Generic placeholder image

Medicinal Chemistry


ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Cholinesterase Inhibitory Activity of N-Phosphorylated/ N-Tiophosphorylated Tacrine

Author(s): Maja Przybyłowska, Iwona Inkielewicz-Stepniak, Szymon Kowalski, Krystyna Dzierzbicka*, Sebastian Demkowicz and Mateusz Daśko

Volume 16, Issue 7, 2020

Page: [947 - 957] Pages: 11

DOI: 10.2174/1573406415666190716115524

Price: $65


Background: Alzheimer’s disease (AD) is progressive and irreversible neurodegenerative disorder. Current pharmacotherapy is not able to stop progression of the disease and can only improve cognitive functions. Therefore, new drugs are being sought that will slow down the development of the disease.

Objective: Novel phosphorus and thiophosphorus tacrine derivatives 7-14 were designed, synthesized and their biological activity and molecular modeling was investigated as a new potential anti- Alzheimer’s disease (AD) agents.

Methods: 9-Chlorotacrine was treated with propane-1,3-diamine in the presence of sodium iodide to yield N1-(1,2,3,4-tetrahydroacridin-9-yl)propane-1,3-diamine 6. Finally, it was treated with corresponding acid ester or thioester to give phosphorus or thiophosphorus tacrine derivative 7-14. All of the obtained final structures were characterized by 1H NMR, 13C NMR, 31P NMR and MS.

Results: The results of the docking studies showed that the newly designed phosphorus and thiophosphorus tacrine analogs, theoretically possess AChE and BChE-binding ability. Kinetic study showed that 8 and 12 in the series proved to be more potent electric eel AChE (eeAChE) and human (hAChE) inhibitors than tacrine, where 8 inhibited eeAChE three times more than the referenced drug. The highest BChE inhibition revealed 11 and 13. The most active compounds against eeAChE, hAChE and BChE showed mixed type of inhibition.

Conclusion: All new synthesized compound exhibited lower toxicity against neuroblastoma cell line (SH-SY5Y) in comparison with tacrine. Two analogues in the series, 7 and 9, demonstrated lack of cytotoxicity against hepatocellular cells (hepG2).

Keywords: Tacrine, cholinesterase inhibitors, Alzheimer's disease, molecular docking, phosphate analogs, neurodegenerative disorder.

Graphical Abstract
Berchtold, N.C.; Cotman, C.W. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol. Aging, 1998, 19(3), 173-189.
[] [PMID: 9661992]
World Health Organization. Dementia Fact sheet, 2017.
Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7.
[] [PMID: 27583652]
Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 51(3), 169-188.
[] [PMID: 24114635]
Przybyłowska, M.; Kowalski, S.; Dzierzbicka, K.; Inkielewicz-Stępniak, I. Therapeutic potential of multifunctional tacrine analogues. Curr. Neuropharmacol., 2019, 17(5), 472-490.
[] [PMID: 29651948]
Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[] [PMID: 24565571]
Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected organophosphorus compounds with biological activity. Applications in medicine. RSC Advances, 2016, 6(12), 7101-7112.
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[] [PMID: 13726518]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
Daśko, M.; Masłyk, M.; Kubiński, K.; Aszyk, J.; Rachon, J.; Demkowicz, S. Synthesis and steroid sulfatase inhibitory activities of N-phosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates. MedChemComm, 2016, 7(6), 1146-1150.
Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg. Chem., 2011, 39(4), 138-142.
[] [PMID: 21621811]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[] [PMID: 21534921]
Minarini, A.; Milelli, A.; Tumiatti, V.; Rosini, M.; Simoni, E.; Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Motori, E.; Angeloni, C.; Hrelia, S. Cystamine-tacrine dimer: A new multi-target-directed ligand as potential therapeutic agent for Alzheimer’s disease treatment. Neuropharmacology, 2012, 62(2), 997-1003.
[] [PMID: 22032870]
Bartolini, M.; Pistolozzi, M.; Andrisano, V.; Egea, J.; López, M.G.; Iriepa, I.; Moraleda, I.; Gálvez, E.; Marco-Contelles, J.; Samadi, A. Chemical and pharmacological studies on enantiomerically pure p-methoxytacripyrines, promising multi-target-directed ligands for the treatment of Alzheimer’s disease. ChemMedChem, 2011, 6(11), 1990-1997.
[] [PMID: 21990269]
Kovalevich, J.; Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol., 2013, 1078, 9-21.
[] [PMID: 23975817]
Koriyama, Y.; Furukawa, A.; Muramatsu, M.; Takino, J.; Takeuchi, M. Glyceraldehyde caused Alzheimer’s disease-like alterations in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Sci. Rep., 2015, 5(1), 13313.
[] [PMID: 26304819]
Krajňáková, L.; Pisarčiková, J.; Drajna, L.; Labudová, M.; Imrich, J.; Paulíková, H.; Kožurková, M. Intracellular distribution of new tacrine analogues as a potential cause of their cytotoxicity against human neuroblastoma cells SH-SY5Y. Med. Chem. Res., 2018, 27(10), 2353-2365.
Mao, F.; Li, J.; Wei, H.; Huang, L.; Li, X. Tacrine-propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 995-1001.
[] [PMID: 25792506]
Zha, X.; Lamba, D.; Zhang, L.; Lou, Y.; Xu, C.; Kang, D.; Chen, L.; Xu, Y.; Zhang, L.; De Simone, A.; Samez, S.; Pesaresi, A.; Stojan, J.; Lopez, M.G.; Egea, J.; Andrisano, V.; Bartolini, M.; Xu, Y.; Zhang, L.; De Simone, A.; Samez, S.; Pesaresi, A.; Stojan, J.; Lopez, M.G.; Egea, J.; Andrisano, V.; Bartolini, M. Novel tacrine-benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, and X-ray crystallography. J. Med. Chem., 2016, 59(1), 114-131.
[] [PMID: 26632651]
Wu, W.; Liang, X.; Xie, G.; Chen, L.; Liu, W.; Luo, G.; Zhang, P.; Yu, L.; Zheng, X.; Ji, H.; Zhang, C.; Yi, W. Synthesis and evaluation of novel ligustrazine derivatives as multi-targeted inhibitors for the treatment of Alzheimer’s disease. Molecules, 2018, 23(10)e2540
[] [PMID: 30301153]
Dogterom, P.; Nagelkerke, J.F.; Mulder, G.J. Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: Effect of glutathione and vitamin E. Biochem. Pharmacol., 1988, 37(12), 2311-2313.
[] [PMID: 3390201]
Lou, G.; Montgomery, P.R.; Sitar, D.S. Bioavailability and pharmacokinetic disposition of tacrine in elderly patients with Alzheimer’s disease. J. Psychiatry Neurosci., 1996, 21(5), 334-339.
[PMID: 8973053]
Roe, A.L.; Snawder, J.E.; Benson, R.W.; Roberts, D.W.; Casciano, D.A. HepG2 cells: An in vitro model for P450-dependent metabolism of acetaminophen. Biochem. Biophys. Res. Commun., 1993, 190(1), 15-19.
[] [PMID: 8380689]
Reddy, E.K.; Remya, C.; Mantosh, K.; Sajith, A.M.; Omkumar, R.V.; Sadasivan, C.; Anwar, S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 139, 367-377.
[] [PMID: 28810188]
Nepovimova, E.; Uliassi, E.; Korabecny, J.; Peña-Altamira, L.E.; Samez, S.; Pesaresi, A.; Garcia, G.E.; Bartolini, M.; Andrisano, V.; Bergamini, C.; Fato, R.; Lamba, D.; Roberti, M.; Kuca, K.; Monti, B.; Bolognesi, M.L. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 2014, 57(20), 8576-8589.
[] [PMID: 25259726]
Nordberg, A.; Ballard, C.; Bullock, R.; Darreh-Shori, T.; Somogyi, M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease., Prim. Care Companion CNS Disord, 2013, 15(2), PCC.12r01412..
Chen, Y.; Bian, Y.; Sun, Y.; Kang, C.; Yu, S.; Fu, T.; Li, W.; Pei, Y.; Sun, H. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors. PeerJ, 2016, 4e2140
[] [PMID: 27441112]
Pietsch, M.; Christian, L.; Inhester, T.; Petzold, S.; Gütschow, M. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile. FEBS J., 2009, 276(8), 2292-2307.
[] [PMID: 19292865]
Wang, Y.; Guan, X-L.; Wu, P-F.; Wang, C-M.; Cao, H.; Li, L.; Guo, X.J.; Wang, F.; Xie, N.; Jiang, F.C.; Chen, J.G. Multifunctional mercapto-tacrine derivatives for treatment of age-related neurodegenerative diseases. J. Med. Chem., 2012, 55(7), 3588-3592.
[] [PMID: 22420827]
Rosini, M.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L.; Hrelia, P.; Minarini, A.; Tarozzi, A.; Melchiorre, C. Rational approach to discover multipotent anti-Alzheimer drugs. J. Med. Chem., 2005, 48(2), 360-363.
[] [PMID: 15658850]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy