Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Structure and Function of Angiopoietin-like Protein 3 (ANGPTL3) in Atherosclerosis

Author(s): Xinjie Lu*

Volume 27, Issue 31, 2020

Page: [5159 - 5174] Pages: 16

DOI: 10.2174/0929867326666190621120523

Price: $65

conference banner
Abstract

Background: Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism.

Method: A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis.

Results: Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects.

Conclusion: ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.

Keywords: Angiopoietin-Like Protein (ANGPTL), atherosclerosis, inflammation, lipid, Growth factors, LDL Receptor (LDLR).

[1]
Kämpfer, H.; Pfeilschifter, J.; Frank, S. Expressional regulation of angiopoietin-1 and -2 and the tie-1 and -2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab. Invest., 2001, 81(3), 361-373.
[http://dx.doi.org/10.1038/labinvest.3780244] [PMID: 11310829]
[2]
Trollope, A.F.; Golledge, J. Angiopoietins, abdominal aortic aneurysm and atherosclerosis. Atherosclerosis, 2011, 214(2), 237-243.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.08.051] [PMID: 20832800]
[3]
Kim, I.; Kwak, H.J.; Ahn, J.E.; So, J.N.; Liu, M.; Koh, K.N.; Koh, G.Y. Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Lett., 1999, 443(3), 353-356.
[http://dx.doi.org/10.1016/S0014-5793(99)00008-3] [PMID: 10025962]
[4]
Ward, N.L.; Dumont, D.J. The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin. Cell Dev. Biol., 2002, 13(1), 19-27.
[http://dx.doi.org/10.1006/scdb.2001.0288] [PMID: 11969368]
[5]
Oike, Y.; Yasunaga, K.; Suda, T. Angiopoietin-related/angiopoietin-like proteins regulate angiogenesis. Int. J. Hematol., 2004, 80(1), 21-28.
[http://dx.doi.org/10.1532/IJH97.04034] [PMID: 15293564]
[6]
Cheng, J.; Song, X.; Ao, L.; Chen, R.; Chi, M.; Guo, Y.; Zhang, J.; Li, H.; Zhao, W.; Guo, Z.; Wang, X. Shared liver-like transcriptional characteristics in liver metastases and corresponding primary colorectal tumors. J. Cancer, 2018, 9(8), 1500-1505.
[http://dx.doi.org/10.7150/jca.23017] [PMID: 29721060]
[7]
Le Jan, S.; Amy, C.; Cazes, A.; Monnot, C.; Lamandé, N.; Favier, J.; Philippe, J.; Sibony, M.; Gasc, J.M.; Corvol, P.; Germain, S. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am. J. Pathol., 2003, 162(5), 1521-1528.
[http://dx.doi.org/10.1016/S0002-9440(10)64285-X] [PMID: 12707035]
[8]
Camenisch, G.; Pisabarro, M.T.; Sherman, D.; Kowalski, J.; Nagel, M.; Hass, P.; Xie, M.H.; Gurney, A.; Bodary, S.; Liang, X.H.; Clark, K.; Beresini, M.; Ferrara, N.; Gerber, H.P. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha beta 3 and induces blood vessel formation in vivo. J. Biol. Chem., 2002, 277(19), 17281-17290.
[http://dx.doi.org/10.1074/jbc.M109768200] [PMID: 11877390]
[9]
Koyama, T.; Ogawara, K.; Kasamatsu, A.; Okamoto, A.; Kasama, H.; Minakawa, Y.; Shimada, K.; Yokoe, H.; Shiiba, M.; Tanzawa, H.; Uzawa, K. ANGPTL3 is a novel biomarker as it activates ERK/MAPK pathway in oral cancer. Cancer Med., 2015, 4(5), 759-769.
[http://dx.doi.org/10.1002/cam4.418] [PMID: 25644496]
[10]
Yu, H.; Zhang, H.; Li, D.; Xue, H.; Pan, C.; Zhao, S.; Wang, L. Effects of ANGPTL3 antisense oligodeoxynucleotides transfection on the cell growths and invasion of human hepatocellular carcinoma cells. Hepatogastroenterology, 2011, 58(110-111), 1742-1746.
[http://dx.doi.org/10.5754/hge10647] [PMID: 21940333]
[11]
Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegand, S.J.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Papadopoulos, N.; Daly, T.J.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997, 277(5322), 55-60.
[http://dx.doi.org/10.1126/science.277.5322.55] [PMID: 9204896]
[12]
Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 1996, 87(7), 1171-1180.
[http://dx.doi.org/10.1016/S0092-8674(00)81813-9] [PMID: 8980224]
[13]
Thomas, M.; Augustin, H.G. The role of the angiopoietins in vascular morphogenesis. Angiogenesis, 2009, 12(2), 125-137.
[http://dx.doi.org/10.1007/s10456-009-9147-3] [PMID: 19449109]
[14]
Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett., 2013, 328(1), 18-26.
[http://dx.doi.org/10.1016/j.canlet.2012.08.018] [PMID: 22922303]
[15]
Dhanabal, M.; LaRochelle, W.J.; Jeffers, M.; Herrmann, J.; Rastelli, L.; McDonald, W.F.; Chillakuru, R.A.; Yang, M.; Boldog, F.L.; Padigaru, M.; McQueeney, K.D.; Wu, F.; Minskoff, S.A.; Shimkets, R.A.; Lichenstein, H.S. Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res., 2002, 62(13), 3834-3841.
[PMID: 12097297]
[16]
Davis, S.; Aldrich, T.H.; Jones, P.F.; Acheson, A.; Compton, D.L.; Jain, V.; Ryan, T.E.; Bruno, J.; Radziejewski, C.; Maisonpierre, P.C.; Yancopoulos, G.D. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 1996, 87(7), 1161-1169.
[http://dx.doi.org/10.1016/S0092-8674(00)81812-7] [PMID: 8980223]
[17]
El-Shal, A.S.; Zidan, H.E.; Rashad, N.M.; Wadea, F.M. Angiopoietin-like protein 3 and 4 expression 4 and their serum levels in hepatocellular carcinoma. Cytokine, 2017, 96, 75-86.
[http://dx.doi.org/10.1016/j.cyto.2017.03.006] [PMID: 28371666]
[18]
Doi, Y.; Ninomiya, T.; Hirakawa, Y.; Takahashi, O.; Mukai, N.; Hata, J.; Iwase, M.; Kitazono, T.; Oike, Y.; Kiyohara, Y. Angiopoietin-like protein 2 and risk of type 2 diabetes in a general Japanese population: the Hisayama study. Diabetes Care, 2013, 36(1), 98-100.
[http://dx.doi.org/10.2337/dc12-0166] [PMID: 22966088]
[19]
Glazer, N.L. Exome sequencing links gene mutation in angiopoietin-like protein 3 with low-density lipoprotein cholesterol. Circ Cardiovasc Genet, 2011, 4(1), 100-101.
[http://dx.doi.org/10.1161/CIRCGENETICS.111.959510] [PMID: 21325168]
[20]
Mandard, S.; Zandbergen, F.; van Straten, E.; Wahli, W.; Kuipers, F.; Müller, M.; Kersten, S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem., 2006, 281(2), 934-944.
[http://dx.doi.org/10.1074/jbc.M506519200] [PMID: 16272564]
[21]
Ortega-Senovilla, H.; Schaefer-Graf, U.; Meitzner, K.; Abou-Dakn, M.; Herrera, E. Decreased concentrations of the lipoprotein lipase inhibitor angiopoietin-like protein 4 and increased serum triacylglycerol are associated with increased neonatal fat mass in pregnant women with gestational diabetes mellitus. J. Clin. Endocrinol. Metab., 2013, 98(8), 3430-3437.
[http://dx.doi.org/10.1210/jc.2013-1614]] [PMID: 23744407]
[22]
Zeng, L.; Dai, J.; Ying, K.; Zhao, E.; Jin, W.; Ye, Y.; Dai, J.; Xu, J.; Xie, Y.; Mao, Y. Identification of a novel human angiopoietin-like gene expressed mainly in heart. J. Hum. Genet., 2003, 48(3), 159-162.
[http://dx.doi.org/10.1007/s100380300025] [PMID: 12624729]
[23]
Oike, Y.; Akao, M.; Yasunaga, K.; Yamauchi, T.; Morisada, T.; Ito, Y.; Urano, T.; Kimura, Y.; Kubota, Y.; Maekawa, H.; Miyamoto, T.; Miyata, K.; Matsumoto, S.; Sakai, J.; Nakagata, N.; Takeya, M.; Koseki, H.; Ogawa, Y.; Kadowaki, T.; Suda, T. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat. Med., 2005, 11(4), 400-408.
[http://dx.doi.org/10.1038/nm1214] [PMID: 15778720]
[24]
Peek, R.; van Gelderen, B.E.; Bruinenberg, M.; Kijlstra, A. Molecular cloning of a new angiopoietinlike factor from the human cornea. Invest. Ophthalmol. Vis. Sci., 1998, 39(10), 1782-1788.
[PMID: 9727400]
[25]
Yi, P.; Park, J.S.; Melton, D.A. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell, 2013, 153(4), 747-758.
[http://dx.doi.org/10.1016/j.cell.2013.04.008] [PMID: 23623304]
[26]
Quagliarini, F.; Wang, Y.; Kozlitina, J.; Grishin, N.V.; Hyde, R.; Boerwinkle, E.; Valenzuela, D.M.; Murphy, A.J.; Cohen, J.C.; Hobbs, H.H. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. USA, 2012, 109(48), 19751-19756.
[http://dx.doi.org/10.1073/pnas.1217552109] [PMID: 23150577]
[27]
Morinaga, J.; Zhao, J.; Endo, M.; Kadomatsu, T.; Miyata, K.; Sugizaki, T.; Okadome, Y.; Tian, Z.; Horiguchi, H.; Miyashita, K.; Maruyama, N.; Mukoyama, M.; Oike, Y. Association of circulating ANGPTL 3, 4, and 8 levels with medical status in a population undergoing routine medical checkups: a cross-sectional study. PLoS One, 2018, 13(3) e0193731
[http://dx.doi.org/10.1371/journal.pone.0193731] [PMID: 29538435]
[28]
Ren, G.; Kim, J.Y.; Smas, C.M. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am. J. Physiol. Endocrinol. Metab., 2012, 303(3), E334-E351.
[http://dx.doi.org/10.1152/ajpendo.00084.2012] [PMID: 22569073]
[29]
Bernard, A.; Klionsky, D.J. Defining the membrane precursor supporting the nucleation of the phagophore. Autophagy, 2014, 10(1), 1-2.
[http://dx.doi.org/10.4161/auto.27242] [PMID: 24257021]
[30]
Procopio, W.N.; Pelavin, P.I.; Lee, W.M.; Yeilding, N.M. Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J. Biol. Chem., 1999, 274(42), 30196-30201.
[http://dx.doi.org/10.1074/jbc.274.42.30196] [PMID: 10514510]
[31]
Mason, J.M.; Arndt, K.M. Coiled coil domains: stability, specificity, and biological implications. ChemBioChem, 2004, 5(2), 170-176.
[http://dx.doi.org/10.1002/cbic.200300781] [PMID: 14760737]
[32]
Valenzuela, D.M.; Griffiths, J.A.; Rojas, J.; Aldrich, T.H.; Jones, P.F.; Zhou, H.; McClain, J.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Huang, T.; Papadopoulos, N.; Maisonpierre, P.C.; Davis, S.; Yancopoulos, G.D. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 1904-1909.
[http://dx.doi.org/10.1073/pnas.96.5.1904] [PMID: 10051567]
[33]
Fu, Z.; Yao, F.; Abou-Samra, A.B.; Zhang, R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem. Biophys. Res. Commun., 2013, 430(3), 1126-1131.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.025] [PMID: 23261442]
[34]
Gibbons, G.F.; Wiggins, D.; Brown, A.M.; Hebbachi, A.M. Synthesis and function of hepatic very-low-density lipoprotein. Biochem. Soc. Trans., 2004, 32(Pt 1), 59-64.
[http://dx.doi.org/10.1042/bst0320059] [PMID: 14748713]
[35]
Musunuru, K.; Kathiresan, S. Genetics of coronary artery disease. Annu. Rev. Genomics Hum. Genet., 2010, 11, 91-108.
[http://dx.doi.org/10.1146/annurev-genom-082509-141637] [PMID: 20590428]
[36]
Bauer, R.C.; Stylianou, I.M.; Rader, D.J. Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Curr. Opin. Lipidol., 2011, 22(2), 123-128.
[http://dx.doi.org/10.1097/MOL.0b013e32834469b3] [PMID: 21311327]
[37]
Dugi, K.A.; Dichek, H.L.; Santamarina-Fojo, S. Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity. J. Biol. Chem., 1995, 270(43), 25396-25401.
[http://dx.doi.org/10.1074/jbc.270.43.25396] [PMID: 7592706]
[38]
van Tilbeurgh, H.; Egloff, M.P.; Martinez, C.; Rugani, N.; Verger, R.; Cambillau, C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 1993, 362(6423), 814-820.
[http://dx.doi.org/10.1038/362814a0] [PMID: 8479519]
[39]
Holmes, R.S.; Vandeberg, J.L.; Cox, L.A. Comparative studies of vertebrate lipoprotein lipase: a key enzyme of very low density lipoprotein metabolism. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2011, 6(2), 224-234.
[http://dx.doi.org/10.1016/j.cbd.2011.04.003] [PMID: 21561822]
[40]
Brocca, S.; Secundo, F.; Ossola, M.; Alberghina, L.; Carrea, G.; Lotti, M. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci., 2003, 12(10), 2312-2319.
[http://dx.doi.org/10.1110/ps.0304003] [PMID: 14500889]
[41]
Berg, O.G.; Cajal, Y.; Butterfoss, G.L.; Grey, R.L.; Alsina, M.A.; Yu, B.Z.; Jain, M.K. Interfacial activation of triglyceride lipase from Thermomyces (Humicola) lanuginosa: kinetic parameters and a basis for control of the lid. Biochemistry, 1998, 37(19), 6615-6627.
[http://dx.doi.org/10.1021/bi972998p] [PMID: 9578545]
[42]
Cajal, Y.; Svendsen, A.; Girona, V.; Patkar, S.A.; Alsina, M.A. Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry, 2000, 39(2), 413-423.
[http://dx.doi.org/10.1021/bi991927i] [PMID: 10631003]
[43]
Otarod, J.K.; Goldberg, I.J. Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr. Atheroscler. Rep., 2004, 6(5), 335-342.
[http://dx.doi.org/10.1007/s11883-004-0043-4] [PMID: 15296698]
[44]
Goldberg, I.J.; Merkel, M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front. Biosci., 2001, 6, D388-D405.
[http://dx.doi.org/10.2741/goldberg] [PMID: 11229871]
[45]
Mead, J.R.; Irvine, S.A.; Ramji, D.P. Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. (Berl.), 2002, 80(12), 753-769.
[http://dx.doi.org/10.1007/s00109-002-0384-9] [PMID: 12483461]
[46]
Camejo, G.; Hurt-Camejo, E.; Wiklund, O.; Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis, 1998, 139(2), 205-222.
[http://dx.doi.org/10.1016/S0021-9150(98)00107-5] [PMID: 9712326]
[47]
Proctor, S.D.; Mamo, J.C. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall-evidence that plaque cholesterol may be derived from post-prandial lipoproteins. Eur. J. Clin. Invest., 1998, 28(6), 497-503.
[http://dx.doi.org/10.1046/j.1365-2362.1998.00317.x] [PMID: 9693943]
[48]
Olin, K.L.; Potter-Perigo, S.; Barrett, P.H.; Wight, T.N.; Chait, A. Lipoprotein lipase enhances the binding of native and oxidized low density lipoproteins to versican and biglycan synthesized by cultured arterial smooth muscle cells. J. Biol. Chem., 1999, 274(49), 34629-34636.
[http://dx.doi.org/10.1074/jbc.274.49.34629] [PMID: 10574927]
[49]
Pentikäinen, M.O.; Oksjoki, R.; Oörni, K.; Kovanen, P.T. Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler. Thromb. Vasc. Biol., 2002, 22(2), 211-217.
[http://dx.doi.org/10.1161/hq0102.101551] [PMID: 11834518]
[50]
Aviram, M.; Bierman, E.L.; Chait, A. Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase induces enhanced uptake and cholesterol accumulation in cells. J. Biol. Chem., 1988, 263(30), 15416-15422.
[PMID: 3170589]
[51]
Weinstock, P.H.; Bisgaier, C.L.; Aalto-Setälä, K.; Radner, H.; Ramakrishnan, R.; Levak-Frank, S.; Essenburg, A.D.; Zechner, R.; Breslow, J.L. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J. Clin. Invest., 1995, 96(6), 2555-2568.
[http://dx.doi.org/10.1172/JCI118319] [PMID: 8675619]
[52]
Benlian, P.; De Gennes, J.L.; Foubert, L.; Zhang, H.; Gagné, S.E.; Hayden, M. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N. Engl. J. Med., 1996, 335(12), 848-854.
[http://dx.doi.org/10.1056/NEJM199609193351203] [PMID: 8778602]
[53]
Monsalve, M.V.; Henderson, H.; Roederer, G.; Julien, P.; Deeb, S.; Kastelein, J.J.; Peritz, L.; Devlin, R.; Bruin, T.; Murthy, M.R. A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries. J. Clin. Invest., 1990, 86(3), 728-734.
[http://dx.doi.org/10.1172/JCI114769] [PMID: 1975597]
[54]
Hide, W.A.; Chan, L.; Li, W.H. Structure and evolution of the lipase superfamily. J. Lipid Res., 1992, 33(2), 167-178.
[PMID: 1569370]
[55]
Saika, Y.; Sakai, N.; Takahashi, M.; Maruyama, T.; Kihara, S.; Ouchi, N.; Ishigami, M.; Hiraoka, H.; Nakamura, T.; Yamashita, S.; Matsuzawa, Y. Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis. Eur. J. Clin. Invest., 2003, 33(3), 216-222.
[http://dx.doi.org/10.1046/j.1365-2362.2003.01129.x] [PMID: 12641539]
[56]
Murano, T.; Sako, T.; Oikawa, S.; Shirai, K. The recovery of dysfunctional lipoprotein lipase (Asp204-Glu) activity by modification of substrate. Atherosclerosis, 2005, 183(1), 101-107.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.02.025] [PMID: 15878772]
[57]
Qin, Y.Y.; Wei, A.Q.; Shan, Q.W.; Xian, X.Y.; Wu, Y.Y.; Liao, L.; Yan, J.; Lai, Z.F.; Lin, F.Q. Rare LPL gene missense mutation in an infant with hypertriglyceridemia. J. Clin. Lab. Anal., 2018, 32(6) e22414
[http://dx.doi.org/10.1002/jcla.22414] [PMID: 29479812]
[58]
Babaev, V.R.; Fazio, S.; Gleaves, L.A.; Carter, K.J.; Semenkovich, C.F.; Linton, M.F. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J. Clin. Invest., 1999, 103(12), 1697-1705.
[http://dx.doi.org/10.1172/JCI6117] [PMID: 10377176]
[59]
Ichikawa, T.; Liang, J.; Kitajima, S.; Koike, T.; Wang, X.; Sun, H.; Morimoto, M.; Shikama, H.; Watanabe, T.; Yamada, N.; Fan, J. Macrophage-derived lipoprotein lipase increases aortic atherosclerosis in cholesterol-fed Tg rabbits. Atherosclerosis, 2005, 179(1), 87-95.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.10.044] [PMID: 15721013]
[60]
Takahashi, M.; Yagyu, H.; Tazoe, F.; Nagashima, S.; Ohshiro, T.; Okada, K.; Osuga, J.; Goldberg, I.J.; Ishibashi, S. Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity. J. Lipid Res., 2013, 54(4), 1124-1134.
[http://dx.doi.org/10.1194/jlr.M035568] [PMID: 23378601]
[61]
Martín-Campos, J.M.; Julve, J.; Roig, R.; Martínez, S.; Errico, T.L.; Martínez-Couselo, S.; Escolà-Gil, J.C.; Méndez-González, J.; Blanco-Vaca, F. Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency. Clin. Chim. Acta, 2014, 429, 61-68.
[http://dx.doi.org/10.1016/j.cca.2013.11.025] [PMID: 24291057]
[62]
Kuwajima, M.; Foster, D.W.; McGarry, J.D. Regulation of lipoprotein lipase in different rat tissues. Metabolism, 1988, 37(6), 597-601.
[http://dx.doi.org/10.1016/0026-0495(88)90178-3] [PMID: 3374326]
[63]
Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta, 2014, 1841(7), 919-933.
[http://dx.doi.org/10.1016/j.bbalip.2014.03.013] [PMID: 24721265]
[64]
Le Lay, S.; Simard, G.; Martinez, M.C.; Andriantsitohaina, R. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid. Med. Cell. Longev., 2014, 2014 908539
[http://dx.doi.org/10.1155/2014/908539] [PMID: 25143800]
[65]
Wang, Y.; McNutt, M.C.; Banfi, S.; Levin, M.G.; Holland, W.L.; Gusarova, V.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl. Acad. Sci. USA, 2015, 112(37), 11630-11635.
[http://dx.doi.org/10.1073/pnas.1515374112] [PMID: 26305978]
[66]
Banfi, S.; Gusarova, V.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice. Proc. Natl. Acad. Sci. USA, 2018, 115(6), E1249-E1258.
[http://dx.doi.org/10.1073/pnas.1717420115] [PMID: 29358393]
[67]
Ono, M.; Shimizugawa, T.; Shimamura, M.; Yoshida, K.; Noji-Sakikawa, C.; Ando, Y.; Koishi, R.; Furukawa, H. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J. Biol. Chem., 2003, 278(43), 41804-41809.
[http://dx.doi.org/10.1074/jbc.M302861200] [PMID: 12909640]
[68]
Dron, J.S.; Hegele, R.A. Genetics of triglycerides and the risk of atherosclerosis. Curr. Atheroscler. Rep., 2017, 19(7), 31.
[http://dx.doi.org/10.1007/s11883-017-0667-9] [PMID: 28534127]
[69]
Romeo, S.; Yin, W.; Kozlitina, J.; Pennacchio, L.A.; Boerwinkle, E.; Hobbs, H.H.; Cohen, J.C. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest., 2009, 119(1), 70-79.
[http://dx.doi.org/10.1172/jci37118] [PMID: 19075393]
[70]
Shimizugawa, T.; Ono, M.; Shimamura, M.; Yoshida, K.; Ando, Y.; Koishi, R.; Ueda, K.; Inaba, T.; Minekura, H.; Kohama, T.; Furukawa, H. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem., 2002, 277(37), 33742-33748.
[http://dx.doi.org/10.1074/jbc.M203215200] [PMID: 12097324]
[71]
Shimamura, M.; Matsuda, M.; Yasumo, H.; Okazaki, M.; Fujimoto, K.; Kono, K.; Shimizugawa, T.; Ando, Y.; Koishi, R.; Kohama, T.; Sakai, N.; Kotani, K.; Komuro, R.; Ishida, T.; Hirata, K.; Yamashita, S.; Furukawa, H.; Shimomura, I. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 366-372.
[http://dx.doi.org/10.1161/01.ATV.0000252827.51626.89] [PMID: 17110602]
[72]
Kersten, S. Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol., 2017, 13(12), 731-739.
[http://dx.doi.org/10.1038/nrendo.2017.119] [PMID: 28984319]
[73]
Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; Fennell, T.; Banks, E.; Ambrogio, L.; Cibulskis, K.; Kernytsky, A.; Gonzalez, E.; Rudzicz, N.; Engert, J.C.; DePristo, M.A.; Daly, M.J.; Cohen, J.C.; Hobbs, H.H.; Altshuler, D.; Schonfeld, G.; Gabriel, S.B.; Yue, P.; Kathiresan, S. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med., 2010, 363(23), 2220-2227.
[http://dx.doi.org/10.1056/NEJMoa1002926] [PMID: 20942659]
[74]
Essalmani, R.; Susan-Resiga, D.; Chamberland, A.; Asselin, M.C.; Canuel, M.; Constam, D.; Creemers, J.W.; Day, R.; Gauthier, D.; Prat, A.; Seidah, N.G. Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes. J. Biol. Chem., 2013, 288(37), 26410-26418.
[http://dx.doi.org/10.1074/jbc.M113.501304] [PMID: 23918928]
[75]
Blanco-Vaca, F.; Martin-Campos, J.M.; Beteta-Vicente, Á.; Canyelles, M.; Martínez, S.; Roig, R.; Farré, N.; Julve, J.; Tondo, M. Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: evidence supporting polygenicity in mutation-negative patients. Atherosclerosis, 2019, 283, 52-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.01.036] [PMID: 30782561]
[76]
Noto, D.; Cefalù, A.B.; Valenti, V.; Fayer, F.; Pinotti, E.; Ditta, M.; Spina, R.; Vigna, G.; Yue, P.; Kathiresan, S.; Tarugi, P.; Averna, M.R. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler. Thromb. Vasc. Biol., 2012, 32(3), 805-809.
[http://dx.doi.org/10.1161/ATVBAHA.111.238766] [PMID: 22247256]
[77]
Pisciotta, L.; Favari, E.; Magnolo, L.; Simonelli, S.; Adorni, M.P.; Sallo, R.; Fancello, T.; Zavaroni, I.; Ardigò, D.; Bernini, F.; Calabresi, L.; Franceschini, G.; Tarugi, P.; Calandra, S.; Bertolini, S. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ Cardiovasc Genet, 2012, 5(1), 42-50.
[http://dx.doi.org/10.1161/CIRCGENETICS.111.960674] [PMID: 22062970]
[78]
Foley, E.M.; Esko, J.D. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. Prog. Mol. Biol. Transl. Sci., 2010, 93, 213-233.
[http://dx.doi.org/10.1016/S1877-1173(10)93010-X] [PMID: 20807647]
[79]
Bartelt, A.; Bruns, O.T.; Reimer, R.; Hohenberg, H.; Ittrich, H.; Peldschus, K.; Kaul, M.G.; Tromsdorf, U.I.; Weller, H.; Waurisch, C.; Eychmüller, A.; Gordts, P.L.; Rinninger, F.; Bruegelmann, K.; Freund, B.; Nielsen, P.; Merkel, M.; Heeren, J. Brown adipose tissue activity controls triglyceride clearance. Nat. Med., 2011, 17(2), 200-205.
[http://dx.doi.org/10.1038/nm.2297] [PMID: 21258337]
[80]
Robciuc, M.R.; Maranghi, M.; Lahikainen, A.; Rader, D.; Bensadoun, A.; Öörni, K.; Metso, J.; Minicocci, I.; Ciociola, E.; Ceci, F.; Montali, A.; Arca, M.; Ehnholm, C.; Jauhiainen, M. ANGPTL3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1706-1713.
[http://dx.doi.org/10.1161/ATVBAHA.113.301397] [PMID: 23661675]
[81]
Fugier, C.; Tousaint, J.J.; Prieur, X.; Plateroti, M.; Samarut, J.; Delerive, P. The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J. Biol. Chem., 2006, 281(17), 11553-11559.
[http://dx.doi.org/10.1074/jbc.M512554200] [PMID: 16505486]
[82]
Hatsuda, S.; Shoji, T.; Shinohara, K.; Kimoto, E.; Mori, K.; Fukumoto, S.; Koyama, H.; Emoto, M.; Nishizawa, Y.; Hatsuda, S.; Shoji, T.; Shinohara, K.; Kimoto, E.; Mori, K.; Fukumoto, S.; Koyama, H.; Emoto, M.; Nishizawa, Y. Association between plasma angiopoietin-like protein 3 and arterial wall thickness in healthy subjects. J. Vasc. Res., 2007, 44(1), 61-66.
[http://dx.doi.org/10.1159/000098153] [PMID: 17191020]
[83]
Conklin, D.; Gilbertson, D.; Taft, D.W.; Maurer, M.F.; Whitmore, T.E.; Smith, D.L.; Walker, K.M.; Chen, L.H.; Wattler, S.; Nehls, M.; Lewis, K.B. Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics, 1999, 62(3), 477-482.
[http://dx.doi.org/10.1006/geno.1999.6041] [PMID: 10644446]
[84]
Okada, T.; Ohama, T.; Takafuji, K.; Kanno, K.; Matsuda, H.; Sairyo, M.; Zhu, Y.; Saga, A.; Kobayashi, T.; Masuda, D.; Koseki, M.; Nishida, M.; Sakata, Y.; Yamashita, S. Shotgun proteomic analysis reveals proteome alterations in HDL of patients with cholesteryl ester transfer protein deficiency. J. Clin. Lipidol., 2019, 13(2), 317-325.
[http://dx.doi.org/10.1016/j.jacl.2019.01.002] [PMID: 30745272]
[85]
Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; Leader, J.B.; Murray, M.F.; Ritchie, M.D.; Kirchner, H.L.; Habegger, L.; Lopez, A.; Penn, J.; Zhao, A.; Shao, W.; Stahl, N.; Murphy, A.J.; Hamon, S.; Bouzelmat, A.; Zhang, R.; Shumel, B.; Pordy, R.; Gipe, D.; Herman, G.A.; Sheu, W.H.H.; Lee, I.T.; Liang, K.W.; Guo, X.; Rotter, J.I.; Chen, Y.I.; Kraus, W.E.; Shah, S.H.; Damrauer, S.; Small, A.; Rader, D.J.; Wulff, A.B.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; van den Hoek, A.M.; Princen, H.M.G.; Ledbetter, D.H.; Carey, D.J.; Overton, J.D.; Reid, J.G.; Sasiela, W.J.; Banerjee, P.; Shuldiner, A.R.; Borecki, I.B.; Teslovich, T.M.; Yancopoulos, G.D.; Mellis, S.J.; Gromada, J.; Baras, A. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med., 2017, 377(3), 211-221.
[http://dx.doi.org/10.1056/NEJMoa1612790] [PMID: 28538136]
[86]
Stitziel, N.O.; Khera, A.V.; Wang, X.; Bierhals, A.J.; Vourakis, A.C.; Sperry, A.E.; Natarajan, P.; Klarin, D.; Emdin, C.A.; Zekavat, S.M.; Nomura, A.; Erdmann, J.; Schunkert, H.; Samani, N.J.; Kraus, W.E.; Shah, S.H.; Yu, B.; Boerwinkle, E.; Rader, D.J.; Gupta, N.; Frossard, P.M.; Rasheed, A.; Danesh, J.; Lander, E.S.; Gabriel, S.; Saleheen, D.; Musunuru, K.; Kathiresan, S. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary disease. J. Am. Coll. Cardiol., 2017, 69(16), 2054-2063.
[http://dx.doi.org/10.1016/j.jacc.2017.02.030] [PMID: 28385496]
[87]
Wang, X.; Wang, D.; Shan, Z. Clinical and genetic analysis of a family diagnosed with familial hypobetalipoproteinemia in which the proband was diagnosed with diabetes mellitus. Atherosclerosis, 2015, 239(2), 552-556.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.02.031] [PMID: 25733326]
[88]
Biterova, E.; Esmaeeli, M.; Alanen, H.I.; Saaranen, M.; Ruddock, L.W. Structures of ANGPTL3 and ANGPTL4, modulators of triglyceride levels and coronary artery disease. Sci. Rep., 2018, 8(1), 6752.
[http://dx.doi.org/10.1038/s41598-018-25237-7] [PMID: 29713054]
[89]
Huijgen, R.; Sjouke, B.; Vis, K.; de Randamie, J.S.; Defesche, J.C.; Kastelein, J.J.; Hovingh, G.K.; Fouchier, S.W. Genetic variation in APOB, PCSK9, and ANGPTL3 in carriers of pathogenic autosomal dominant hypercholesterolemic mutations with unexpected low LDL-Cl Levels. Hum. Mutat., 2012, 33(2), 448-455.
[http://dx.doi.org/10.1002/humu.21660] [PMID: 22095935]
[90]
Xu, Y.X.; Redon, V.; Yu, H.; Querbes, W.; Pirruccello, J.; Liebow, A.; Deik, A.; Trindade, K.; Wang, X.; Musunuru, K.; Clish, C.B.; Cowan, C.; Fizgerald, K.; Rader, D.; Kathiresan, S. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis, 2018, 268, 196-206.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.031] [PMID: 29183623]
[91]
Gaudet, D.; Gipe, D.A.; Pordy, R.; Ahmad, Z.; Cuchel, M.; Shah, P.K.; Chyu, K.Y.; Sasiela, W.J.; Chan, K.C.; Brisson, D.; Khoury, E.; Banerjee, P.; Gusarova, V.; Gromada, J.; Stahl, N.; Yancopoulos, G.D.; Hovingh, G.K. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N. Engl. J. Med., 2017, 377(3), 296-297.
[http://dx.doi.org/10.1056/NEJMc1705994] [PMID: 28723334]
[92]
Minicocci, I.; Montali, A.; Robciuc, M.R.; Quagliarini, F.; Censi, V.; Labbadia, G.; Gabiati, C.; Pigna, G.; Sepe, M.L.; Pannozzo, F.; Lütjohann, D.; Fazio, S.; Jauhiainen, M.; Ehnholm, C.; Arca, M. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab., 2012, 97(7), E1266-E1275.
[http://dx.doi.org/10.1210/jc.2012-1298] [PMID: 22659251]
[93]
Koishi, R.; Ando, Y.; Ono, M.; Shimamura, M.; Yasumo, H.; Fujiwara, T.; Horikoshi, H.; Furukawa, H. ANGPTL3 regulates lipid metabolism in mice. Nat. Genet., 2002, 30(2), 151-157.
[http://dx.doi.org/10.1038/ng814] [PMID: 11788823]
[94]
Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; Johansen, C.T.; Fouchier, S.W.; Isaacs, A.; Peloso, G.M.; Barbalic, M.; Ricketts, S.L.; Bis, J.C.; Aulchenko, Y.S.; Thorleifsson, G.; Feitosa, M.F.; Chambers, J.; Orho-Melander, M.; Melander, O.; Johnson, T.; Li, X.; Guo, X.; Li, M.; Shin Cho, Y.; Jin Go, M.; Jin Kim, Y.; Lee, J.Y.; Park, T.; Kim, K.; Sim, X.; Twee-Hee Ong, R.; Croteau-Chonka, D.C.; Lange, L.A.; Smith, J.D.; Song, K.; Hua, Zhao. J.; Yuan, X.; Luan, J.; Lamina, C.; Ziegler, A.; Zhang, W.; Zee, R.Y.; Wright, A.F.; Witteman, J.C.; Wilson, J.F.; Willemsen, G.; Wichmann, H.E.; Whitfield, J.B.; Waterworth, D.M.; Wareham, N.J.; Waeber, G.; Vollenweider, P.; Voight, B.F.; Vitart, V.; Uitterlinden, A.G.; Uda, M.; Tuomilehto, J.; Thompson, J.R.; Tanaka, T.; Surakka, I.; Stringham, H.M.; Spector, T.D.; Soranzo, N.; Smit, J.H.; Sinisalo, J.; Silander, K.; Sijbrands, E.J.; Scuteri, A.; Scott, J.; Schlessinger, D.; Sanna, S.; Salomaa, V.; Saharinen, J.; Sabatti, C.; Ruokonen, A.; Rudan, I.; Rose, L.M.; Roberts, R.; Rieder, M.; Psaty, B.M.; Pramstaller, P.P.; Pichler, I.; Perola, M.; Penninx, B.W.; Pedersen, N.L.; Pattaro, C.; Parker, A.N.; Pare, G.; Oostra, B.A.; O’Donnell, C.J.; Nieminen, M.S.; Nickerson, D.A.; Montgomery, G.W.; Meitinger, T.; McPherson, R.; McCarthy, M.I.; McArdle, W.; Masson, D.; Martin, N.G.; Marroni, F.; Mangino, M.; Magnusson, P.K.; Lucas, G.; Luben, R.; Loos, R.J.; Lokki, M.L.; Lettre, G.; Langenberg, C.; Launer, L.J.; Lakatta, E.G.; Laaksonen, R.; Kyvik, K.O.; Kronenberg, F.; König, I.R.; Khaw, K.T.; Kaprio, J.; Kaplan, L.M.; Johansson, A.; Jarvelin, M.R.; Janssens, A.C.; Ingelsson, E.; Igl, W.; Kees Hovingh, G.; Hottenga, J.J.; Hofman, A.; Hicks, A.A.; Hengstenberg, C.; Heid, I.M.; Hayward, C.; Havulinna, A.S.; Hastie, N.D.; Harris, T.B.; Haritunians, T.; Hall, A.S.; Gyllensten, U.; Guiducci, C.; Groop, L.C.; Gonzalez, E.; Gieger, C.; Freimer, N.B.; Ferrucci, L.; Erdmann, J.; Elliott, P.; Ejebe, K.G.; Döring, A.; Dominiczak, A.F.; Demissie, S.; Deloukas, P.; de Geus, E.J.; de Faire, U.; Crawford, G.; Collins, F.S.; Chen, Y.D.; Caulfield, M.J.; Campbell, H.; Burtt, N.P.; Bonnycastle, L.L.; Boomsma, D.I.; Boekholdt, S.M.; Bergman, R.N.; Barroso, I.; Bandinelli, S.; Ballantyne, C.M.; Assimes, T.L.; Quertermous, T.; Altshuler, D.; Seielstad, M.; Wong, T.Y.; Tai, E.S.; Feranil, A.B.; Kuzawa, C.W.; Adair, L.S.; Taylor, H.A., Jr; Borecki, I.B.; Gabriel, S.B.; Wilson, J.G.; Holm, H.; Thorsteinsdottir, U.; Gudnason, V.; Krauss, R.M.; Mohlke, K.L.; Ordovas, J.M.; Munroe, P.B.; Kooner, J.S.; Tall, A.R.; Hegele, R.A.; Kastelein, J.J.; Schadt, E.E.; Rotter, J.I.; Boerwinkle, E.; Strachan, D.P.; Mooser, V.; Stefansson, K.; Reilly, M.P.; Samani, N.J.; Schunkert, H.; Cupples, L.A.; Sandhu, M.S.; Ridker, P.M.; Rader, D.J.; van Duijn, C.M.; Peltonen, L.; Abecasis, G.R.; Boehnke, M.; Kathiresan, S. Biological, clinical and population relevance of 95 loci for blood lipids Nature, 2010, 466(7307), 707-713.
[http://dx.doi.org/10.1038/nature09270] [PMID: 20686565]
[95]
Wallace, C.; Newhouse, S.J.; Braund, P.; Zhang, F.; Tobin, M.; Falchi, M.; Ahmadi, K.; Dobson, R.J.; Marçano, A.C.; Hajat, C.; Burton, P.; Deloukas, P.; Brown, M.; Connell, J.M.; Dominiczak, A.; Lathrop, G.M.; Webster, J.; Farrall, M.; Spector, T.; Samani, N.J.; Caulfield, M.J.; Munroe, P.B. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am. J. Hum. Genet., 2008, 82(1), 139-149.
[http://dx.doi.org/10.1016/j.ajhg.2007.11.001] [PMID: 18179892]
[96]
Georgiadi, A.; Wang, Y.; Stienstra, R.; Tjeerdema, N.; Janssen, A.; Stalenhoef, A.; van der Vliet, J.A.; de Roos, A.; Tamsma, J.T.; Smit, J.W.; Tan, N.S.; Müller, M.; Rensen, P.C.; Kersten, S. Overexpression of angiopoietin-like protein 4 protects against atherosclerosis development. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1529-1537.
[http://dx.doi.org/10.1161/ATVBAHA.113.301698] [PMID: 23640487]
[97]
Tabata, M.; Kadomatsu, T.; Fukuhara, S.; Miyata, K.; Ito, Y.; Endo, M.; Urano, T.; Zhu, H.J.; Tsukano, H.; Tazume, H.; Kaikita, K.; Miyashita, K.; Iwawaki, T.; Shimabukuro, M.; Sakaguchi, K.; Ito, T.; Nakagata, N.; Yamada, T.; Katagiri, H.; Kasuga, M.; Ando, Y.; Ogawa, H.; Mochizuki, N.; Itoh, H.; Suda, T.; Oike, Y. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab., 2009, 10(3), 178-188.
[http://dx.doi.org/10.1016/j.cmet.2009.08.003] [PMID: 19723494]
[98]
Farhat, N.; Thorin-Trescases, N.; Voghel, G.; Villeneuve, L.; Mamarbachi, M.; Perrault, L.P.; Carrier, M.; Thorin, E. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can. J. Physiol. Pharmacol., 2008, 86(11), 761-769.
[http://dx.doi.org/10.1139/Y08-082] [PMID: 19011671]
[99]
Ogata, A.; Endo, M.; Aoi, J.; Takahashi, O.; Kadomatsu, T.; Miyata, K.; Tian, Z.; Jinnin, M.; Fukushima, S.; Ihn, H.; Oike, Y. The role of angiopoietin-like protein 2 in pathogenesis of dermatomyositis. Biochem. Biophys. Res. Commun., 2012, 418(3), 494-499.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.052] [PMID: 22281496]
[100]
Okada, T.; Tsukano, H.; Endo, M.; Tabata, M.; Miyata, K.; Kadomatsu, T.; Miyashita, K.; Semba, K.; Nakamura, E.; Tsukano, M.; Mizuta, H.; Oike, Y. Synoviocyte-derived angiopoietin-like protein 2 contributes to synovial chronic inflammation in rheumatoid arthritis. Am. J. Pathol., 2010, 176(5), 2309-2319.
[http://dx.doi.org/10.2353/ajpath.2010.090865] [PMID: 20304962]
[101]
Tazume, H.; Miyata, K.; Tian, Z.; Endo, M.; Horiguchi, H.; Takahashi, O.; Horio, E.; Tsukano, H.; Kadomatsu, T.; Nakashima, Y.; Kunitomo, R.; Kaneko, Y.; Moriyama, S.; Sakaguchi, H.; Okamoto, K.; Hara, M.; Yoshinaga, T.; Yoshimura, K.; Aoki, H.; Araki, K.; Hao, H.; Kawasuji, M.; Oike, Y. Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1400-1409.
[http://dx.doi.org/10.1161/ATVBAHA.112.247866] [PMID: 22556334]
[102]
Endo, M.; Nakano, M.; Kadomatsu, T.; Fukuhara, S.; Kuroda, H.; Mikami, S.; Hato, T.; Aoi, J.; Horiguchi, H.; Miyata, K.; Odagiri, H.; Masuda, T.; Harada, M.; Horio, H.; Hishima, T.; Nomori, H.; Ito, T.; Yamamoto, Y.; Minami, T.; Okada, S.; Takahashi, T.; Mochizuki, N.; Iwase, H.; Oike, Y. Tumor cell-derived angiopoietin-like protein ANGPTL2 is a critical driver of metastasis. Cancer Res., 2012, 72(7), 1784-1794.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3878] [PMID: 22345152]
[103]
Aoi, J.; Endo, M.; Kadomatsu, T.; Miyata, K.; Ogata, A.; Horiguchi, H.; Odagiri, H.; Masuda, T.; Fukushima, S.; Jinnin, M.; Hirakawa, S.; Sawa, T.; Akaike, T.; Ihn, H.; Oike, Y. Angiopoietin-like protein 2 accelerates carcinogenesis by activating chronic inflammation and oxidative stress. Mol. Cancer Res., 2014, 12(2), 239-249.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0336] [PMID: 24258150]
[104]
Farhat, N.; Thorin-Trescases, N.; Mamarbachi, M.; Villeneuve, L.; Yu, C.; Martel, C.; Duquette, N.; Gayda, M.; Nigam, A.; Juneau, M.; Allen, B.G.; Thorin, E. Angiopoietin-like 2 promotes atherogenesis in mice. J. Am. Heart Assoc., 2013, 2(3) e000201
[http://dx.doi.org/10.1161/JAHA.113.000201] [PMID: 23666461]
[105]
Muramoto, A.; Tsushita, K.; Kato, A.; Ozaki, N.; Tabata, M.; Endo, M. Angiopoietinlike protein 2 sensitively responds to weight reduction induced by lifestyle intervention on overweight Japanese men. Nutr. Diabetes, 2011, 1(11) e20
[http://dx.doi.org/10.1038/nutd.2011.16] [PMID: 23154406]
[106]
Jonker, J.T.; Smit, J.W.; Hammer, S.; Snel, M.; van der Meer, R.W.; Lamb, H.J.; Mattijssen, F.; Mudde, K.; Jazet, I.M.; Dekkers, O.M.; de Roos, A.; Romijn, J.A.; Kersten, S.; Rensen, P.C. Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes. Am. J. Clin. Nutr., 2013, 97(2), 255-260.
[http://dx.doi.org/10.3945/ajcn.112.043687] [PMID: 23283507]
[107]
Sanderson, L.M.; Degenhardt, T.; Koppen, A.; Kalkhoven, E.; Desvergne, B.; Müller, M.; Kersten, S. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPAR alpha serves as a plasma free fatty acid sensor in liver. Mol. Cell. Biol., 2009, 29(23), 6257-6267.
[http://dx.doi.org/10.1128/MCB.00370-09] [PMID: 19805517]
[108]
Yoshida, K.; Shimizugawa, T.; Ono, M.; Furukawa, H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J. Lipid Res., 2002, 43(11), 1770-1772.
[http://dx.doi.org/10.1194/jlr.C200010-JLR200] [PMID: 12401877]
[109]
Yau, M.H.; Wang, Y.; Lam, K.S.; Zhang, J.; Wu, D.; Xu, A. A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J. Biol. Chem., 2009, 284(18), 11942-11952.
[http://dx.doi.org/10.1074/jbc.M809802200] [PMID: 19246456]
[110]
Sukonina, V.; Lookene, A.; Olivecrona, T.; Olivecrona, G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl. Acad. Sci. USA, 2006, 103(46), 17450-17455.
[http://dx.doi.org/10.1073/pnas.0604026103] [PMID: 17088546]
[111]
Adachi, H.; Fujiwara, Y.; Kondo, T.; Nishikawa, T.; Ogawa, R.; Matsumura, T.; Ishii, N.; Nagai, R.; Miyata, K.; Tabata, M.; Motoshima, H.; Furukawa, N.; Tsuruzoe, K.; Kawashima, J.; Takeya, M.; Yamashita, S.; Koh, G.Y.; Nagy, A.; Suda, T.; Oike, Y.; Araki, E. ANGPTL 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis. Biochem. Biophys. Res. Commun., 2009, 379(4), 806-811.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.018] [PMID: 19094966]
[112]
Köster, A.; Chao, Y.B.; Mosior, M.; Ford, A.; Gonzalez-DeWhitt, P.A.; Hale, J.E.; Li, D.; Qiu, Y.; Fraser, C.C.; Yang, D.D.; Heuer, J.G.; Jaskunas, S.R.; Eacho, P. Transgenic angiopoietin-like (ANGPTL)4 overexpression and targeted disruption of ANGPTL4 and ANGPTL3: regulation of triglyceride metabolism. Endocrinology, 2005, 146(11), 4943-4950.
[http://dx.doi.org/10.1210/en.2005-0476] [PMID: 16081640]
[113]
Katano, H.; Yamada, K. Upregulation of ANGPTL4 messenger RNA and protein in severely calcified carotid plaques. J. Stroke Cerebrovasc. Dis., 2014, 23(5), 933-947.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.046] [PMID: 24075588]
[114]
Li, C. Genetics and regulation of angiopoietin-like proteins 3 and 4. Curr. Opin. Lipidol., 2006, 17(2), 152-156.
[http://dx.doi.org/10.1097/01.mol.0000217896.67444.05] [PMID: 16531751]
[115]
Kersten, S.; Mandard, S.; Tan, N.S.; Escher, P.; Metzger, D.; Chambon, P.; Gonzalez, F.J.; Desvergne, B.; Wahli, W. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem., 2000, 275(37), 28488-28493.
[http://dx.doi.org/10.1074/jbc.M004029200] [PMID: 10862772]
[116]
Lookene, A.; Zhang, L.; Hultin, M.; Olivecrona, G. Rapid subunit exchange in dimeric lipoprotein lipase and properties of the inactive monomer. J. Biol. Chem., 2004, 279(48), 49964-49972.
[http://dx.doi.org/10.1074/jbc.M407419200] [PMID: 15385564]
[117]
Osborne, J.C., Jr; Bengtsson-Olivecrona, G.; Lee, N.S.; Olivecrona, T. Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochemistry, 1985, 24(20), 5606-5611.
[http://dx.doi.org/10.1021/bi00341a048] [PMID: 4074716]
[118]
Chen, T.C.; Benjamin, D.I.; Kuo, T.; Lee, R.A.; Li, M.L.; Mar, D.J.; Costello, D.E.; Nomura, D.K.; Wang, J.C. The glucocorticoid-ANGPTL4-ceramide axis induces insulin resistance through PP2A and PKCζ. Sci. Signal., 2017, 10(489) eaai7905
[http://dx.doi.org/10.1126/scisignal.aai7905] [PMID: 28743803]
[119]
Zhang, C.C.; Kaba, M.; Iizuka, S.; Huynh, H.; Lodish, H.F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood, 2008, 111(7), 3415-3423.
[http://dx.doi.org/10.1182/blood-2007-11-122119] [PMID: 18202223]
[120]
Khoury, M.; Drake, A.; Chen, Q.; Dong, D.; Leskov, I.; Fragoso, M.F.; Li, Y.; Iliopoulou, B.P.; Hwang, W.; Lodish, H.F.; Chen, J. Mesenchymal stem cells secreting angiopoietin-like-5 support efficient expansion of human hematopoietic stem cells without compromising their repopulating potential. Stem Cells Dev., 2011, 20(8), 1371-1381.
[http://dx.doi.org/10.1089/scd.2010.0456] [PMID: 21142526]
[121]
Urano, T.; Ito, Y.; Akao, M.; Sawa, T.; Miyata, K.; Tabata, M.; Morisada, T.; Hato, T.; Yano, M.; Kadomatsu, T.; Yasunaga, K.; Shibata, R.; Murohara, T.; Akaike, T.; Tanihara, H.; Suda, T.; Oike, Y. Angiopoietin-related growth factor enhances blood flow via activation of the ERK1/2-eNOS-NO pathway in a mouse hind-limb ischemia model. Arterioscler. Thromb. Vasc. Biol., 2008, 28(5), 827-834.
[http://dx.doi.org/10.1161/ATVBAHA.107.149674] [PMID: 18258819]
[122]
Namkung, J.; Koh, S.B.; Kong, I.D.; Choi, J.W.; Yeh, B.I. Serum levels of angiopoietin-related growth factor are increased in metabolic syndrome. Metabolism, 2011, 60(4), 564-568.
[http://dx.doi.org/10.1016/j.metabol.2010.05.013] [PMID: 20673930]
[123]
Katoh, Y.; Katoh, M. Comparative integromics on angiopoietin family members. Int. J. Mol. Med., 2006, 17(6), 1145-1149.
[PMID: 16685428]
[124]
Zhu, J.Z.; Yu, C.H.; Li, Y.M. Betatrophin provides a new insight into diabetes treatment and lipid metabolism.(review) Biomed. Rep., 2014, 2(4), 447-451.
[http://dx.doi.org/ 10.3892/br.2014.284] [PMID: 24944788]
[125]
Seymour, P.A.; Serup, P. Bulking up on beta cells. N. Engl. J. Med., 2013, 369(8), 777-779.
[http://dx.doi.org/10.1056/NEJMcibr1307038] [PMID: 23964941]
[126]
Santulli, G. Angiopoietin-like proteins: a comprehensive look. Front. Endocrinol. (Lausanne), 2014, 5, 4.
[http://dx.doi.org/10.3389/fendo.2014.00004] [PMID: 24478758]
[127]
Crunkhorn, S. Metabolic disorders: betatrophin boosts β-cells. Nat. Rev. Drug Discov., 2013, 12(7), 504.
[http://dx.doi.org/10.1038/nrd4058] [PMID: 23787955]
[128]
Kugelberg, E. Diabetes: betatrophin-inducing β-cell expansion to treat diabetes mellitus? Nat. Rev. Endocrinol., 2013, 9(7), 379.
[http://dx.doi.org/10.1038/nrendo.2013.98] [PMID: 23648871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy