Review Article

Current Status and Future Perspective for Research on Medicinal Plants with Anticancerous Activity and Minimum Cytotoxic Value

Author(s): Hina Qamar, Sumbul Rehman* and D.K. Chauhan

Volume 20, Issue 12, 2019

Page: [1227 - 1243] Pages: 17

DOI: 10.2174/1389450120666190429120314

Price: $65

conference banner
Abstract

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.

Keywords: Anticancer plants, IC50, phytochemicals, cyto-toxicity, MTT assay, chemotherapy.

Graphical Abstract
[2]
Aggarwal BB, Prasad S, Reuter S, et al. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr Drug Targets 2011; 12(11): 1595-653.
[http://dx.doi.org/10.2174/138945011798109464] [PMID: 21561421]
[3]
Thomas R, et al. Phytochemical in cancer prevention and management. BJMP 2015; 8(2): a815.
[4]
Wang H, Khor TO, Shu L, et al. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12(10): 1281-305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[5]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[6]
Fotakis G, Timbrell JA. in vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 2006; 160(2): 171-7.
[http://dx.doi.org/10.1016/j.toxlet.2005.07.001] [PMID: 16111842]
[7]
Khare CP. Indian medicinal plants. New Delhi, India: Springer Private Limited 2007; pp. 42-3.
[8]
Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS. Screening of Indian plants for biological activity. IV. Indian J Exp Biol 1973; 11(1): 43-54.
[PMID: 4779295]
[9]
Uddin SJ, Grice ID, Tiralongo E. Cytotoxiceffects of Bangladeshi medicinal plant extract. Evid Based Complement Alternat Med 2009; 1-50.
[10]
Loganayaki N, Manian S. Antitumor activity of the methanolic extract of Ammannia baccifera L. against Dalton’s ascites lymphoma induced ascitic and solid tumors in mice. J Ethnopharmacol 2012; 142(1): 305-9.
[http://dx.doi.org/10.1016/j.jep.2012.05.008] [PMID: 22613234]
[11]
Goodla L, Manobolu M, Ravilla S, Poondamalli PR. Safety evaluation of the ethanol extract of Ammannia baccifera (Lythraceae): assessment of acute and sub-acute toxicity. J Pharm Res 2010; 3(11): 2634-7.
[12]
Deeseenthum S. Wattanasirmkit K and Phuwaprisirisan P. Toxic Metabolites from Ammannia baccifera. Asian Coord Group Chem 2000; (12): 47-50.
[13]
Upadhyay HC, Thakur JP, Saikia D, Srivastava SK. Anti-tubercular agents from Ammannia baccifera (Linn.). Med Chem Res 2012; 1-6.
[14]
Mazhar-Ul-Islam. Chemical studies on Ammannia baccifera and bioactivity evaluation of Bergenia ciliate. Pakistan research repository: PhD thesis, University of Karachi, Karachi 2000.
[15]
Shah. Chemical constituents of Ammannia baccifera Linn. Pakistan J Sci Res 1962; 14: 4.
[16]
Ali Esmail and Al-Snafi. Chemical constituents and pharmacological effects of Asclepias Curassavica – A Review. Asian J Pharm Res 2015; 5(2): 83-7.
[17]
Kupchan SM, Knox JR, Kelsey JE, Saenzrenauld JA. Renauld Calotropin, a cytotoxicprinciple isolated from Asclepias curassavica. Science 1964; 146(3652): 1685-6.
[http://dx.doi.org/10.1126/science.146.3652.1685] [PMID: 14224519]
[18]
Roy MC, Chang FR, Huang HC, Chiang MY, Wu YC. Cytotoxic principles from the formosan milkweed, Asclepias curassavica. J Nat Prod 2005; 68(10): 1494-9.
[http://dx.doi.org/10.1021/np0501740] [PMID: 16252914]
[19]
Li JZ, Qing C, Chen CX, Hao XJ, Liu HY. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica. Bioorg Med Chem Lett 2009; 19(7): 1956-9.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.045] [PMID: 19251412]
[20]
Mo E-P, Zhang R-R, Xu J, et al. Calotropin from Asclepias curasavica induces cell cycle arrest and apoptosis in cisplatin-resistant lung cancer cells. Biochem Biophys Res Commun 2016; 478(2): 710-5.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.011] [PMID: 27498029]
[21]
Yuan W-Q, Zhang R-R, Wang J, et al. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression. Oncotarget 2016; 7(21): 31466-83.
[http://dx.doi.org/10.18632/oncotarget.8965] [PMID: 27129170]
[22]
Warashina T, Noro T. Steroidal glycosides from the roots of Asclepias curassavica. Chem Pharm Bull (Tokyo) 2008; 56(3): 315-22.
[http://dx.doi.org/10.1248/cpb.56.315] [PMID: 18310942]
[23]
Hocking GM. Asclepias curassavica Herba et Radix. Q J Crude Drug Res 1976; 14: 61-3.
[http://dx.doi.org/10.3109/13880207609081905]
[24]
Zheng YC. Taiwan Toxic Plants. Taipei, Taiwan: Holiday Pub. Co. Ltd. 2000.
[25]
Liggieri C, Arribére MC, Trejo SA, Canals F, Avilés FX, Priolo NS. Purification and biochemical characterization of asclepain c I from the latex of Asclepias curassavica L. Protein J 2004; 23(6): 403-11.
[http://dx.doi.org/10.1023/B:JOPC.0000039554.18157.69] [PMID: 15517987]
[26]
Li JZ, Liu HY, Lin YJ, Hao XJ, Ni W, Chen CX. Six new C21 steroidal glycosides from Asclepias curassavica L. Steroids 2008; 73(6): 594-600.
[http://dx.doi.org/10.1016/j.steroids.2008.01.015] [PMID: 18328519]
[27]
Singh B, Rastogi RP. Chemical investigation of Asclepias curassavica L. Indian J Chem 1969; 7: 1105.
[28]
Bihana S, Dhiman A, Singh G, Satija S. Gas chromatography mass spectroscopy analysis of bioactive compounds in the whole plant parts of ethanolic extract of Asclepias Curassavica L. International Journal of Green Pharmacy. LPU Conference 2018. 107-4.
[29]
Udeinya IJ. Anti-malaria activity of Nigerian neem leaves. Trans R Soc Trop Med Hyg 1993; 87(4): 471.
[http://dx.doi.org/10.1016/0035-9203(93)90042-O] [PMID: 8249085]
[30]
Chopra IC, Gupta KC, Nazir BN. Preliminary study of anti-bacterial substances from Melia azidirachta. Indian J Med Res 1952; 40(4): 511-5.
[PMID: 13061059]
[31]
Satyavati GV, Raina MK, Sharma M. Medicinal plants of India 1976. Indian Council of Medical Research, New Delhi 1976; I: 112-7.
[32]
Udeinya IJ, Mbah AU, Chijioke CP, Shu EN. An antimalarial extract from neem leaves is antiretroviral. Trans R Soc Trop Med Hyg 2004; 98(7): 435-7.
[http://dx.doi.org/10.1016/j.trstmh.2003.10.016] [PMID: 15138081]
[33]
Singh N, Misra N, Singh SP, Kohli RP. Melia azadirachta in some common skin disorders- a clinical evaluation. Antiseptic 1979; 76: 677-9.
[34]
Baral R, Chattopadhyay U. Neem (Azadirachta indica) leaf mediated immune activation causes prophylactic growth inhibition of murine Ehrlich carcinoma and B16 melanoma. Int Immunopharmacol 2004; 4(3): 355-66.
[http://dx.doi.org/10.1016/j.intimp.2003.09.006] [PMID: 15037213]
[35]
Gunadharini DN, Elumalai P, Arunkumar R, Senthilkumar K, Arunakaran J. Induction of apoptosis and inhibition of PI3K/Akt pathway in PC-3 and LNCaP prostate cancer cells by ethanolic neem leaf extract. J Ethnopharmacol 2011; 134(3): 644-50.
[http://dx.doi.org/10.1016/j.jep.2011.01.015] [PMID: 21277364]
[36]
Mahapatra S, Karnes RJ, Holmes MW, et al. Novel molecular targets of Azadirachta indica associated with inhibition of tumor growth in prostate cancer. AAPS J 2011; 13(3): 365-77.
[http://dx.doi.org/10.1208/s12248-011-9279-4] [PMID: 21560017]
[37]
Veeraraghavan J, Aravindan S, Natarajan M, Awasthi V, Herman TS, Aravindan N. Neem leaf extract induces radiosensitization in human neuroblastoma xenograft through modulation of apoptotic pathway. Anticancer Res 2011; 31(1): 161-70. a
[PMID: 21273594]
[38]
Veeraraghavan J, Natarajan M, Lagisetty P, Awasthi V, Herman TS, Aravindan N. Impact of curcumin, raspberry extract, and neem leaf extract on rel protein-regulated cell death/radiosensitization in pancreatic cancer cells. Pancreas 2011; 40(7): 1107-19. b
[http://dx.doi.org/10.1097/MPA.0b013e31821f677d] [PMID: 21697760]
[39]
Cohen E, Quisted GB, Jefferies PR. Nimbolide is the principle cytotoxiccomponent of neem seed insecticide preparations. Pestic Sci 1996; 48: 135-40. b
[http://dx.doi.org/10.1002/(SICI)1096-9063(199610)48:2<135: AID-PS451>3.0.CO;2-J]
[40]
Sastry BS, Suresh Babu K, Hari Babu T, et al. Synthesis and biological activity of amide derivatives of nimbolide. Bioorg Med Chem Lett 2006; 16(16): 4391-4.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.105] [PMID: 16793266]
[41]
Roy MK, Kobori M, Takenaka M, et al. Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica). Phytother Res 2007; 21(3): 245-50.
[http://dx.doi.org/10.1002/ptr.2058] [PMID: 17163581]
[42]
Chen J, Chen J, Sun Y, et al. Cytotoxic triterpenoids from Azadirachta indica. Planta Med 2011; 77(16): 1844-7.
[http://dx.doi.org/10.1055/s-0030-1271197] [PMID: 21674442]
[43]
Harish Kumar G, Chandra Mohan KVP, Jagannadha Rao A, Nagini S. Nimbolide a limonoid from Azadirachta indica inhibits proliferation and induces apoptosis of human choriocarcinoma (BeWo) cells. Invest New Drugs 2009; 27(3): 246-52.
[http://dx.doi.org/10.1007/s10637-008-9170-z] [PMID: 18719855]
[44]
Priyadarsini RV, Murugan RS, Sripriya P, Karunagaran D, Nagini S. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells. Free Radic Res 2010; 44(6): 624-34.
[http://dx.doi.org/10.3109/10715761003692503] [PMID: 20429769]
[45]
Babykutty S, S PP, J NR, et al. Nimbolide retards tumor cell migration, invasion, and angiogenesis by downregulating MMP-2/9 expression via inhibiting ERK1/2 and reducing DNA-binding activity of NF-κB in colon cancer cells. Mol Carcinog 2012; 51(6): 475-90.
[http://dx.doi.org/10.1002/mc.20812] [PMID: 21678498]
[46]
Chien SY, Hsu CH, Lin CC, et al. Nimbolide induces apoptosis in human nasopharyngeal cancer cells. Environ Toxicol 2017; 32(8): 2085-92.
[http://dx.doi.org/10.1002/tox.22423] [PMID: 28383207]
[47]
Kumar S, Inigo JR, Kumar R, et al. Nimbolide reduces CD44 positive cell population and induces mitochondrial apoptosis in pancreatic cancer cells. Cancer Lett 2018; 413(413): 82-93.
[http://dx.doi.org/10.1016/j.canlet.2017.10.029] [PMID: 29107110]
[48]
Kikuchi T, Ishii K, Noto T, et al. Cytotoxic and apoptosis-inducing activities of limonoids from the seeds of Azadirachta indica (neem). J Nat Prod 2011; 74(4): 866-70.
[http://dx.doi.org/10.1021/np100783k] [PMID: 21381696]
[49]
Akudugu J, Gäde G, Böhm L. Cytotoxicity of azadirachtin A in human glioblastoma cell lines. Life Sci 2001; 68(10): 1153-60.
[http://dx.doi.org/10.1016/S0024-3205(00)01017-1] [PMID: 11228099]
[50]
Cohen E, Quistad GB, Casida JE. Cytotoxicity of nimbolide, epoxyazadiradione and other limonoids from neem insecticide. Life Sci 1996a; 58(13): 1075-81. a
[http://dx.doi.org/10.1016/0024-3205(96)00061-6] [PMID: 8622560]
[51]
Nanduri S, Thunuguntla SS, Nyavanandi VK, et al. Biological investigation and structure-activity relationship studies on azadirone from Azadirachta indica A. Juss. Bioorg Med Chem Lett 2003; 13(22): 4111-5.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.030] [PMID: 14592518]
[52]
Boopalan T, Arumugam A, Damodaran C, Rajkumar L. The anticancer effect of 2′-3′-dehydrosalannol on triple-negative breast cancer cells. Anticancer Res 2012; 32(7): 2801-6.
[PMID: 22753740]
[53]
Kashif M, Kim D, Kim G. in vitro antiproliferative and apoptosis inducing effect of a methanolic extract of Azadirachta indica oil on selected cancerous and non-cancerous cell lines. Asian Pac T Trop Med 2018; 11: 555-61.
[http://dx.doi.org/10.4103/1995-7645.244515]
[54]
Zhua J, Lua X, Fanc X, et al. A new cytotoxic salannin-class limonoid alkaloid from seeds of Azadirachta indica A. Juss. Chin Chem Lett 2017; 1-3.
[55]
Kumar D, Haldar S, Gorain M, et al. Epoxyazadiradione suppresses breast tumor growth through mitochondrial depolarization and caspase-dependent apoptosis by targeting PI3K/Akt pathway. BMC Cancer 2018; 18(1): 52.
[http://dx.doi.org/10.1186/s12885-017-3876-2] [PMID: 29310608]
[56]
Subapriya R, Nagini S. Ethanolic neem leaf extract protects against N-methyl -N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in Wistar rats. Asian Pac J Cancer Prev 2003; 4(3): 215-23.
[PMID: 14507242]
[57]
Subapriya R, Bhuvaneswari V, Ramesh V, Nagini S. Ethanolic leaf extract of neem (Azadirachta indica) inhibits buccal pouch carcinogenesis in hamsters. Cell Biochem Funct 2005; 23(4): 229-38.
[http://dx.doi.org/10.1002/cbf.1143] [PMID: 15473007]
[58]
Subapriya R, Kumaraguruparan R, Nagini S. Expression of PCNA, cytokeratin, Bcl-2 and p53 during chemoprevention of hamster buccal pouch carcinogenesis by ethanolic neem (Azadirachta indica) leaf extract. Clin Biochem 2006; 39(11): 1080-7.
[http://dx.doi.org/10.1016/j.clinbiochem.2006.06.013] [PMID: 16989797]
[59]
Dasgupta T, Banerjee S, Yadava PK, Rao AR. Chemopreventive potential of Azadirachta indica (Neem) leaf extract in murine carcinogenesis model systems. J Ethnopharmacol 2004; 92(1): 23-36.
[http://dx.doi.org/10.1016/j.jep.2003.12.004] [PMID: 15099843]
[60]
Arakaki J, Suzui M, Morioka T, et al. Antioxidative and modifying effects of a tropical plant Azadirachta indica (Neem) on azoxymethane-induced preneoplastic lesions in the rat colon. Asian Pac J Cancer Prev 2006; 7(3): 467-71.
[PMID: 17059347]
[61]
Chugh NA, Bansal MP, Koul A. The effect of Azadirachta indica leaf extract on early stages of chemically induced skin cancer in mice. J Herbs Spices Med Plants 2018; 24(3): 257-71.
[http://dx.doi.org/10.1080/10496475.2018.1463932]
[62]
Akihisa T, Noto T, Takahashi A, et al. Melanogenesis inhibitory, anti-inflammatory, and chemopreventive effects of limonoids from the seeds of Azadirachta indicia A. Juss. (neem). J Oleo Sci 2009; 58(11): 581-94.
[http://dx.doi.org/10.5650/jos.58.581] [PMID: 19844073]
[63]
Priyadarsini RV, Manikandan P, Kumar GH, Nagini S. The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis. Free Radic Res 2009; 43(5): 492-504.
[http://dx.doi.org/10.1080/10715760902870637] [PMID: 19391054]
[64]
Harish Kumar G, Vidya Priyadarsini R, Vinothini G, Vidjaya Letchoumy P, Nagini S. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis. Invest New Drugs 2010; 28(4): 392-401.
[http://dx.doi.org/10.1007/s10637-009-9263-3] [PMID: 19458912]
[65]
Manikandan P, Letchoumy PV, Gopalakrishnan M, Nagini S. Evaluation of Azadirachta indica leaf fractions for in vitro antioxidant potential and in vivo modulation of biomarkers of chemoprevention in the hamster buccal pouch carcinogenesis model. Food Chem Toxicol 2008; 46(7): 2332-43.
[http://dx.doi.org/10.1016/j.fct.2008.03.013] [PMID: 18442880]
[66]
Alam A, Haldar S, Thulasiram HV, et al. Novel anti-inflammatory activity of epoxyazadiradione against macrophage migration inhibitory factor: inhibition of tautomerase and proinflammatory activities of macrophage migration inhibitory factor. J Biol Chem 2012; 287(29): 24844-61.
[http://dx.doi.org/10.1074/jbc.M112.341321] [PMID: 22645149]
[67]
Chakraborty T, Bose A, Barik S, et al. Neem leaf glycoprotein inhibits CD4+CD25+Foxp3+ Tregs to restrict murine tumor growth. Immunotherapy 2011; 3(8): 949-69.
[http://dx.doi.org/10.2217/imt.11.81] [PMID: 21843083]
[68]
Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 2002; 82: 1336-45.
[69]
Okpanyi SN, Ezeukwu GC. Anti-inflammatory and antipyretic activities of Azadirachta indica. Planta Med 1981; 41(1): 34-9.
[http://dx.doi.org/10.1055/s-2007-971670] [PMID: 6972048]
[70]
Pillai NR, Santhakumari G. Toxicity studies on nimbidin, a potential antiulcer drug. Planta Med 1984; 50(2): 146-8.
[http://dx.doi.org/10.1055/s-2007-969655] [PMID: 6473547]
[71]
Glinsukon T, Somjaree R, Piyachaturawat P, Thebtaranonth Y. Acute toxicity of nimbolide and nimbic acid in mice, rats and hamsters. Toxicol Lett 1986; 30(2): 159-66.
[http://dx.doi.org/10.1016/0378-4274(86)90098-6] [PMID: 3754662]
[72]
Boeke SJ, Boersma MG, Alink GM, et al. Safety evaluation of neem (Azadirachta indica) derived pesticides. J Ethnopharmacol 2004; 94(1): 25-41.
[http://dx.doi.org/10.1016/j.jep.2004.05.011] [PMID: 15261960]
[73]
Raizada RB, Srivastava MK, Kaushal RA, Singh RP. Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food Chem Toxicol 2001; 39(5): 477-83.
[http://dx.doi.org/10.1016/S0278-6915(00)00153-8] [PMID: 11313114]
[74]
Kumar SR, Srinivas M, Yakkundi S. Limonoids from the seeds of Azadirachta indica. Phytochemistry 1996; 43: 451-5.
[http://dx.doi.org/10.1016/0031-9422(96)00226-9]
[75]
Tan QG, Luo XD. Meliaceous limonoids: chemistry and biological activities. Chem Rev 2011; 111(11): 7437-522.
[http://dx.doi.org/10.1021/cr9004023] [PMID: 21894902]
[76]
Nadkarni KM. Indian Materia Medica 2002; 1: 223-5.
[77]
Krolikiewicz-Renimel I, Michel T, Destandau E, et al. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities. J Ethnopharmacol 2013; 148(2): 537-43.
[http://dx.doi.org/10.1016/j.jep.2013.05.001] [PMID: 23680157]
[78]
Sharma AK, Deshwal N. An Overview: On Phytochemical and Pharmacological Studies of Butea Monosperma. Int J Pharm Tech Res 2011; 3(2): 864-71.
[79]
Choedon T, Shukla SK, Kumar V. Chemopreventive and anti-cancer properties of the aqueous extract of flowers of Butea monosperma. J Ethnopharmacol 2010; 129(2): 208-13.
[http://dx.doi.org/10.1016/j.jep.2010.03.011] [PMID: 20307637]
[80]
Polachi N, Nagaraja P, Subramaniyan B, Mathan G. Antiproliferative activity of n-butanol floral extract from Butea Monosperma against Hct 116 colon cancer cells; drug likeness properties and in silico evaluation of their active compounds toward glycogen synthase kinase-3β/Axin and B-catenin/T-cell factor-4 protein complex. Asian J Pharm Clin Res 2015; 8(1): 134-41.
[81]
Subramaniyan B, Polachi N, Mathan G. Isocoreopsin: An active constituent of n-butanol extract of Butea monosperma flowers against colorectal cancer (CRC). J Pharm Anal 2016; 6(5): 318-25.
[http://dx.doi.org/10.1016/j.jpha.2016.04.007] [PMID: 29403999]
[82]
Kaur V, Kumar M, Kaur P, Kaur S, Kaur S. Inhibitory activities of n-butanol fraction from Butea monosperma (Lam.) Taub. bark against free radicals, genotoxins and cancer cells. Chem Biodivers 2017; 14(6)e1600484
[http://dx.doi.org/10.1002/cbdv.201600484] [PMID: 28207992]
[83]
Subramaniyan B, Kumar V, Mathan G. Effect of sodium salt of Butrin, a novel compound isolated from Butea monosperma flowers on suppressing the expression of SIRT1 and Aurora B kinase-mediated apoptosis in colorectal cancer cells. Biomed Pharmacother 2017; 90: 402-13.
[http://dx.doi.org/10.1016/j.biopha.2017.03.086] [PMID: 28390310]
[84]
Sehrawat A, Sultana S. Chemoprevention by Butea monosperma of hepatic carcinogenesis and oxidative damage in male wistar rats. Asian Pac J Cancer Prev 2006; 7(1): 140-8.
[PMID: 16629533]
[85]
Qiu HX. Flora of China. Beijing, China: Science Press 1996; p. 133.
[86]
Morimura K. The role of special group article in ancient chinese medical prescription. Hist Sci (Tokyo) 2003; 13(1): 1-12.
[PMID: 14743827]
[87]
Tsai JC, Tsai S, Chang WC. Effect of ethanol extracts of three Chinese medicinal plants with laxative properties on ion transport of the rat intestinal epithelia. Biol Pharm Bull 2004; 27(2): 162-5.
[http://dx.doi.org/10.1248/bpb.27.162] [PMID: 14758025]
[88]
Wang X, Zhang F, Liu Z, et al. Effects of essential oil from Croton tiglium L. on intestinal transit in mice. J Ethnopharmacol 2008; 117(1): 102-7.
[http://dx.doi.org/10.1016/j.jep.2008.01.023] [PMID: 18329205]
[89]
Zhanga X-L. Ashfaq-Ahmad Khan, Lun Wanga, Kai Yud, Fu Lia and Ming-Kui Wanga. Four new phorbol diesters from Croton tiglium and their cytotoxic activities. Phytochem Lett 2016; 16: 82-6.
[http://dx.doi.org/10.1016/j.phytol.2016.03.008]
[90]
Du Q, Zhao Y, Liu H, et al. Isolation and Structure Characterization of cytotoxicPhorbol esters from the seeds of Croton tigliu. Planta Med 2017; 83(17): 1361-7.
[http://dx.doi.org/10.1055/s-0043-110227] [PMID: 28499304]
[91]
Van Duuren BL, Langseth L, Sivak A, Orris L. The tumor-enhancing principles of Croton tiglium L. II. A comparative study. Cancer Res 1966; 26(8): 1729-33.
[PMID: 5925649]
[92]
Van Duuren BL, Sivak A. Tumor-promoting agents from Croton tiglium L. and their mode of action. Cancer Res 1968; 28(11): 2349-56.
[PMID: 4881987]
[93]
Garzotto M, White-Jones M, Jiang Y, et al. 12-O-tetradecanoyl- phorbol-13-acetate-induced apoptosis in LNCaP cells is mediated through ceramide synthase. Cancer Res 1998; 58(10): 2260-4.
[PMID: 9605775]
[94]
Arita Y, O’Driscoll KR, Weinstein IB. Growth inhibition of human melanoma-derived cells by 12-O-tetradecanoyl phorbol 13-acetate. Int J Cancer 1994; 56(2): 229-35.
[http://dx.doi.org/10.1002/ijc.2910560215] [PMID: 8314307]
[95]
Kim JH, Lee SJ, Han YB, Moon JJ, Kim JB. Isolation of isoguanosine from Croton tiglium and its antitumor activity. Arch Pharm Res 1994; 17(2): 115-8.
[http://dx.doi.org/10.1007/BF02974234] [PMID: 10319142]
[96]
Guilbaud NF, Gas N, Dupont MA, Valette A. Effects of differentiation-inducing agents on maturation of human MCF-7 breast cancer cells. J Cell Physiol 1990; 145(1): 162-72.
[http://dx.doi.org/10.1002/jcp.1041450122] [PMID: 2211839]
[97]
Salge U, Kilian P, Neumann K, Elsässer HP, Havemann K, Heidtmann HH. Differentiation capacity of human non-small-cell lung cancer cell lines after exposure to phorbol ester. Int J Cancer 1990; 45(6): 1143-50.
[http://dx.doi.org/10.1002/ijc.2910450626] [PMID: 1972142]
[98]
Rickard KL, Gibson PR, Young GP, Phillips WA. Activation of protein kinase C augments butyrate-induced differentiation and turnover in human colonic epithelial cells in vitro. Carcinogenesis 1999; 20(6): 977-84.
[http://dx.doi.org/10.1093/carcin/20.6.977] [PMID: 10357776]
[99]
Bi-QingZhao. ShuaiPeng, Wei-JunHe, Yong-HongLiu, Jun- FengWang and Xiao-JiangZhou.. Antitubercular and cytotox-ictigliane-type diterpenoids from Croton tiglium. Bioorg Med Chem Lett 2016; 26(20): 4996-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.002] [PMID: 27623549]
[100]
Rizk AFM. The chemical constituents and economic plants of the Euphorbiaceae. Bot J Linn Soc 1987; 94: 293-326.
[http://dx.doi.org/10.1111/j.1095-8339.1987.tb01052.x]
[101]
Phillipson JD. A matter of some sensitivity. Phytochemistry 1995; 38(6): 1319-43.
[http://dx.doi.org/10.1016/0031-9422(94)00780-W] [PMID: 7786474]
[102]
Saputera MD, Raharja S, Kardono LBS, Iswantini D. Gas chromatography and gas chromatography-mass spectrometry analysis of Indonesian Croton tiglium seeds. J Appl Sci (Faisalabad) 2006; 6: 1576-80.
[http://dx.doi.org/10.3923/jas.2006.1576.1580]
[103]
el-Mekkawy S, Meselhy MR, Nakamura N, Hattori M, Kawahata T, Otake T. 12-O-acetylphorbol-13-decanoate potently inhibits cytopathic effects of human immunodeficiency virus type 1 (HIV-1), without activation of protein kinase C. Chem Pharm Bull (Tokyo) 1999; 47(9): 1346-7.
[http://dx.doi.org/10.1248/cpb.47.1346] [PMID: 10517016]
[104]
El-Mekkawy S, Meselhy MR, Nakamura N, Hattori M, Kawahata T, Otake T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry 2000; 53(4): 457-64.
[http://dx.doi.org/10.1016/S0031-9422(99)00556-7] [PMID: 10731023]
[105]
Zhanga X-L. Ashfaq-Ahmad Khan, Lun Wanga, Kai Yud, Fu Lia and Ming-Kui Wanga. Four new phorbol diesters from Croton tiglium and their cytotoxicactivities. Phytochem Lett 2016; 16: 82-6.
[http://dx.doi.org/10.1016/j.phytol.2016.03.008]
[106]
Shah GM, Khan MA. Check list of medicinal plants of Siran valley Mansehra-Pakistan. Ethnobot. Leaflets 2006; 10: 63-71.
[107]
Hamayun M, Khan SA, Sohn EY, In-Jung L. Folk medicinal knowledge and conservation status of some economically valued medicinal plants of District Swat, Pakistan. Lyonia 2006; 11(2): 101-13.
[108]
Xue M, Zhi-ying W, Hui L. The volatile constituent analysis of Scindapsus aureum and Hedera nepalensis var. sinensis and their inhibition against five fungi. Acta Horticul Sin 2010; 37(6): 971-6.
[109]
Jafri L, Saleem S, Kondrytuk TP, et al. Hedera nepalensis K. Koch: A novel source of natural cancer chemopreventive and anticancerous compounds. Phytother Res 2016; 30(3): 447-53.
[http://dx.doi.org/10.1002/ptr.5546] [PMID: 26692176]
[110]
Li T, Pan H, Feng Y, Li H, Zhao Y. Bioactivity-guided isolation of anticancer constituents from Hedera nepalensis K. Koch South African Journal of Botany 2015; 100: 87-93.
[http://dx.doi.org/10.1016/j.sajb.2015.05.011]
[111]
Kanwal S, Ullah N, Ihsan-Ul-Haq IA, Mirza B. Antioxidant, antitumor activities and phytochemical investigation of Hedera Nepalensis K. koch, an important medicinal plant from Pakistan. Pak J Bot 2011; 43: 85-9.
[112]
Uddin G, Khan AA, Alamzeb M, et al. Biological screening of ethyl acetate extract of Hedera nepalensis stem. Afr J Pharm Pharmacol 2016; 6(42): 2934-7.
[http://dx.doi.org/10.5897/AJPP12.828]
[113]
Jatropha curcas: . www.cabi.org
[114]
Igbinosa OO, Igbinosa EO, Aiyegoro OA. Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr J Pharm Pharmacol 2009; 3(2): 58-62.
[115]
Thomas R, Sah NK, Sharma PB. Therapeutic biology of Jatropha curcas: a mini review. Curr Pharm Biotechnol 2008; 9(4): 315-24.
[http://dx.doi.org/10.2174/138920108785161505] [PMID: 18691091]
[116]
Aiyelaagbe OO, Hamid AA, Fattorusso E, Taglialatela-Scafati O, Schröder HC, Müller WE. Cytotoxicactivity of crude extracts as well as of pure components from Jatropha species, Plants used extensively in African traditional medicine. Evid Based Complement Alternat Med 2011; •••2011134954
[http://dx.doi.org/10.1155/2011/134954] [PMID: 21754941]
[117]
Sahidin S, Nakazibwe S, Taher M, Saxena AK, Ichwan SJA. Antiproliferative activity of curcusone-B from Jatropha curcas on human cancer cell lines. Aust J Basic Appl Sci 2011; 5: 47-51.
[118]
Oskoueian E, Abdullah N, Ahmad S. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines. Molecules 2012; 17(9): 10816-30.
[http://dx.doi.org/10.3390/molecules170910816] [PMID: 22964499]
[119]
Lin J, Yan F, Tang L, Chen F. Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 2003; 24(3): 241-6.
[PMID: 12617773]
[120]
Lin J, Yan F, Tang L, Chen F. Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 2003; 24(3): 241-6.
[PMID: 12617773]
[121]
Katagi A, Sui L, Kamitori K, et al. Inhibitory effect of isoamericanol A from Jatropha curcas seeds on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Heliyon 2016; 2(1)e00055
[http://dx.doi.org/10.1016/j.heliyon.2015.e00055] [PMID: 27441238]
[122]
Prayitno , et al. Tumoricidal activation of macrophages using Jatropha curcas leaf extract: As a proxy for the treatment of cancer. Immunome Res 2016; 12: 1.
[123]
Makkar HPS, Becker K, Sporer F, Wink M. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 1997; 45: 3152-7.
[http://dx.doi.org/10.1021/jf970036j]
[124]
Xiao J, Zhang H, Niu L, Wang X, Lu X. Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal. J Agric Food Chem 2011; 59(8): 4040-4.
[http://dx.doi.org/10.1021/jf200104b] [PMID: 21410262]
[125]
Li CY, Devappa RK, Liu JX, Lv JM, Makkar HP, Becker K. Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 2010; 48(2): 620-5.
[http://dx.doi.org/10.1016/j.fct.2009.11.042] [PMID: 19944127]
[126]
Heiser CB. The Gourd Book [M]. Norman: University of Oklahoma Press 1979.
[127]
Zhu Y, Dong Y, Qian X, et al. Effect of superfine grinding on antidiabetic activity of bitter melon powder. Int J Mol Sci 2012; 13(11): 14203-18.
[http://dx.doi.org/10.3390/ijms131114203] [PMID: 23203059]
[128]
Costa JG, Nascimento EM, Campos AR, Rodrigues FF. Antibacterial activity of Momordica charantia (Curcubitaceae) extracts and fractions. J Basic Clin Pharm 2010; 2(1): 45-51.
[PMID: 24826002]
[129]
Santos KK, Matias EF, Sobral-Souza CE, et al. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia. Pharm Biol 2012; 50(2): 162-6.
[http://dx.doi.org/10.3109/13880209.2011.581672] [PMID: 22235885]
[130]
Pongthanapisith V, Ikuta K, Puthavathana P, Leelamanit W. Antiviral protein of Momordica charantia L. inhibits different sub-types of influenza A. Evid Based Complement Alternat Med 2013; •••2013729081
[http://dx.doi.org/10.1155/2013/729081] [PMID: 23935676]
[131]
Lal J, Chandra S, Raviprakash V, Sabir M. in vitro anthelmintic action of some indigenous medicinal plants on Ascardia galli worms. Indian J Physiol Pharmacol 1976; 20(2): 64-8.
[PMID: 965077]
[132]
Malik ZA, Singh M, Sharma PL. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol 2011; 133(2): 729-34.
[http://dx.doi.org/10.1016/j.jep.2010.10.061] [PMID: 21056650]
[133]
Ru P, Steele R, Nerurkar PV, Phillips N, Ray RB. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Cancer Prev Res (Phila) 2011; 4(12): 2122-30.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0376] [PMID: 21911444]
[134]
Pitchakarn P, Suzuki S, Ogawa K, et al. Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer Lett 2011; 306(2): 142-50.
[http://dx.doi.org/10.1016/j.canlet.2011.02.041] [PMID: 21429659]
[135]
Pitchakarn P, Ogawa K, Suzuki S, et al. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci 2010; 101(10): 2234-40.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01669.x] [PMID: 20731662]
[136]
Xiong SD, Yu K, Liu XH, et al. Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells. Int J Cancer 2009; 125(4): 774-82.
[http://dx.doi.org/10.1002/ijc.24325] [PMID: 19384952]
[137]
Pitchakarn P, Ohnuma S, Pintha K, Pompimon W, Ambudkar SV, Limtrakul P. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCB1)-mediated multidrug resistance. J Nutr Biochem 2012; 23(1): 76-84.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.005] [PMID: 21414769]
[138]
Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein activity and reversal of cancer multidrug resistance by Momordica charantia extract. Cancer Chemother Pharmacol 2004; 54(6): 525-30.
[http://dx.doi.org/10.1007/s00280-004-0848-4] [PMID: 15248030]
[139]
Kai H, Akamatsu E, Torii E, et al. Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines. J Nat Med 2011; 65(3-4): 651-5.
[http://dx.doi.org/10.1007/s11418-011-0510-5] [PMID: 21293936]
[140]
Kobori M, Ohnishi-Kameyama M, Akimoto Y, Yukizaki C, Yoshida M. Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J Agric Food Chem 2008; 56(22): 10515-20.
[http://dx.doi.org/10.1021/jf8020877] [PMID: 18959405]
[141]
Takemoto DJ, Dunford C, Vaughn D, Kramer KJ, Smith A, Powell RG. Guanylate cyclase activity in human leukemic and normal lymphocytes. Enzyme inhibition and cytotoxicity of plant extracts. Enzyme 1982; 27(3): 179-88.
[http://dx.doi.org/10.1159/000459047] [PMID: 6122565]
[142]
Porro G, Bolognesi A, Caretto P, et al. in vitro and in vivo properties of an anti-CD5-momordin immunotoxin on normal and neoplastic T lymphocytes. Cancer Immunol Immunother 1993; 36(5): 346-50.
[http://dx.doi.org/10.1007/BF01741174] [PMID: 7682894]
[143]
Agrawal RC, Beohar T. Chemopreventive and anticarcinogenic effects of Momordica charantia extract. Asian Pac J Cancer Prev 2010; 11(2): 371-5.
[PMID: 20843118]
[144]
Ganguly C, De S, Das S. Prevention of carcinogen-induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia. Eur J Cancer Prev 2000; 9(4): 283-8.
[http://dx.doi.org/10.1097/00008469-200008000-00009] [PMID: 10958332]
[145]
Singh A, Singh SP, Bamezai R. Momordica charantia (Bitter Gourd) peel, pulp, seed and whole fruit extract inhibits mouse skin papillomagenesis. [J] Toxicol Lett 1998; 94(1): 37-46.
[http://dx.doi.org/10.1016/S0378-4274(97)00099-4] [PMID: 9544697]
[146]
Brennan VC, Wang CM, Yang WH. Bitter melon (Momordica charantia) extract suppresses adrenocortical cancer cell proliferation through modulation of the apoptotic pathway, steroidogenesis, and insulin-like growth factor type 1 receptor/RAC-α serine/threonine-protein kinase signaling. J Med Food 2012; 15(4): 325-34.
[http://dx.doi.org/10.1089/jmf.2011.0158] [PMID: 22191569]
[147]
Hsu HY, Lin JH, Li CJ, et al. Antimigratory effects of the methanol extract from Momordica charantia on human lung adenocarcinoma CL1 Cells. Evid Based Complement Alternat Med 2012.2012819632
[http://dx.doi.org/10.1155/2012/819632] [PMID: 23320038]
[148]
Fan X, He L, Meng Y, Li G, Li L, Meng Y. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Mol Med Rep 2015; 11(5): 3553-8.
[http://dx.doi.org/10.3892/mmr.2015.3176] [PMID: 25573293]
[149]
Pan WL, Wong JH, Fang EF, Chan YS, Ng TB, Cheung RC. Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochem Pharmacol 2014; 89(3): 329-39.
[http://dx.doi.org/10.1016/j.bcp.2014.03.004] [PMID: 24637239]
[150]
Rajamoorthi A, Shrivastava S, Steele R, et al. Bitter melon reduces head and neck squamous cell carcinoma growth by targeting c-Met signaling. PLoS One 2013; 8(10)e78006
[http://dx.doi.org/10.1371/journal.pone.0078006] [PMID: 24147107]
[151]
Kwatra D, Venugopal A, Standing D, et al. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance. J Pharm Sci 2013; 102(12): 4444-54.
[http://dx.doi.org/10.1002/jps.23753] [PMID: 24129966]
[152]
Kwatra D, Subramaniam D, Ramamoorthy P, et al. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid Based Complement Alternat Med 2013.2013702869
[http://dx.doi.org/10.1155/2013/702869] [PMID: 23533514]
[153]
Weng JR, Bai LY, Chiu CF, Hu JL, Chiu SJ, Wu CY. Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor gamma activation. Evid Based Complement Alternat Med 2013; •••2013935675
[http://dx.doi.org/10.1155/2013/935675] [PMID: 23843889]
[154]
Lee-Huang S, Huang PL, Sun Y, et al. Inhibition of MDA-MB-231 human breast tumor xenografts and HER2 expression by anti-tumor agents GAP31 and MAP30. Anticancer Res 2000; 20(2A): 653-9.
[PMID: 10810336]
[155]
Cao D, Sun Y, Wang L, et al. Alpha-momorcharin (α-MMC) exerts effective anti-human breast tumor activities but has a narrow therapeutic window in vivo. Fitoterapia 2015; 100: 139-49.
[http://dx.doi.org/10.1016/j.fitote.2014.11.009] [PMID: 25447153]
[156]
Li CJ, Tsang SF, Tsai CH, Tsai HY, Chyuan JH, Hsu HY. Momordica charantia extract induces apoptosis in human cancer cells through caspase and mitochondria-dependent pathways. Evid Based Complement Alternat Med 2012; •••2012261971
[http://dx.doi.org/10.1155/2012/261971] [PMID: 23091557]
[157]
Li Y, Yin L, Zheng L, et al. Application of high-speed counter-current chromatography coupled with a reverse micelle solvent system to separate three proteins from Momordica charantia. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 895-896: 77-82.
[http://dx.doi.org/10.1016/j.jchromb.2012.03.017] [PMID: 22465200]
[158]
Fang EF, Zhang CZ, Wong JH, Shen JY, Li CH, Ng TB. The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett 2012; 324(1): 66-74.
[http://dx.doi.org/10.1016/j.canlet.2012.05.005] [PMID: 22579806]
[159]
Yasui Y, Hosokawa M, Sahara T, et al. Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids 2005; 73(2): 113-9.
[http://dx.doi.org/10.1016/j.plefa.2005.04.013] [PMID: 15961301]
[160]
Zhang CZ, Fang EF, Zhang HT, Liu LL, Yun JP. Momordica charantia lectin exhibits antitumor activity towards hepatocellular carcinoma. Invest New Drugs 2015; 33(1): 1-11.
[http://dx.doi.org/10.1007/s10637-014-0156-8] [PMID: 25200916]
[161]
Kaur M, Deep G, Jain AK, et al. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis 2013; 34(7): 1585-92.
[http://dx.doi.org/10.1093/carcin/bgt081] [PMID: 23475945]
[162]
Deep G, Dasgupta T, Rao AR, Kale RK. Cancer preventive potential of Momordica charantia L. against benzo(a)pyrene induced fore-stomach tumourigenesis in murine model system. Indian J Exp Biol 2004; 42(3): 319-22.
[PMID: 15233304]
[163]
Kohno H, Yasui Y, Suzuki R, Hosokawa M, Miyashita K, Tanaka T. Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARgamma expression and alteration of lipid composition. Int J Cancer 2004; 110(6): 896-901.
[http://dx.doi.org/10.1002/ijc.20179] [PMID: 15170673]
[164]
Ali MM. H Borai I, Ghanem HM, H Abdel-Halim A, Mousa FM. Mamdouh MAli. The prophylactic and therapeutic effects of Momordica charantia methanol extract through controlling different hallmarks of the hepatocarcinogenesis. Biomed Pharmacother 2018; 98: 491-8.
[http://dx.doi.org/10.1016/j.biopha.2017.12.096] [PMID: 29287196]
[165]
Kimura Y, Akihisa T, Yuasa N, et al. Cucurbitane-type triterpenoids from the fruit of Momordica charantia. J Nat Prod 2005; 68(5): 807-9.
[http://dx.doi.org/10.1021/np040218p] [PMID: 15921438]
[166]
Kenny O, Smyth TJ, Hewage CM, Brunton NP. Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem 2013; 141(4): 4295-302.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.016] [PMID: 23993618]
[167]
Horax R, Hettiarachchy N, Chen P. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). J Agric Food Chem 2010; 58(7): 4428-33.
[http://dx.doi.org/10.1021/jf9029578] [PMID: 20225855]
[168]
Chen CR, Liao YW, Wang L, et al. Cucurbitane triterpenoids from Momordica charantia and their cytoprotective activity in tert-butyl hydroperoxide-induced hepatotoxicity of HepG2 cells. Chem Pharm Bull (Tokyo) 2010; 58(12): 1639-42.
[http://dx.doi.org/10.1248/cpb.58.1639] [PMID: 21139270]
[169]
Zhao GT, Liu JQ, Deng YY, et al. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia. Fitoterapia 2014; 95: 75-82.
[http://dx.doi.org/10.1016/j.fitote.2014.03.005] [PMID: 24631764]
[170]
Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011; 19(1): 32-7.
[http://dx.doi.org/10.1016/j.phymed.2011.06.019] [PMID: 22133295]
[171]
Mekuria DB, Kashiwagi T, Tebayashi S, Kim CS. Cucurbitane glucosides from Momordica charantia leaves as oviposition deterrents to the leafminer, Liriomyza trifolii. Z Natforsch C J Biosci 2006; 61(1-2): 81-6.
[http://dx.doi.org/10.1515/znc-2006-1-215] [PMID: 16610222]
[172]
Kashiwagi T, Mekuria DB, Dekebo A, Sato K, Tebayashi S, Kim CS. A new oviposition deterrent to the leafminer, Liriomyza trifolii: cucurbitane glucoside from Momordica charantia. Z Natforsch C J Biosci 2007; 62(7-8): 603-7.
[http://dx.doi.org/10.1515/znc-2007-7-824] [PMID: 17913080]
[173]
Kasolo JN, Bimenya GS, Ojok L, Ochieng J. JW and Ogwal Okeng. Phytochemicals and uses of Moringa oleifera leave in Ugandan rural communities. J Med Plants Res 2010; 4: 753-7.
[174]
Rockwood JL, Anderson BG, Casamatta D. Potential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. Int J Phytothearpy Res 2013; 3: 61-71.
[175]
Titi Mutiara K. Harijono, Teti Estiasih, and Endang Sri W. Effect Lactagogue Moringa Leaves (Moringa oleifera Lam) Powder in Rats. J Basic Appl Sci Res 2013; 3: 430-4.
[176]
Hermawan A, Nur KA, Sarmoko D. Dewi, P. Putri and E. Meiyanto. Ethanolic extract of Moringa oleifera increased cytotoxiceffect of doxorubicin on HeLa cancer cells. J Nat Rem 2012; 12: 108-14.
[177]
Zayas-Viera , et al. Anticancer Effect of Moringa oleifera leaf extract in human cancer cell lines. J Health Dispar Res Pract 2016; 9(1): 141-2.
[178]
Guevara AP, Vargas C, Sakurai H, et al. An antitumor promoter from Moringa oleifera Lam. Mutat Res 1999; 440(2): 181-8.
[http://dx.doi.org/10.1016/S1383-5718(99)00025-X] [PMID: 10209341]
[179]
Tiloke C, Phulukdaree A, Chuturgoon AA. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement Altern Med 2013; 13: 226-33.
[http://dx.doi.org/10.1186/1472-6882-13-226] [PMID: 24041017]
[180]
Nakamura Y, Kawakami M, Yoshihiro A, et al. Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 2002; 277(10): 8492-9.
[http://dx.doi.org/10.1074/jbc.M109760200] [PMID: 11751909]
[181]
Miyoshi N, Uchida K, Osawa T, Nakamura Y. A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 2004; 64(6): 2134-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2296] [PMID: 15026354]
[182]
Lee YJ, Shacter E. Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 1999; 274(28): 19792-8.
[http://dx.doi.org/10.1074/jbc.274.28.19792] [PMID: 10391922]
[183]
Asaduzzaman AKM. Moringa oleifera seed lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of Bak and NF-κB gene expression. International Journal of Biological Macromolecules 2018; 107(B): 1936-44.
[184]
Stohs SJ, Hartman MJ. Review of the safety and efficacy of Moringa oleifera. Phytother Res 2015; 29(6): 796-804.
[http://dx.doi.org/10.1002/ptr.5325] [PMID: 25808883]
[185]
Pontikis C. Psidium guajava, L. Guava. Biotechnology in Agriculture and Forestry 1996; 35: 309-19.
[186]
Pardo O. Estudio comparativo de ocho especies Americanas de uso medicinal en Mozambique. Revista Chilena de Flora y Vegetaci’on 1999; 1: 323-8.
[187]
Oh WK, Lee CH, Lee MS, et al. Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol 2005; 96(3): 411-5.
[http://dx.doi.org/10.1016/j.jep.2004.09.041] [PMID: 15619559]
[188]
Ojewole JA. Hypoglycemic and hypotensive effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract. Methods Find Exp Clin Pharmacol 2005; 27(10): 689-95.
[http://dx.doi.org/10.1358/mf.2005.27.10.948917] [PMID: 16395418]
[189]
World Health Organization. Medicinal plants in the South Pacific.In: WHO Regional Publications Western Pacific Series num 19. 1998; p. 163.
[190]
Chen KC, Hsieh CL, Peng CC, et al. Brain derived prostate cancer DU-145 cells are effectively inhibited in vitro by guava leaf extracts. Nutr Cancer 2007; 58: 93-106.
[http://dx.doi.org/10.1080/01635580701308240] [PMID: 17571972]
[191]
Manosroi J, Dhumtanom P, Manosroi A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett 2006; 235(1): 114-20.
[http://dx.doi.org/10.1016/j.canlet.2005.04.021] [PMID: 15979235]
[192]
Cit’o AMGL, Souza AA, Lopes JAD, et al. Protium heptaphyllum March (Burceraceae resin) chemical composition of essential oil and cytotoxicevaluation with respect to Artemia salina Leach. An Acad Bras Cienc 2003; 52: 74-6.
[193]
Numata A, Yang P, Takahashi C, Fujiki R, Nabae M, Fujita E. Cytotoxic triterpenes from a Chinese medicine, Goreishi. Chem Pharm Bull (Tokyo) 1989; 37(3): 648-51.
[http://dx.doi.org/10.1248/cpb.37.648] [PMID: 2752475]
[194]
Fernandes KPS, Bussadori SK, Marques MM, et al. Healing and cytotoxiceffects of Psidium guajava (Myrtaceae) leaf extracts. Rev Saude Publica 1995; 29: 457-66.
[195]
Salib JY, Michael HN. Cytotoxic phenylethanol glycosides from Psidium guaijava seeds. Phytochemistry 2004; 65(14): 2091-3.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.009] [PMID: 15279977]
[196]
Ryu NH, Park KR, Kim SM, et al. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells. J Med Food 2012; 15(3): 231-41.
[http://dx.doi.org/10.1089/jmf.2011.1701] [PMID: 22280146]
[197]
Ashraf A, Sarfraz RA, Rashid MA, Mahmood A, Shahid M, Noor N. Chemical composition, antioxidant, antitumor, anticancer and cytotoxic effects of Psidium guajava leaf extracts. Pharm Biol 2016; 54(10): 1971-81.
[http://dx.doi.org/10.3109/13880209.2015.1137604] [PMID: 26841303]
[198]
Kamath JV, et al. Psidium guajava L: A review. International Journal of Green Pharmacy 2008; 2(1)
[http://dx.doi.org/10.4103/0973-8258.39155]
[199]
Begum S, Hassan SI, Ali SN, Siddiqui BS. Chemical constituents from the leaves of Psidium guajava. Nat Prod Res 2004; 18(2): 135-40.
[http://dx.doi.org/10.1080/14786410310001608019] [PMID: 14984086]
[200]
Qin XJ, Yu Q, Yan H, et al. Meroterpenoids with Antitumor Activities from Guava (Psidium guajava). J Agric Food Chem 2017; 65(24): 4993-9. [ssssss]
[PMID: 28578580]
[201]
Jaiarj P, Khoohaswan P, Wongkrajang Y, et al. Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. J Ethnopharmacol 1999; 67(2): 203-12.
[http://dx.doi.org/10.1016/S0378-8741(99)00022-7] [PMID: 10619385]
[202]
Ohyama K, Akaike T, Hirobe C, Yamakawa T. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth. Biol Pharm Bull 2003; 26(1): 10-8.
[http://dx.doi.org/10.1248/bpb.26.10] [PMID: 12520164]
[203]
Ohyama K, Akaike T, Imai M, Toyoda H, Hirobe C, Bessho T. Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress. Int J Biochem Cell Biol 2005; 37(7): 1496-510.
[http://dx.doi.org/10.1016/j.biocel.2005.02.016] [PMID: 15833280]
[204]
Wang LG, Liu XM, Ji XJ. Determination of DNA topoisomerase II activity from L1210 cells--a target for screening antitumor agents. Zhongguo Yao Li Xue Bao 1991; 12(2): 108-14.
[PMID: 1663690]
[205]
Syrovets T, Büchele B, Gedig E, Slupsky JR, Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIalpha. Mol Pharmacol 2000; 58(1): 71-81.
[http://dx.doi.org/10.1124/mol.58.1.71] [PMID: 10860928]
[206]
Zhou JY, Cui R. [Chemical components of Boswellia carterii] Yao Xue Xue Bao 2002; 37(8): 633-5.
[PMID: 12567779]
[207]
Liao CH, Sang S, Ho CT, Lin JK. Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. J Cell Biochem 2005; 96(1): 155-69.
[http://dx.doi.org/10.1002/jcb.20540] [PMID: 16052481]
[208]
Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 2001; 49(3): 1464-74.
[http://dx.doi.org/10.1021/jf001129v] [PMID: 11312881]
[209]
Nabandith V, Suzui M, Morioka T, et al. Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1, 2-dimethylhydrazine in the rat. Asian Pac J Cancer Prev 2004; 5(4): 433-8.
[PMID: 15546251]
[210]
Liu W, Guo QL, You QD, Zhao L, Gu HY, Yuan ST. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J Gastroenterol 2005; 11(24): 3655-9.
[http://dx.doi.org/10.3748/wjg.v11.i24.3655] [PMID: 15968715]
[211]
Zhang HZ, Kasibhatla S, Wang Y, et al. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 2004; 12(2): 309-17.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[212]
Guo QL, You QD, Wu ZQ, Yuan ST, Zhao L. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice. Acta Pharmacol Sin 2004; 25(6): 769-74.
[PMID: 15169630]
[213]
Wei QY, Ma JP, Cai YJ, Yang L, Liu ZL. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J Ethnopharmacol 2005; 102(2): 177-84.
[http://dx.doi.org/10.1016/j.jep.2005.05.043] [PMID: 16024193]
[214]
Nagasawa H, Watanabe K, Inatomi H. Effects of bitter melon (Momordica charantia l.) or ginger rhizome (Zingiber offifinale rosc) on spontaneous mammary tumorigenesis in SHN mice. Am J Chin Med 2002; 30(2-3): 195-205.
[http://dx.doi.org/10.1142/S0192415X02000302] [PMID: 12230008]
[215]
Mazzio EA, Soliman KF. in vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res 2009; 23(3): 385-98.
[http://dx.doi.org/10.1002/ptr.2636] [PMID: 18844256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy