Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Unfolded Protein Response is Involved in Trans-Platinum (II) Complex-Induced Apoptosis in Prostate Cancer Cells via ROS Accumulation

Author(s): Didem Karakas, Buse Cevatemre, Arzu Y. Oral, Veysel T. Yilmaz and Engin Ulukaya*

Volume 19, Issue 9, 2019

Page: [1184 - 1195] Pages: 12

DOI: 10.2174/1871520619666190409103334

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Prostate cancer is one of the most common cancer types and it is the sixth leading cause of cancer-related death in men worldwide. Even though novel treatment modalities have been developed, it still a lifethreatening disease. Therefore novel compounds are needed to improve the overall survival.

Methods: In our study, it was aimed to evaluate the anti-cancer activity of newly synthesized Platinum (II) [Pt(II)] complex on DU145, LNCaP and PC-3 prostate cancer cell lines. The cytotoxic activity of Pt(II) complex was tested by SRB and ATP cell viability assays. To detect the mode of cell death; fluorescent staining, flow cytometry and western blot analyses were performed.

Results: The Pt(II) complex treatment resulted in a decrease in cell viability and increasing levels of apoptotic markers (pyknotic nuclei, annexin-V, caspase 3/7 activity) and a decrease in mitochondrial membrane potential in a dose dependent manner. Among cell types, tested PC-3 cells were found to be more sensitive to Pt(II) complex, demonstrating elevation of DNA damage in this cell line. In addition, Pt(II) complex induced Endoplasmic Reticulum (ER) stress by triggering ROS generation. More importantly, pre-treatment with NAC alleviated Pt(II) complex-mediated ER stress and cell death in PC-3.

Conclusion: These findings suggest an upstream role of ROS production in Pt(II) complex-induced ER stressmediated apoptotic cell death. Considering the ROS-mediated apoptosis inducing the effect of Pt(II) complex, it warrants further evaluation as a novel metal-containing anticancer drug candidate.

Keywords: Prostate cancer, cytotoxicity, apoptosis, oxidative stress, unfolded protein response, platinum(II) complex.

« Previous
Graphical Abstract
[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136, E359-E386.
[2]
Farrell, N.P. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem. Soc. Rev., 2015, 44, 8773-8785.
[3]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2014, 3, 1351-1371.
[4]
Galanski, M.; Yasemi, A.; Slaby, S.; Jakupec, M.A.; Arion, V.B.; Rausch, M.; Nazarov, A.A.; Keppler, B.K. Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. Eur. J. Med. Chem., 2004, 39, 707-714.
[5]
Olszewski, U.; Hamilton, G. A better platinum-based anticancer drug yet to come? Anticancer. Agents Med. Chem., 2010, 10, 293-301.
[6]
Shahsavar, F.; Bozorgmehr, M.; Mirzadegan, E.; Abedi, A.; Lighvan, Z.M.; Mohammadi, F.; Safari, N.; Amani, V.; Zarnani, A.H. A novel platinum-based compound with preferential cytotoxic activity against a panel of cancer cell lines. Anticancer. Agents Med. Chem., 2016, 16, 393-403.
[7]
Ari, F.; Aztopal, N.; Icsel, C.; Yilmaz, V.T.; Guney, E.; Buyukgungor, O.; Ulukaya, E. Synthesis, structural characterization and cell death-inducing effect of novel palladium(II) and platinum(II) saccharinate complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine on cancer cells in vitro. Bioorg. Med. Chem., 2013, 21, 6427-6434.
[8]
Icsel, C.; Yilmaz, V.T.; Ari, F.; Ulukaya, E.; Harrison, W.T. Trans-Dichloridopalladium(II) and platinum(II) complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine: Synthesis, structural characterization, DNA binding and in vitro cytotoxicity studies. Eur. J. Med. Chem., 2013, 60, 386-394.
[9]
Kovala-Demertzi, D.; Papageorgiou, A.; Papathanasis, L.; Alexandratos, A.; Dalezis, P.; Miller, J.R.; Demertzis, M.A. In vitro and in vivo antitumor activity of platinum(II) complexes with thiosemicarbazones derived from 2-formyl and 2-acetyl pyridine and containing ring incorporated at N(4)-position: Synthesis, spectroscopic study and crystal structure of platinum(II) complexes with thiosemicarbazones, potential anticancer agents. Eur. J. Med. Chem., 2009, 44, 1296-1302.
[10]
Keter, F.K.; Kanyanda, S.; Lyantagaye, S.S.; Darkwa, J.; Rees, D.J.; Meyer, M. In vitro evaluation of dichloro-bis(pyrazole) palladium(II) and dichloro-bis(pyrazole)platinum(II) complexes as anticancer agents. Cancer Chemother. Pharmacol., 2008, 63, 127-138.
[11]
Oral, A.Y.; Cevatemre, B.; Sarimahmut, M.; Icsel, C.; Yilmaz, V.T.; Ulukaya, E. Anti-growth effect of a novel trans-dichloridobis [2-(2-hydroxyethyl)pyridine]platinum (II) complex via induction of apoptosis on breast cancer cell lines. Bioorg. Med. Chem., 2015, 23, 4303-4310.
[12]
Fan, T.F.; Wu, T.F.; Bu, L.L.; Ma, S.R.; Li, Y.C.; Mao, L.; Sun, Z.J.; Zhang, W.F. Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 59691-59703.
[13]
Dokic, I.; Mairani, A.; Niklas, M.; Zimmermann, F.; Chaudhri, N.; Krunic, D.; Tessonnier, T.; Ferrari, A.; Parodi, K.; Jäkel, O.; Debus, J.; Haberer, T.; Abdollahi, A. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget, 2016, 7, 56676-56689.
[14]
Franke, J.C.; Plötz, M.; Prokop, A.; Geilen, C.C.; Schmalz, H.G.; Eberle, J. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem. Pharmacol., 2010, 79, 575-586.
[15]
He, P.J.; Ge, R.F.; Mao, W.J.; Chung, P.S.; Ahn, J.C.; Wu, H.T. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol. Lett., 2018, 16, 7131-7138.
[16]
Zeng, L.; Li, Y.; Li, T.; Cao, W.; Yi, Y.; Geng, W.; Sun, Z.; Xu, H. Selenium-platinum coordination compounds as novel anticancer drugs: selectively killing cancer cells via a Reactive Oxygen Species (ROS)-mediated apoptosis route. Chem. Asian J., 2014, 9, 2295-2302.
[17]
Woods, D.; Turchi, J. J. Chemotherapy induced DNA damage response: Convergence of drugs and pathways. Cancer Biol. Ther., 2013, 14, 379-389.
[18]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2013.
[19]
Mazzini, G.; Ferrari, C.; Erba, E. Dual excitation multi- fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. Eur. J. Histochem., 2003, 47, 289-298.
[20]
Papagiannaros, A.; Hatziantoniou, S.; Konstantinos, D.; Papaioannou, G.T.; Demetzos, C. A liposomal formulation of doxorubicin, composed of hexadecylphosphocholine (HePC): Physicochemical characterization and cytotoxic activity against human cancer cell lines. Biomed. Pharmacother., 2005, 60, 36-42.
[21]
Ulukaya, E.; Sarimahmut, M.; Cevatemre, B.; Ari, F.; Yerlikaya, A.; Dimas, K. Additive enhancement of apoptosis by TRAIL and fenretinide in metastatic breast cancer cells in vitro. Biomed. Pharmacother., 2014, 68, 477-482.
[22]
Galanski, M.; Jakupec, M.A.; Keppler, B.K. Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr. Med. Chem., 2005, 12, 2075-2094.
[23]
Brabec, V.; Kasparkova, J. Molecular aspects of resistance to antitumor platinum drugs. Drug Resist. Updat., 2002, 5, 147-161.
[24]
McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther., 2009, 8, 10-16.
[25]
Ulukaya, E.; Ari, F.; Dimas, K.; Sarimahmut, M.; Guney, E.; Sakellaridis, N.; Yilmaz, V.T. Cell death-inducing effect of novel palladium(II) and platinum(II) complexes on non-small cell lung cancer cells in vitro. J. Cancer Res. Clin. Oncol., 2011, 137, 1425-1434.
[26]
Cincinelli, R.; Musso, L.; Dallavalle, S.; Artali, R.; Tinelli, S.; Colangelo, D.; Zunino, F.; De Cesare, M.; Beretta, G.L.; Zaffaroni, N. Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents. Eur. J. Med. Chem., 2013, 63, 387-400.
[27]
Gay, M.; Montaña, Á.M.; Batalla, C.; Mesas, J.M.; Alegre, M.T. Design, synthesis and SAR studies of novel 1,2-bis(aminomethyl)cyclohexane platinum(II) complexes with cytotoxic activity. Studies of interaction with DNA of iodinated seven-membered 1,4-diaminoplatinocycles. J. Inorg. Biochem., 2015, 142, 15-27.
[28]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C.P. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184, 39-51.
[29]
van Engeland, M.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 1996, 24, 131-139.
[30]
Wen, J.; You, K.R.; Lee, S.Y.; Song, C.H.; Kim, D.G. Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J. Biol. Chem., 2002, 277, 38954-38964.
[31]
Kim, J.; Yun, M.; Kim, E.O.; Jung, D.B.; Won, G.; Kim, B.; Jung, J.H.; Kim, S.H. Decursin enhances TRAIL-induced apoptosis through oxidative stress mediated- endoplasmic reticulum stress signalling in non-small cell lung cancers. Br. J. Pharmacol., 2016, 173, 1033-1044.
[32]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 19, R453-R462.
[33]
Clingen, P.H.; Wu, J.Y.H.; Miller, J.; Mistry, N.; Chin, F.; Wynne, P.; Prise, K.; Hartley, J.A. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem. Pharmacol., 2008, 76, 19-27.
[34]
Olive, P.L.; Banath, J.P. Kinetics of H2AX phosphorylation after exposure to cisplatin. Cytometry B Clin. Cytom., 2009, 76, 79-90.
[35]
Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 1998, 273, 5858-5868.
[36]
D’Amours, D.; Sallmann, F.R.; Dixit, V.M.; Poirier, G.G. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J. Cell Sci., 2001, 114, 3771-3778.
[37]
Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, 103, 239-252.
[38]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410, 37-40.
[39]
Mehan, S.; Meena, H.; Sharma, D.; Sankhla, R. JNK: A stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J. Mol. Neurosci., 2011, 43, 376-390.
[40]
Yu, R.; Shtil, A.A.; Tan, T.H.; Roninson, I.B.; Kong, A.N. Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett., 1996, 107, 73-81.
[41]
Dhanasekaran, D.N.; Reddy, E.P. JNK Signaling in apoptosis. Oncogene, 2008, 27, 6245-6251.
[42]
Fan, M.; Chambers, T.C. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist. Updat., 2001, 4, 253-267.
[43]
Seok, J.H.; Park, K.A.; Byun, H.S.; Won, M.; Shin, S.; Choi, B.; Lee, H.; Kim, Y.R.; Hong, J.H.; Park, J.; Hur, G.M. Long-term activation of c-Jun N-terminal kinase through receptor interacting protein is associated with DNA damage-induced cell death. Korean J. Physiol. Pharmacol., 2008, 12, 185-191.
[44]
Bhandary, B.; Marahatta, A.; Kim, H.; Chael, H. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci., 2013, 14, 434-456.
[45]
Malhotra, J.D.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal., 2007, 9, 2277-2293.
[46]
Lee, W.J.; Chien, M.H.; Chow, J.M.; Chang, J.L.; Wen, Y.C.; Lin, Y.W.; Cheng, C.W.; Lai, G.M.; Hsiao, M.; Leea, L.M. Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress. Sci. Rep., 2015, 5, 10420.
[47]
Szegezdi, E.; Logue, S.E.; Gorman, A.M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep., 2006, 7, 880-885.
[48]
Oslowski, C.M.; Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol., 2011, 490, 71-92.
[49]
Chaudhari, N.; Talwar, P.; Parimisetty, A.; d’Hellencourt, C.L.; Ravanan, P. A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci., 2014, 8, 213.
[50]
Cheng, Y.; Yang, J.M. Survival and death of endoplasmic-reticulum-stressed cells: Role of autophagy. World J. Biol. Chem., 2011, 2, 226-231.
[51]
Benbrook, D.M.; Long, A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp. Oncol., 2012, 34, 286-297.
[52]
Iwawaki, T.; Hosoda, A.; Okuda, T.; Kamigori, Y.; Nomura-Furuwatari, C.; Kimata, Y.; Tsuru, A.; Kohno, K. Translational control by the er transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol., 2001, 3, 158-164.
[53]
Chen, Y.; Brandizzi, F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol., 2013, 23, 547-555.
[54]
Lee, S.K.; Kim, Y.S. Phosphorylation of eIF2α attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int. J. Oncol., 2013, 42, 810-816.
[55]
Zinszner, H.; Kuroda, M.; Wang, X.; Batchvarova, N.; Lightfoot, R.; Remotti, H.; Stevens, J.L.; Ron, D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev., 1998, 12, 982-995.
[56]
Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11, 381-389.
[57]
McKibbin, C.; Mares, A.; Piacenti, M.; Williams, H.; Roboti, P.; Puumalainen, M.; Callan, A.C.; Lesiak-Mieczkowska, K.; Linder, S.; Harant, H.; High, S.; Flitsch, S.L. Inhibition of protein translocation at the endoplasmic reticulum promotes activation of the unfolded protein response. Biochem. J., 2012, 442, 639-648.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy