Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Antioxidant Effect of Flavonoids Present in Euterpe oleracea Martius and Neurodegenerative Diseases: A Literature Review

Author(s): Nayana Keyla Seabra de Oliveira*, Marcos Rafael Silva Almeida, Franco Márcio Maciel Pontes, Mariana Pegrucci Barcelos, Carlos Henrique Tomich de Paula da Silva, Joaquín María Campos Rosa, Rodrigo Alves Soares Cruz and Lorane Izabel da Silva Hage-Melim*

Volume 19, Issue 2, 2019

Page: [75 - 99] Pages: 25

DOI: 10.2174/1871524919666190502105855

conference banner
Abstract

Introduction: Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins.

Methods: In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí.

Results: Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function.

Conclusion: This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.

Keywords: Açaí, alzheimer's disease, antioxidant, flavonoids, neurodegenerative diseases, oxidative stress.

« Previous
Graphical Abstract
[1]
Teles, R.B.A.; Diniz, T.C.; Pinto, T.C.C.; De Oliveira, Jr., R.G.; Silva, M.G. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: A systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018, 2018, 7043213.
[2]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein preocessing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[3]
Nussbaum, R.L.; Mcinnes, R.R.; Willard, H. F. Genética Médica, 7th ed. Elsevier: Rio de Janeiro. 2008.
[4]
Makhouri, F.R.; Ghasemi, J.B.G. In Silico studies in drug research against neurodegenerative diseases. Curr. Neuropharmacol., 2018, 16(6), 664-723.
[5]
Alzheimer’s Disease International. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. Available from https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf (Accessed on: Jan 12, 2017)
[6]
Floyd, R.; Hensley, K. Oxidative stress in brain aging implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging, 2002, 23(5), 795-807.
[7]
Harman, D. Aging: A theory based on free radical and radiation chemistry. Sci. Aging Knowl. Environ., 2002, 37, 14-17.
[8]
Ghareeb, D.A.; Elahwany, A.M.D.; El-Mallawany, S.M.; Saif, A.A. In vitro screening for anti-acetylcholiesterase, anti-oxidant, anti-glucosidase, anti-inflammatory and anti-bacterial effect of three traditional medicinal plants. Biotechnol. Biotechnol. Equip., 2014, 28(6), 1155-1164.
[9]
Cedrim, P.C.A.S.; Barros, E.M.A.; Do Nascimento, T.G. Propriedades antioxidantes do açaí (Euterpe oleracea) na síndrome metabólica. Braz. J. Food. Technol., 2018, 21, 1-7.
[10]
Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer’s Report 2015: The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, 2015.
[11]
Zufferey, V.; Donati, A.; Popp, J.; Meuli, R.; Rossier, J.; Frackowiak, R.; Draganski, B.; Von-Gunten, A.; Kherif, F. Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer’s disease. Alzheimers Dement. (Amst.), 2017, 7, 107-114.
[12]
Tan, R.H.; Kril, J.J.; Yang, Y.; Tom, N.; Hodges, J.R.; Villemagne, V.L.; Rowe, C.C.; Leyton, C.E.; Kwok, J.B.J.; Ittner, L.M.; Halliday, G.M. Assessment of amyloid b in pathologically confirmed frontotemporal dementia syndromes. Alzheimers Dement. (Amst.), 2017, 9, 10-20.
[13]
Picanço, L.C.S.; Ozela, P.F.; Brito, M.F.B.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; Da Silva, C.H.T.P.; Dos Santos, C.B.R.; Rosa, J.M.C.; Hage-Melim, L.I. da Silva. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2017, 24, 1-19.
[14]
Piechotta, A.; Parthier, C.; Kleinschmidt, M.; Gnoth, K.; Pillot, T.; Lues, I.; Demuth, H.U.; Schilling, S.; Rahfeld, J.U.; Stubbs, M.T. Structural and functional analyses of pyroglutamate-Amyloid-β-Specific antibodies as a basis for Alzheimer immunotherapy. JBC, 2017, 292(30), 12713-12724.
[15]
Akram, M.; Allah, N. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 4(12), 660-670.
[16]
Savica, R.; Grossardt, B.R.; Rocca, W.A.; Bower, J.H. Parkinson disease with and without dementia: A prevalence study and future projections. Mov. Disord., 2018, 33(4), 537-543.
[17]
Bhattacharjee, S. Impulse control disorders in Parkinson’s disease: Review of pathophysiology, epidemiology, clinical features, management, and future challenges. Neurol. India, 2018, 66(4), 967-975.
[18]
Sveinbjornsdottir, S. The clinical symptoms of parkinson’s disease. J. Neurochem., 2016, 1, 318-324.
[19]
Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165.
[20]
Zhuo, C.; Xue, R.; Luo, L.; Ji, F.; Tian, H.; Qu, H.; Lin, X.; Jiang, R.; Tao, R. Efficacy of antidepressive medication for depression in Parkinson disease: A network meta-analysis. Medicine (Baltimore), 2017, 96(22), 1-11.
[21]
Yuan, M.; Sperry, L.; Malhado-Chang, N.; Duffy, A.; Wheelock, V.; Farias, S.; O’Connor, K.; Olichney, J.; Shahlaie, K.; Zhang, L. Atypical antipsychotic therapy in parkinson’s disease psychosis: A retrospective study. Brain Behav., 2017, 7(6), 1-6.
[22]
Perez-Pardo, P.; Kliest, T.; Dodiya, H.B.; Broersen, L.M.; Garssen, J.; Keshavarzian, A.; Kraneveld, A.D. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. Eur. J. Pharmacol., 2017, 817, 86-95.
[23]
Abeliovich, A.; Gitler, A.D. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nat. Insight, 2016, 539(7628), 207-216.
[24]
Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nat. Insight, 2016, 539(7628), 227-235.
[25]
Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-neuroinflammatory potential of natural products in attenuation of alzheimer’s disease. Front. Pharmacol., 2018, 9(548), 1-17.
[26]
Dornas, W.C.; Oliveira, T.T. Rodrigues-das-Dores, R.G.; Santos, A.F.; Nagem, T.J. Flavonoides: Potencial terapêutico no estresse oxidativo. Rev. Cienc. Farm. Basica Apl., 2007, 28(3), 241-249.
[27]
Campos, M.T.G.; Leme, F.O.P. Oxidative stress: Pathophysiology and laboratory diagnosis. PUBVET, 2018, 12(1), 1-8.
[28]
Barreiros, A.L.B.S.; David, J.M.; David, J.P. Oxidative stress: relationship between generation of reactive species and defense of the organism. Quim. Nova, 2006, 29(1), 113-123.
[29]
Ferrer, I.; Martinez, A.; Blanco, R.; Dalfó, E.; Carmona, M. Neuropathology of sporadic parkinson disease before the appearance of parkinsonism: Preclinical parkinson disease. J. Neural Trans., 2011, 118(5), 821-839.
[30]
Camm, E.J.; Tijsseling, D.; Richter, H.G.; Adler, A.; Hansell, J.A.; Derks, J.B.; Cross, C.M.; Giussani, D.A. Oxidative stress in the developing brain: Effects of postnatal glucocorticoid therapy and antioxidants in the rat. PLoS One, 2011, 6(6), 1-9.
[31]
Seo, J.S.; Park, J.Y.; Choi, J.; Kim, T.K.; Shin, J.H.; Lee, J.K.; Han, P.L. NADPH oxidase mediates de pressive behavior induced by chronic stress in mice. J. Neurosci., 2012, 32(28), 9690-9699.
[32]
Suwanjang, W.; Abramov, A.Y.; Govitrapong, P.; Chetsawang, B. Melatonin attenuates dexamethasone toxicity induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J. Steroid Biochem. Mol. Biol., 2013, 138, 116-122.
[33]
Petruk, G.; Illiano, A.; Del Giudice, R.; Raiola, A.; Amoresano, A.; Rigano, M.M.; Piccoli, R.; Monti, D.M. Malvidin and cyanidin derivatives from açaí fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J. Photochem. Photobiol. B Biol., 2017, 172, 42-51.
[34]
Aghagolzadeh, M.; Moghaddam, A.; Seyedalipour, B. Olive leaf extract reverses the behavioral disruption and oxidative stress induced by intrasrtiatal injectioin of 6-hydroxydopamine in rats. Web Sci., 2017, 21(1), 44-53.
[35]
Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases: A mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110.
[36]
Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 2015, 16, 193-217.
[37]
Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and parkinson’s diseases: An update of recent data. Molecules, 2018, 23, 814.
[38]
Oikawa, S.; Kobayashi, H.; Kitamura, Y.; Zhu, H.; Obata, K.; Minabe, Y.; Dazortsava, M.; Ohashi, K.; Tada-Oikawa, S.; Takahashi, H.; Yata, K.; Murata, M.; Yamashima, T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic. Res., 2014, 48(6), 694-705.
[39]
Mishra, C.B.; Manral, A.; Kumari, S.; Saini, V.; Tiwari, M. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-bamyloid aggregation, antioxidant and neuroprotection properties against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24, 3829-3841.
[40]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[41]
Halliwell, B. The antioxidant paradox. Lancet, 2000, 355, 1179.
[42]
Finland, J.; Lac, G.E.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med., 2006, 36, 327-358.
[43]
Devi, S.A.; Manjula, K.R.; Subramanyam, M.V.V. Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat’s frontoparietal cortex. Neurosci. Lett., 2012, 529(2), 155-160.
[44]
Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med., 2009, 46(6), 719-730.
[45]
D’Oliveira, F.A.; Frank, A.A.; Soares, E.A. A influência dos minerais na doença de Parkinson. Nutrir. Rev. Soc. Bras. Alim. Nutri., 2007, 32(1), 77-88.
[46]
Dolinsky, M. Nutrição funcional; Roca: São Paulo, 2009.
[47]
Cerqueira, F.M.; Medeiros, M.H.G.; Augusto, O. Antioxidantes dietéticos: Controvérsias e perspectivas. Quim. Nova, 2007, 30(2), 441-449.
[48]
Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290.
[49]
Anandhan, A.; Tamilselvam, K.; Radhiga, T.; Rao, S.; Essa, M.M.; Manivasagam, T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced parkinson’s disease. Brain Res., 2012, 1433, 104-113.
[50]
Guo, S.; Yan, J.; Yang, T.; Yang, X.; Bezard, E.; Zhao, B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS NO pathway. Biol. Psychiatry, 2007, 62, 1353-1362.
[51]
Karuppagounder, S.S.; Madathil, S.K.; Pandey, M.; Haobam, R.; Rajamma, U.; Mohanakumar, K.P. Quercetin up-regulates mitochondrial complex- I activity to protect against programmed cell death in rotenone model of parkinson’s disease in rats. J. Neurosci., 2013, 236, 136-148.
[52]
Kim, H.G.; Ju, M.S.; Shim, J.S.; Kim, M.C.; Lee, S.H.; Huh, Y.; Kim, S.Y.; Oh, M.S. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br. J. Nutr., 2010, 104, 8-16.
[53]
Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tame, M.A.; Ferruzzi, M.G.; Wu, Q.; Simon, J.E.; Lila, M.A.; Rochet, J. Neuroprotective effects of anthocyaninand proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease. Brain Res., 2014, 25(1555), 60-77.
[54]
Teixeira, M.D.Azevedo Efeito neuroprotetor da catequina e do estresse de imobilização subcrônico na doença de parkinson experimental. 205 p. Tese (Doutorado em Farmacologia)- Programa de Pós-Graduação em Farmacologia, Universidade Federal do Ceará , 2011.
[55]
Santos, A.C.A.; Marques, M.M.P.; Soares, A.K.O.; Farias, L.M.; Ferreira, A.K.A.; Carvalho, M.L. Potencial antioxidante de antocianinas em fontes alimentares: Revisão sistemática. R. Interd, 2014, 7(3), 149-156.
[56]
Wong, D.Y.S.; Musgrave, I.F.; Harvey, B.S.; Smid, S.D. Açaí (Euterpe oleracea Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro. Neurosci. Lett., 2013, 556, 221-226.
[57]
Alqurashi, Randah M.; Alarifi, Sehad N.; Walton, Gemma E.; Costabile, Adele F.; Rowland, Ian R.; Commane, Daniel M. In vitro approaches to assess the effects of açaí (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem., 2017, 234, 190-198.
[58]
Yamaguchi, K.K.L.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; Veiga-Junior, V.F. Amazon açaí: Chemistry and biological activities: A review. Food Chem., 2015, 179, 137-151.
[59]
Kang, J.; Li, Z.; Wu, T.; Jensen, G.S.; Schauss, A.G.; Wu, X. Anti-oxidant capacities of flavonoid compounds isolated from açaí pulp (Euterpe oleracea Mart.). Food Chem., 2010, 122, 610-617.
[60]
Jensen, G.S.; Wu, X.; Patterson, K.M.; Barnes, J.; Carter, S.G.; Scherwitz, L. In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J. Agric. Food Chem., 2008, 56(18), 8326-8333.
[61]
Mertens-Talcott, S.U.; Rios, J.; Jilma-Stohlawetz, P.; Pacheco-Palencia, L.A.; Meibohm, B.; Talcott, S.T. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich açaí juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. J. Agric. Food Chem., 2008, 56, 7796-7802.
[62]
Garzón, G.A.; Narváez-Cuenca, C.E.; Vincken, J.P.; Gruppen, H. Polyphenolic composition and antioxidant activity of açaí (Euterpe oleracea Mart.) from Colombia. Food Chem., 2017, 217, 364-372.
[63]
Ford, C.T.; Richardson, S.; Mcardle, F.; Lotito, S.B.; Crozier, A.; Mcardle, A.; Jackson, M.J. Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes. Br. J. Nutr., 2016, 115, 1699-1710.
[64]
Pala, D.; Barbosa, P.O.; Silva, C.T.; Souza, M.O.; Freitas, F.R.; Volp, A.C.P.; Maranhão, R.C.; Freitas, R.N. Açaí (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clin. Nutr., 2018, 37, 618-623.
[65]
Cambrussi, A.N.C.O.; Da Conceição, I.D.; Freitas, A.R.; Dos Santos, P.S.; De Sousa, R.R.M.; Eiras, C.; Ribeiro, A.B. O papel da nanotecnologia na redução do estresse oxidativo: Uma revisão. Bolet. Inform. Geum, 2018, 9(2), 1-11.
[66]
Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull., 2012, 87(2), 144-153.
[67]
Fortalezas, S. Tavares, Lucélia, Pimpão, Rui; Tyagi, Meenu; Pontes, Vera; Alves, P.M.; Gordon, M.D.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant Properties and Neuroprotective Capacity of Strawberry Tree Fruit (Arbutus unedo). Nutrients, 2010, 2(2), 214-229.
[68]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. Am. J. Clin. Nutr., 2005, 81, 230-242.
[69]
Ganesan, P.; Ko, H.M.; Kim, I.S.; Choi, D.K. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in parkinson’s disease models. Int. J. Nanomedicine, 2015, 10, 6757.
[70]
Ghosh, A.; Mandal, A.K.; Sarkar, S.; Panda, S.; Das, N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci., 2009, 84(3-4), 75-80.
[71]
Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci., 2010, 75(1), R50-R57.
[72]
Tsai, Y.M.; Jan, W.C.; Chien, C.F.; Lee, W.C.; Lin, L.C.; Tsai, T.H. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem., 2011, 127(3), 918-925.
[73]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin. Cancer, 2005, 104, 1322-1331.
[74]
Min, J.W.; Hu, J.J.; He, M.; Sanchez, R.M.; Huang, W.X.; Liu, Y.Q.; Bsoul, N.B.; Han, S.; Yin, J.; Liu, W.H.; He, X.H.; Peng, B.W. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology, 2015, 99, 38-50.
[75]
Abbasi, E.; Nassiri-asl, M.; Sheikhi, M.; Shafiee, M. Effects of vitexin on scopolamine-induced memory impairment in rats. Chin. J. Physiol., 2013, 56(3), 184-189.
[76]
Oztanir, M.N.; Ciftci, O.; Cetin, A.; Aladag, M.A. Hesperidin attenuates oxidative and neuronal damage caused by global cerebral ischemia/reperfusion in a C57BL/J6 mouse model. Neurol. Sci., 2014, 35(9), 1393-1399.
[77]
Rong, Z.; Pan, R.; Xu, Y.; Zhang, C.; Cao, Y.; Liu, D. Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience, 2013, 255, 292-299.
[78]
Gaur, V.; Kumar, A. Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol. Rep., 2010, 62(4), 635-648.
[79]
Heo, H.J.; Kim, S.C.; Shin, M.J.; Kim, B.G.; Kim, D.H.S. Effect of antioxidant flavanone, naringenin, from Citrus junoson neuroprotection. J. Agric. Food Chem., 2004, 52, 1520-1525.
[80]
Hua, L.; Xiaoyu, W.L.; Peihong, L.; Hua, W. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem., 2009, 112, 454-460.
[81]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5(47), 1-15.
[82]
Nielsen, I.L.F.; Chee, W.S.; Poulsen, L.; Offord-Cavin, E.; Rasmussen, S.E.; Frederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M.N.; Williamson, G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. J. Nutr., 2006, 136(2), 404-408.
[83]
Vrbovská, H.; Babincová, M. Comparative analysis of synthetic and nutraceutical antioxidants as possible neuroprotective agents. Pharmazie, 2016, 71(12), 724-726.
[84]
Dornas, W.C.; Oliveira, T.T. Rodrigues-das-Dores, R.G.; Santos, A.F.; Nagem, T.J. Flavonoides: Potencial terapêutico no estresse oxidativo. Rev. Ciênc. Farm. Básica Apl., 2007, 28(3), 241-249.
[85]
Gallori, S.; Bilia, A.R.; Bergonzi, M.C.; Barbosa, W.L.R.; Vincieri, F.F. Polyphenolic constituents of fruit pulp of Euterpe oleracea mart. (Açaí palm). Chromatographia, 2004, 59, 739-743.
[86]
Torma, P.D.; Brasil, A.V.; Carvalho, A.V.; Jablonski, A.; Rabelo, T.K.; Moreira, J.C.; Gelain, D.P.; Flôres, S.H.; Augusti, P.R.; Rios, A.O. Hydroethanolic extracts from different genotypes of açaí (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y). Food Chem., 2017, 222, 94-104.
[87]
Basli, A.; Soulet, S.; Chaher, N.; Mérillon, M.; Chibane, J.; Monti, P. Wine polyphenols: Potential agents in neuroprotection. Oxid. Med. Cell. Longev., 2012, 2012, 805762.
[88]
Swaminathan, A.; Jicha, G.A. Nutrition and prevention of Alzheimer’s dementia. Front. Aging Neurosci., 2014, 6, 282.
[89]
Molino, S.; Dossena, M.; Buonocore, D.; Ferrari, F.; Venturini, L.; Ricevuti, G.; Verri, M. Polyphenols in dementia: From molecular basis to clinical trials. Life Sci., 2016, 161(15), 69-77.
[90]
Heo, H.J.; Lee, C.Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem., 2004, 52(25), 7514-7517.
[91]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[92]
Dash, R.; Uddin, M.M.N.; Hosen, S.M.Z.; Rahim, Z.B.; Dinar, A.M.; Kabir, M.S.H.; Sultan, R.A.; Islam, A.; Hossain, M.K. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation, 2015, 11, 543-549.
[93]
Kutil, Z.; Temml, V.; Maghradze, D.; Pribylova, M.; Dvorakova, M.; Schuster, D.; Vanek, T.; Landa, P. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity. Mediators Inflamm., 2014, 2014, 178931.
[94]
Goettert, M.; Schattel, V.; Koch, P.; Merfort, I.; Laufer, S. Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-Nterminal kinase 3 inhibition by flavonoids. ChemBioChem, 2010, 11, 2579-2588.
[95]
Lee, J.O.; Jeong, D.; Kim, M.Y.; Cho, J.Y. ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action. Mediators Inflamm., 2015a, 2015, 967053.
[96]
Lee, Y.S.; Kim, M.S.; Lee, D.H.; Kwon, T.H.; Song, H.H.; Oh, S.R.; Yoon, D.Y. Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells. Pharmacology, 2015b, 67, 581-587.
[97]
Kwon, Y. Luteolin as a potential preventive and therapeutic candidate for alzheimer’s disease. Exp. Gerontol., 2017, 95, 39-43.
[98]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[99]
Fu, X.; Zhang, J.; Guo, L.; Xu, Y.; Sun, L.; Wang, S.; Feng, Y.; Gou, L.; Zhang, L.; Liu, Y. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol. Biochem. Behav., 2014, 126, 122-130.
[100]
Lee, W.; Ku, S.K.; Bae, J.S. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascul. Pharmacol., 2014, 62(1), 3-14.
[101]
Praveena, R.; Sadasivam, K.; Deepha, V.; Sivakumar, R. Antioxidant potential of orientin: A combined experimental and DFT approach. J. Mol. Struct., 2014, 1061, 114-123.
[102]
Anilkumar, K.; Reddy, G.V.; Azad, R.; Yarla, N.S.; Dharmapuri, G.; Srivastava, A.; Kamal, M.A.; Pallu, R. Evaluation of anti-inflammatory properties of isoorientin isolated from tubers of Pueraria tuberosa. Oxid. Med. Cell. Longev., 2017, 2017, 5498054.
[103]
Ielciu, I.; Mouithys-Mickalad, A.; Franck, T.; Angenot, L.; Ledoux, A.; Păltinean, R.; Cieckiewicz, E.; Etienne, D.; Tits, M.; Crişan, G.; Frédérich, M. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a Bryonia alba L. (Cucurbitaceae) leaves extract. J. Pharm. Pharmacol., 2019, 71(2), 230-239.
[104]
Karaoğlan, E.S.; Albayrak, A.; Kutlu, Z.; Bayir, Y. Gastroprotective and antioxidant effects of Eremurus spectabilis Bieb. methanol extract and its isolated component isoorientin on indomethacin induced gastric ulcers in rats1. Acta Cir. Bras., 2018, 33(7), 609-6018.
[105]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[106]
Dantuluri, M.; Gunnarsson, G.T.; Riaz, M.; Nguyen, H.; Desai, U.R. Capillary electrophoresis of highly sulfated flavanoids and flavonoids. Anal. Biochem., 2005, 336, 316-322.
[107]
Rijke, E.; Out, P.; Niessen, W.M.; Ariese, F.; Gooijer, C.; Brinkman, U.A. Analytical separation and detection methods for flavonoids. J. Chromatog, 2006, 1112, 31-63.
[108]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gomez, G.P. The flavonoid quercetin ameliorates alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[109]
Ansaria, M.A.; Abdula, H.M.; Joshia, G.; Opiia, W.O.; Butterfielda, D.A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20, 269-275.
[110]
Selvaraj, K.; Chowdhury, R.; Bhattacharjee, C. Isolation and structural elucidation of flavonoids from aquatic fern azolla microphylla and evaluation of free radical scavenging activity. Int. J. Pharm. Pharm. Sci., 2013, 5, 743-749.
[111]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[112]
Carrasco-Pozo, C.; Mizgier, M.L.; Speisky, H.; Gotteland, M. Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem. Biol. Interact., 2012, 195, 199-205.
[113]
Kuang, H.; Tang, Z.; Zhang, C.; Wang, Z.; Li, W.; Yang, C.; Wang, Q.; Yang, B.; Kong, A. Taxifolin activates the Nrf2 anti-oxidative stress pathway in mouse skin epidermal JB6 P+ cells through epigenetic modifications. Int. J. Mol. Sci., 2017, 18, 1546.
[114]
Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem., 2018, 120(1), 425-438.
[115]
Manigandan, K.; Jayaraj, R.L.; Jagatheesh, K.; Elangovan, N. Taxifolin mitigates oxidative DNA damage in vitro and protects zebrafish (Danio rerio) embryosagainst cadmium toxicity. Environ. Toxicol. Pharmacol., 2015, 39, 1252-1261.
[116]
Vogiatzoglou, A.; Mulligan, A. A.; Luben, R.N.; Lentjes, M.A.; Heiss, C.; Kelm, M.; Merx, M.W.; Spencer, J.P.; Schroeter, H.; Kuhnle, G.G. Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br. J. Nutr., 2014, 111(8), 1463-1473.
[117]
Vallverdú-Queralt, A.; Boix, N.; Piqué, E.; Gómez-Catalan, J.; Medina-Remon, A.; Sasot, G.; Mercader-Martí, M.; Llobet, J.M.; Lamuela-Raventos, R.M. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESILTQ- Orbitrap-MS. Food Chem., 2015, 181, 146-151.
[118]
Nijveldt, R.J.; Van Nood, E.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[119]
Crozier, A.; Jaganath, I.B.; Clifford, N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 965-1096.
[120]
Ursini, F.; Sevanian, A. Wine polyphenols and optimal nutrition. Ann. N. Y. Acad. Sci., 2002, 957, 200-209.
[121]
Auger, C.; Al-Awwadi, N.; Bornet, A.; Rouanet, J.M.; Gasc, F.; Cros, G.; Teissedre, P.L. Catechins and procyanidins in mediterranean diets. Food Res. Int., 2004, 37, 233-245.
[122]
Spadafranca, A.; Martinez Conesa, C.; Sirini, S.; Testolin, G. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr., 2009, 103(7), 1008-1014.
[123]
Rojano, B.A.; Vahos, I.C.Z.; Arbeláez, A.F.A.; Martínez, A.J.M.; Correa, F.B.C.; Carvajal, L.G. Polyphenols and antioxidant activity of the fruit freeze-dried palm naidi (Colombian Açai) (Euterpe oleracea Mart.). Rev. Fac. Nac. Agron Medel., 2011, 64(2), 6213-6220.
[124]
Melo, P.S.; Massarioli, A.P.; Denny, C.; Dos Santos, L.F.; Franchin, M.; Pereira, G.E.; Vieira, T.M.; Rosalen, P.L.; De Alencar, S.M. Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chem., 2015, 181, 60-169.
[125]
Downey, M.O.; Harvey, J.S.; Robinson, S.P. Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust. J. Grape Wine Res., 2003, 9(1), 15-27.
[126]
Mccarthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin e in raw and cooked pork patties. Meat Sci., 2001, 58(1), 45-52.
[127]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63, 1035-1042.
[128]
Huber, L.S.; Rodriguez-Amaya, D.B. Flavonois e flavonas: Fontes brasileiras e fatores que influenciam a composição em alimentos. Aliment. Nutr., 2008, 19(1), 97-108.
[129]
Mercer, L.D.; Kelly, B.L.; Horne, M.K.; Beart, P.M. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem. Pharmacol., 2005, 69, 339-345.
[130]
Ramirez-Sanchez, I.; Taub, P.R.; Ciaraldi, T.P.; Nogueira, L.; Coe, T.; Perkins, G. Ho an, M.; Maisel, A.S.; Henry, R.R.; Ceballos, G.; Villarreal, F. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. Int. J. Cardiol., 2013, 168, 3982-3990.
[131]
Sousa, R.L.; Filizola, R.G.; Diniz, M.F.F.M.; Sousa, E.S.S.; Moraes, J.L.R. Ensaio clínico placebo-controlado com isoflavonas da soja para sintomas depressivos em mulheres no climatério. Rev. Bras. Ginecol. Obstet., 2006, 28(2), 91-100.
[132]
González, C.N.; Durán, A.S. Soya isoflavones and evidences on cardiovascular protection. Nutr. Hosp., 2014, 29(6), 1271-1282.
[133]
Oshima, A.; Mine, W.; Nakada, M.; Yanase, E. Analysis of isoflavones and coumestrol in soybean sprouts. Biosci. Biotechnol. Biochem., 2016, 80(11), 2077-2079.
[134]
Chen, S.Q.; Lin, J.P.; Wang, S.Z. Chen, L.C.; Hong, Y.; Zhang, K.M. Puerarin protects rat cervical intervertebral disc annulus fibrosus cells: An optimal concentration study. Zhongguo Zuzhi Gongcheng Yanjiu, 2013, 17, 1156-1161.
[135]
Tian, F.; Xu, L.H.; Zhao, W.; Tian, L.J.; Ji, X.L. The neuroprotective mechanism of puerarin treatment of acute spinal cord injury in rats. Neurosci. Lett., 2013, 543, 64-68.
[136]
Zhang, Y.B.; Du, G.Y.; Xiong, Y.L.; Zhao, Y.; Cui, H.F.; Cao, C.Y.; Liu, S. Protective effects of 3′-methoxy-puerarin on rat brain suffering from ischemia. Zhongguo Zhongyao Zazhi, 2008, 33, 537-540.
[137]
Xiao, B.; Sun, Z.; Cao, F.; Wang, L.; Liao, Y.; Liu, X. Pan.: R.; Chang, Q. Brain pharmacokinetics and the pharmacological effects on striatal neurotransmitter levels of pueraria lobata isoflavonoids in rat. Front. Pharmacol., 2017, 8, 1-9.
[138]
Krenn, L.; Steitz, M.; Schlicht, C.; Kurth, H.; Gaedcke, F. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements-analysis with problems. Pharmazie, 2007, 62(11), 803-812.
[139]
Santos, C.B.R.; Vieira, J.B.; Lobato, C.C.; Hage-Melim, L.I.S.; Souto, R.N.P.; Lima, C.S.; Costa, E.V.M.; Brasil, D.S.B.; Macêdo, W.J.C.; Carvalho, J.C.T. A Sar and Qsar study of new artemisinin compounds with antimalarial activity. Molecules, 2014, 19, 367-399.
[140]
Barbosa, P.O.; Pala, D.; Silva, C.T.; De Souza, M.O.; Do Amaral, J.F.; Vieira, R.A.L.; Folly, G.A.F.; Volp, A.C.P.; De Freitas, R.N. Açaí (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition, 2016, 32, 674-680.
[141]
Thummayot, S.; Tocharus, C.; Pinkaew, D.; Viwatpinyo, K.; Sringarm, K.; Tocharus, J. Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. Neurotoxicology, 2014, 45, 149-158.
[142]
Badshah, H.; Kim, T.H.; Kim, M.O. Protective effects of Anthocyanins against Amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem. Int., 2015, 80, 51-59.
[143]
Cesar, L.T.; Cabral, M.F.; Maia, G.A.; Figueiredo, R.W.; Miranda, M.R.; Sousa, P.H.; Brasil, I.M.; Gomes, C.L. Effects of clarification on physicochemical characteristics, antioxidante capacity and quality atributes of açaí (Euterpe oleracea Mart.) juice. J. Food Sci. Technol., 2014, 51(11), 3293-3300.
[144]
Reddy, M.V.; Su, C.R.; Chiou, W.F.; Liu, Y.N.; Chen, R.Y.; Bastow, K.F.; Lee, K.H.; Wu, T.S. Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg. Med. Chem., 2008, 16, 7358-7370.
[145]
Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from açaí (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities. Food Chem., 2011, 128(1), 152-157.
[146]
Nielsen, S.F.; Christensen, S.B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. Antileishmanial chalcones: Statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis. J. Med. Chem., 1998, 41(24), 4819-4832.
[147]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalones: Structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[148]
Rojas, J.; Dominguez, J.N.; Charris, J.E.; Lobo, G.; Paya, M.; Ferrandiz, M.L. Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase. Eur. J. Med. Chem., 2002, 37(8), 699-705.
[149]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[150]
Bukhari, S.N.A.; Jasamai, M.; Jantan, I.; Ahmad, W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev. Org. Chem., 2013, 10(1), 73-83.
[151]
Repanas, A.K.; Hadjipavlou-Litina, D. Chalcones in cancer: Understanding their role in terms of QSAR. II part. Mini Rev. Org. Chem., 2013, 13(7), 952-970.
[152]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[153]
Elmann, A.; Telerman, A.; Erlank, H.; Mordechay, S.; Rindner, M.; Ofir, R.; Kashman, Y. Protective and antioxidant effects of a chalconoid from pulicaria incisa on brain astrocytes. Oxid. Med. Cell. Longev., 2013, 1, 1-10.
[154]
Kelly, E.; Vyas, P.; Weber, J.T. Biochemical properties and neuroprotective effects of compounds in various species of berries. Molecules, 2018, 23(1), 26.
[155]
Yuyama, L.K.O.; Aguiar, J.P.L.; Filho, D.F.S.; Yuyama, K.; Varejao, M.J.; Favaro, D.I.T.; Vasconcelos, M.B.A.; Pimentel, S.A.; Caruso, M.S.F. Caracterização físico-química do suco de açaí de Euterpe precatoria Mart. oriundo de diferentes ecossistemas amazônicos. Acta Amazon., 2011, 41(4), 545-552.
[156]
Schulz, M.; Biluca, F.C.; Gonzaga, L.V.; Borges, G.S.C.; Vitali, L.; Micke, G.A.; De Gois, J.S.; De Almeida, T.S.; Borges, D.L.G.; Miller, P.R.M.; Costa, A.C.O.; Fett, R. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chem., 2017, 228, 447-454.
[157]
Peixoto, H.; Roxo, M.; Krstin, S.; Röhrig, T.; Richling, E.; Wink, M. An Anthocyanin-rich extract of açaí (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J. Agric. Food Chem., 2016, 64, 1283-1290.
[158]
Da Silva, H.R.; De Assis, D.C.; Prada, A.L.; Keita, H.; Amado, J.R.R.; Carvalho, J.C.T. Euterpe oleracea Mart. (açaí): An old known plant with a new perspective. Afr. Pharm. Pharmacol., 2016, 10(46), 995-1006.
[159]
De Bem, G.F.; Da Costa, C.A.; De Oliveira, P.R.; Cordeiro, V.S.; Santos, I.B.; De Carvalho, L.C.; Souza, M.A.; Ognibene, D.T.; Daleprane, J.B.; Sousa, P.J.; Resende, A.C.; De Moura, R.S. Protective effect of Euterpe oleracea Mart (açai) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy. J. Pharm. Pharmacol., 2014, 66(9), 1328-1338.
[160]
Gordon, A.; Cruz, A.P.G.; Cabral, L.M.C.; De Freitas, S.C.; Dib Taxi, C.M.A.; Donangelo, C.M.; Mattietto, R.A.; Friedrich, M.; Matta, V.M.; Marx, F. Chemical characterisation and evaluation of antioxidant properties of Açai fruits (Euterpe Oleracea Mart.) during ripening. Food Chem., 2012, 133, 256-263.
[161]
Rojano, B.A.; Vahos, I.C.Z.; Arbeláez, A.F.A.; Martínez, A.J.M.; Correa, F.B.C.; Carvajal, L.G. Polyphenols and antioxidant activity of the fruit freeze-dried palm naidi (Colombian Açai) (Euterpe oleracea Mart). Rev. Fac. Nac. Agron Medel., 2011, 6(4), 6213-6220.
[162]
De Souza, M.O.; Silva, M.; Silva, M.E.; Oliveira, R.P.; Pedrosa, M.L. Diet supplementation with açaí (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition, 2010, 26(7-8), 804-810.
[163]
Hogan, S.; Chung, H.; Zhang, L.; Li, J.; Lee, Y.; Dai, Y.; Zhou, K. Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem., 2010, 118(2), 208-214.
[164]
Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem., 2010, 121(4), 996-1002.
[165]
Spada, P.D.; Dani, C.; Bortolini, G.V.; Funchal, C.; Henriques, J.A.; Salvador, M. Frozen fruit pulp of Euterpe oleracea Mart. (açaí) prevents hydrogen peroxide-induced damage in the cerebral cortex, cerebellum, and hippocampus of rats. J. Med. Food, 2009, 12, 1084-1088.
[166]
Chin, Y.W.; Chai, H.B.; Keller, W.J.; Kinghorn, A.D. Lignans and other constituents of the fruits of Euterpe oleracea (Açai) with antioxidant and cytoprotective activities. J. Agric. Food Chem., 2008, 56(17), 7759-7764.
[167]
Santos, G.M.; Maia, G.A.; Sousa, P.H.M.; Costa, J.M.C.; Figueiredo, R.W.; Prado, G.M. Correlação entre atividade antioxidante e compostos bioativos de polpas comerciais de açaí (Euterpe oleracea Mart). Arch. Latinoam. Nutr., 2008, 58, 187-192.
[168]
Pacheco-Palencia, L.A.; Mertens-Talcott, S.; Talcott, S.T. Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from açai (Euterpe oleracea Mart.). J. Agric. Food Chem., 2008, 56(12), 4631-4636.
[169]
Rocha, A.P.; Carvalho, L.C.; Sousa, M.A.; Madeira, S.V.; Sousa, P.J.; Tano, T.; Schini-Kerth, V.B.; Resende, A.C.; Soares de Moura, R. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (açaí) extracts in mesenteric vascular bed of the rat. Vascul. Pharmacol., 2007, 46, 97-104.
[170]
Kang, J.; Xie, C.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from açaí (Euterpeoleracea Mart.) pulp and their antioxidante and antiinflammatory activities. Food Chem., 2011, 128, 152-157.
[171]
Favacho, A.S.H.; Oliveira, B.R.; Santos, K.C.; Medeiros, B.J.L.; Souza, P.J.C.; Perazzo, F.F.; Carvalho, J.C.T. Anti-inflammtory and antinociceptive activities of Euterpe oleracea oil. Braz. J. Pharmacog., 2011, 21(1), 105-114.
[172]
Matheus, M.E.; De Oliveira, S.B.F.; Silveira, C.S.; Rodrigues, V.P.; De Sousa, F.M.; Fernandes, P.D. Inhibitory effects of Euterpe oleracea Mart. on nitric oxide production and iNOS expression. Ethnopharmacology, 2006, 107(2), 291-296.
[173]
Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.N.; Kababick, J.P. Phytochemical and nutrient composition of the freeze -dried amazonian palm berry, Euterpe oleracea Mart. (Açaí). J. Agric. Food Chem., 2006, 22(54), 8598-8603.
[174]
Machado, A.K.; Andreazza, A.C.; Da Silva, T.M.; Boligon, A.A.; Do Nascimento, V.; Scola, G.; Duong, A.; Cadoná, F.C.; Ribeiro, E.E.; Da Cruz, I.B.M. Neuroprotective effects of Açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid. Med. Cell. Longev., 2016, 2016, 1-14.
[175]
Xie, C.; Kang, J.; Lietal, Z. The açaí flavonoid velutin is a potent anti-inflammatory agent: Blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-kB activation and MAPK pathway. J. Nutr. Biochem., 2012, 23(9), 1184-1191.
[176]
An, F.; Yang, G.D.; Tian, J.M.; Wang, S.H. Antioxidant effects of the orientin and vitexin in trollies 6 chinensis bunge in D-galactose-aged mice. Neural Regen. Res., 2012, 7(33), 2565-2575.
[177]
Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol., 2015, 52(9), 5790-5798.
[178]
Popovic, M.; Caballero-Bleda, M.; Benavente-García, O.; Castillo, J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J. Psychopharmacol., 2014, 28(5), 498-501.
[179]
Carey, A.N.; Miller, M.G.; Fisher, D.R.; Bielinski, D.F.; Poulose, S.M.; Shukitt-Hale, B. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr. Neurosci., 2017, 20(4), 238-245.
[180]
Carey, A.N.; Gomes, S.M.; Shukitt-Hale, B. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet. J. Agric. Food Chem., 2014, 62(18), 3972-3978.
[181]
Rufino, M.S.M.; Pérez-Jiménez, J.; Arranz, S.; Alves, R.E.; Brito, E.S.; Oliveira, M.S.P.; Saura-Calixto, F. Açaí (Euterpe oleracea) ‘BRS Pará’: A tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Res. Int., 2011, 44(7), 2100-2106.
[182]
Guimarães, L.C.; Silva, H.C.G.; Melo, F.G.; Oliveira, H.; Botrel, M.O.; Espíndola, F.S. Estudo prospectivo de produtos e processos tecnológicos com o açaí (Euterpe oleracea). Cadernos de Prospecção, 2017, 10(2), 215-225.
[183]
Poulose, S.M.; Fisher, D.R.; Bielinski, D.F.; Gomes, S.M.; Rimando, A.M.; Schauss, A.G.; Shukitt-Hale, B. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition, 2014, 7, 853-862.
[184]
Ajit, D.; Simonyi, A.; Li, R.; Chen, Z.; Hannink, M.; Fritsche, K.L.; Mossine, V.V.; Smith, R.E.; Dobbs, T.K.; Luo, R.; Folk, W.R.; Gu, Z.; Lubahn, D.B.; Weisman, G.A.; Sun, G.Y. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochem. Int., 2016, 97, 49-56.
[185]
Poulose, S.M.; Bielinski, D.F.; Carey, A.; Schauss, A.G.; Shukitt-Hale, B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutr. Neurosci., 2016, 20(5), 305-315.
[186]
Machado, S.F.; Kuo, J.; Wohlenberg, M.F.; Da Rocha, F.M.; Freitas, M.; Oliveira, A.S.; Andrade, R.B.; Wannmacher, C.M.; Dani, C.; Funchal, C. Subchronic treatment with açaí frozen pulp prevents the brain oxidative damage in rats with acute liver failure. Metab. Brain Dis., 2016, 31(6), 1427-1434.
[187]
Menezes, E.M.S.; Torres, A.T.; Srur, A.U.S. Valor nutricional da polpa de açaí (Euterpe oleracea Mart) liofilizada. Acta Amazôn., 2008, 38(2), 311-316.
[188]
Gruenwald, J. Novel botanical ingredients for beverages. Clin. Dermatol., 2009, 27, 210-216.
[189]
Chin, Y.; Chai, H.B.; Keller, W.J.; Kinghorn, A.D. Lignans and other constituents of the fruits of Euterpe oleracea (açaí) with antioxidant and cytoprotective activities. J. Agric. Food Chem., 2008, 56, 7759-7764.
[190]
Matheus, M.E.; De Oliveira, F.S.B.; Silveira, C.S.; Rodrigues, V.P.; De Sousa, M.F.; Fernandes, P.D. Inhibitory effects of Euterpe edulis Mart. on nitric oxide production and iNOS expression. J. Ethnopharmacol., 2006, 107, 291-296.
[191]
Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem., 2005, 53(8), 2928-2935.
[192]
Rodrigues, R.B.; Lichtenthäler, R.; Zimmermann, B.F.; Papagiannopoulos, M.; Fabricius, H.; Marx, F.; Maia, J.G.; Almeida, O. Total oxidant scavenging capacity of Euterpe oleracea Mart. (açai) seeds and identification of their polyphenolic compounds. J. Agric. Food Chem., 2006, 54(12), 4162-4167.
[193]
Spada, P.D.S.; De Souza, G.G.; Bortolini, G.V.; Henriques, J.A.; Salvador, M. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits. J. Med. Food, 2008, 11(1), 144-151.
[194]
Dowling, D.K.; Simmons, L.W. Reactive oxygen species as universal constraints in life-history evolution. Proc. Royal Soc. B Biol. Sci., 2009, 276(1663), 1737-1745.
[195]
Nichenametla, S.N.; Taruscio, T.G.; Barney, D.L.; Exon, J.H. A review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 161-183.
[196]
Marchioro, M.; Dani, C.; Funchal, C. Efeito dos antioxidantes exógenos em modelos experimentais da doença de Parkinson. Ciênc. Movim., 2016, 18, 36.
[197]
Chinta, S.J.; Andersen, J.K. Nitrosylation and nitration of mitochondrial complex I in Parkinson’s disease. Free Radic. Res., 2011, 45(1), 53-58.
[198]
Spivey, A. Rotenone and paraquat linked to Parkinson’s disease: Human exposure study supports years of animal studies. Environ. Health Perspect., 2011, 119(6), A259.

© 2024 Bentham Science Publishers | Privacy Policy