.org/10.1042/CBI20090010] [PMID: 19947941]
[103]
Nowacka O, Milowska K, Belica-Pacha S, et al. Generation-dependent effect of PAMAM dendrimers on human insulin fibrillation and thermal stability. Int J Biol Macromol 2016; 82: 54-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.029] [PMID: 26598047]
[104]
Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Benter IF. Impact of PAMAM delivery systems on signal transduction pathways in vivo: Modulation of ERK1/2 and p38 MAP kinase signaling in the normal and diabetic kidney. Int J Pharm 2016; 514(2): 353-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.039] [PMID: 27032566]
[105]
Dong Z, Hamid KA, Gao Y, et al. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci 2011; 100(5): 1866-78.
[http://dx.doi.org/10.1002/jps.22428] [PMID: 21374620]
[106]
Labieniec-Watala M, Przygodzki T, Sebekova K, Watala C. Can metabolic impairments in experimental diabetes be cured with poly(amido)amine (PAMAM) G4 dendrimers? In the search for minimizing of the adverse effects of PAMAM administration. Int J Pharm 2014; 464(1-2): 152-67.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.011] [PMID: 24463003]
[107]
Siewiera K, Labieniec-Watala M. Ambiguous effect of dendrimer PAMAM G3 on rat heart respiration in a model of an experimental diabetes - Objective causes of laboratory misfortune or unpredictable G3 activity? Int J Pharm 2012; 430(1-2): 258-65.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.037] [PMID: 22486957]
[108]
Moschou EA, Sharma BV, Deo SK, Daunert S. Fluorescence glucose detection: Advances toward the ideal in vivo biosensor. J Fluoresc 2004; 14(5): 535-47.
[http://dx.doi.org/10.1023/B:JOFL.0000039341.64999.83] [PMID: 15617261]
[109]
Lim J, Simanek EE. Triazine dendrimers as drug delivery systems: From synthesis to therapy. Adv Drug Deliv Rev 2012; 64(9): 826-35.
[http://dx.doi.org/10.1016/j.addr.2012.03.008] [PMID: 22465784]
[110]
Kwon MJ, An S, Choi S, et al. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med 2012; 14(4): 272-8.
[http://dx.doi.org/10.1002/jgm.2618] [PMID: 22407991]
[111]
Mishra V, Gupta U, Jain NK. Surface-engineered dendrimers: A solution for toxicity issues. J Biomater Sci Polym Ed 2009; 20(2): 141-66.
[http://dx.doi.org/10.1163/156856208X386246] [PMID: 19154667]
[112]
Tambe V, Thakkar S, Raval N, Sharma D, Kalia K, Tekade RK. Surface engineered dendrimers in siRNA delivery and gene silencing. Curr Pharm Des 2017; 23(20): 2952-75.
[http://dx.doi.org/10.2174/1381612823666170314104619] [PMID: 28292248]
[113]
Kesharwani P, Mishra V, Jain NK. Generation dependent hemolytic profile of folate engineered poly(propyleneimine) dendrimer. J Drug Deliv Sci Technol 2015; 28: 1-6.
[http://dx.doi.org/10.1016/j.jddst.2015.04.006]
[114]
Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 2013; 34(4): 1289-301.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.024] [PMID: 23137395]
[115]
Yang J, Zhang Q, Chang H, Cheng Y. Surface-engineered dendrimers in gene delivery. Chem Rev 2015; 115(11): 5274-300.
[http://dx.doi.org/10.1021/cr500542t] [PMID: 25944558]
[116]
Yoo H, Juliano RL. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 2000; 28(21): 4225-31.
[http://dx.doi.org/10.1093/nar/28.21.4225] [PMID: 11058121]
[117]
Labieniec-Watala M, Watala C. PAMAM dendrimers: Destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J Pharm Sci 2015; 104(1): 2-14.
[http://dx.doi.org/10.1002/jps.24222] [PMID: 25363074]
[118]
Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 2003; 252(1-2): 263-6.
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[119]
Brazeau GA, Attia S, Poxon S, Hughes JA. In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery. Pharm Res 1998; 15(5): 680-4.
[http://dx.doi.org/10.1023/A:1011954516233] [PMID: 9619774]
[120]
Gupta U, Agashe HB, Asthana A, Jain NK. A review of in vitro-in vivo investigations on dendrimers: The novel nanoscopic drug carriers. Nanomedicine (Lond) 2006; 2(2): 66-73.
[http://dx.doi.org/10.1016/j.nano.2006.04.002] [PMID: 17292117]
[121]
Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 2003; 55(2): 217-50.
[http://dx.doi.org/10.1016/S0169-409X(02)00180-1] [PMID: 12564978]
[122]
Kim Y, Klutz AM, Jacobson KA. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: Synthesis, characterization, and evaluation of cytotoxicity. Bioconjug Chem 2008; 19(8): 1660-72.
[http://dx.doi.org/10.1021/bc700483s] [PMID: 18610944]
[123]
Lee H, Larson RG, Lee H, Larson RG. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B 2006; 110(37): 18204-11.
[http://dx.doi.org/10.1021/jp0630830] [PMID: 16970437]
[124]
Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002; 19(9): 1310-6.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[125]
Jevprasesphant R, Penny J, Attwood D, McKeown NB, D’Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 2003; 20(10): 1543-50.
[http://dx.doi.org/10.1023/A:1026166729873] [PMID: 14620505]
[126]
Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules 2006; 7(2): 572-9.
[http://dx.doi.org/10.1021/bm0506142] [PMID: 16471932]
[127]
Thomas TP, Majoros IJ, Kotlyar A, et al. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 2005; 48(11): 3729-35.
[http://dx.doi.org/10.1021/jm040187v] [PMID: 15916424]
[128]
Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem 2007; 18(6): 2054-60.
[http://dx.doi.org/10.1021/bc0603889] [PMID: 17960872]
[129]
Kitchens KM, Kolhatkar RB, Swaan PW, Eddington ND, Ghandehari H. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling. Pharm Res 2006; 23(12): 2818-26.
[http://dx.doi.org/10.1007/s11095-006-9122-2] [PMID: 17094034]
[130]
Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release 2003; 88(1): 1-9.
[http://dx.doi.org/10.1016/S0168-3659(02)00461-3] [PMID: 12586498]
[131]
Choi JS, Ko KS, Park JS, Kim YH, Kim SW, Lee M. Dexamethasone conjugated poly(amidoamine) dendrimer as a gene carrier for efficient nuclear translocation. Int J Pharm 2006; 320(1-2): 171-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.002] [PMID: 16769187]
[132]
Gao Y, Xu Z, Chen S, Gu W, Chen L, Li Y. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency. Int J Pharm 2008; 359(1-2): 241-6.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.037] [PMID: 18479851]
[133]
Nam HY, Hahn HJ, Nam K, et al. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int J Pharm 2008; 363(1-2): 199-205.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.021] [PMID: 18718514]
[134]
Nam HY, Nam K, Hahn HJ, et al. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 2009; 30(4): 665-73.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.013] [PMID: 18996585]
[135]
Pisal DS, Yellepeddi VK, Kumar A, et al. Permeability of surface-modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers. Int J Pharm 2008; 350(1-2): 113-21.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.033] [PMID: 17913410]
[136]
Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005; 57(15): 2177-202.
[http://dx.doi.org/10.1016/j.addr.2005.09.017] [PMID: 16310284]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy