Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Thioredoxin, Glutathione and Related Molecules in Tumors of the Nervous System

Author(s): Vasco Branco*, José Pimentel, Maria Alexandra Brito and Cristina Carvalho*

Volume 27, Issue 12, 2020

Page: [1878 - 1900] Pages: 23

DOI: 10.2174/0929867326666190201113004

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Central Nervous System (CNS) tumors have a poor survival prognosis due to their invasive and heterogeneous nature, in addition to the resistance to multiple treatments.

Objective: In this paper, the main aspects of brain tumor biology and pathogenesis are reviewed both for primary tumors of the brain, (i.e., gliomas) and for metastasis from other malignant tumors, namely lung cancer, breast cancer and malignant melanoma which account for a high percentage of overall malignant brain tumors. We review the role of antioxidant systems, namely the thioredoxin and glutathione systems, in the genesis and/or progression of brain tumors.

Methods: Although overexpression of Thioredoxin Reductase (TrxR) and Thioredoxin (Trx) is often linked to increased malignancy rate of brain tumors, and higher expression of Glutathione (GSH) and Glutathione S-Transferases (GST) are associated to resistance to therapy, several knowledge gaps still exist regarding for example, the role of Peroxiredoxins (Prx), and Glutaredoxins (Grx).

Conclusion: Due to their central role in redox homeostasis and ROS scavenging, redox systems are potential targets for new antitumorals and examples of innovative therapeutics aiming at improving success rates in brain tumor treatment are discussed.

Keywords: Brain tumors, thioredoxin, glutathione, glioma, antioxidant systems, central nervous system.

[1]
Schmidt-Hansen, M.; Berendse, S.; Hamilton, W. Symptomatic diagnosis of cancer of the brain and central nervous system in primary care: a systematic review. Fam. Pract., 2015, 32(6), 618-623.
[http://dx.doi.org/10.1093/fampra/cmv075] [PMID: 26467645]
[2]
Jemal, A.; Bray, F.; Forman, D.; O’Brien, M.; Ferlay, J.; Center, M.; Parkin, D.M. Cancer burden in Africa and opportunities for prevention. Cancer, 2012, 118(18), 4372-4384.
[http://dx.doi.org/10.1002/cncr.27410] [PMID: 22252462]
[3]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[4]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[5]
Backos, D.S.; Franklin, C.C.; Reigan, P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmacol., 2012, 83(8), 1005-1012.
[http://dx.doi.org/10.1016/j.bcp.2011.11.016] [PMID: 22138445]
[6]
Bhatia, M.; McGrath, K.L.; Di Trapani, G.; Charoentong, P.; Shah, F.; King, M.M.; Clarke, F.M.; Tonissen, K.F. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol., 2016, 8, 68-78.
[http://dx.doi.org/10.1016/j.redox.2015.12.004] [PMID: 26760912]
[7]
Zhang, P.; Gao, J.; Wang, X.; Wen, W.; Yang, H.; Tian, Y.; Liu, N.; Wang, Z.; Liu, H.; Zhang, Y.; Tu, Y. A novel indication of thioredoxin-interacting protein as a tumor suppressor gene in malignant glioma. Oncol. Lett., 2017, 14(2), 2053-2058.
[http://dx.doi.org/10.3892/ol.2017.6397] [PMID: 28781647]
[8]
McNeill, K.A. Epidemiology of Brain Tumors. Neurol. Clin., 2016, 34(4), 981-998.
[http://dx.doi.org/10.1016/j.ncl.2016.06.014] [PMID: 27720005]
[9]
Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wollinsky, Y.; Kruchko, C. Barnholtz,-Sloan, J. CBTRUS nUnited States in 2007-2011. Neuro-oncol., 2014, 16, 3-18.
[10]
Walsh, K.M.; Ohgaki, H.; Wrensch, M.R. Epidemiology. Handb. Clin. Neurol., 2016, 134, 3-18.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00001-3] [PMID: 26948345]
[11]
Louis, D.N.; Ohgaki, H.; Wiestler, O.; Cavanee, W.K.; Ellison, D.W.; Figarella-Branger, D.; Perry, A. WHO Classification of Tumours of the Central Nervous System, 2016.
[http://dx.doi.org/10.1007/s00401-016-1545-1]
[12]
Kleinschmidt-DeMasters, B.K.; Aisner, D.L.; Birks, D.K.; Foreman, N.K. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am. J. Surg. Pathol., 2013, 37(5), 685-698.
[http://dx.doi.org/10.1097/PAS.0b013e31827f9c5e] [PMID: 23552385]
[13]
Perry, A.; Miller, C.R.; Gujrati, M.; Scheithauer, B.W.; Zambrano, S.C.; Jost, S.C.; Raghavan, R.; Qian, J.; Cochran, E.J.; Huse, J.T.; Holland, E.C.; Burger, P.C.; Rosenblum, M.K. Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases. Brain Pathol., 2009, 19(1), 81-90.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00167.x] [PMID: 18452568]
[14]
Reni, M.; Mazza, E.; Zanon, S.; Gatta, G.; Vecht, C.J. Central nervous system gliomas. Crit. Rev. Oncol. Hematol., 2017, 113, 213-234.
[http://dx.doi.org/10.1016/j.critrevonc.2017.03.021] [PMID: 28427510]
[15]
Claus, E.B. Neurosurgical management of metastases in the central nervous system. Nat. Rev. Clin. Oncol., 2011, 9(2), 79-86.
[http://dx.doi.org/10.1038/nrclinonc.2011.179] [PMID: 22143137]
[16]
Bollig-Fischer, A.; Michelhaugh, S.; Ali-Fehmi, R.; Mittal, S. The molecular genomics of metastatic brain tumours. OA Mol. Oncol., 2013, 1(1), 1.
[http://dx.doi.org/10.13172/2052-9635-1-1-759] [PMID: 25400938]
[17]
Lowery, F.J.; Yu, D. Brain metastasis: Unique challenges and open opportunities. Biochim. Biophys. Acta Rev. Cancer, 2017, 1867(1), 49-57.
[http://dx.doi.org/10.1016/j.bbcan.2016.12.001] [PMID: 27939792]
[18]
Parrish, K.E.; Sarkaria, J.N.; Elmquist, W.F. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin. Pharmacol. Ther., 2015, 97(4), 336-346.
[http://dx.doi.org/10.1002/cpt.71] [PMID: 25669487]
[19]
Wen, P.B.; Loeffler, J. Metastatic brain cancer. Cancer: Principles and Practice of Oncology., 2001, 1947-1956.
[20]
Fink, K.R.; Fink, J.R. Imaging of brain metastases. Surg. Neurol. Int., 2013, 4(Suppl. 4), S209-S219.
[http://dx.doi.org/10.4103/2152-7806.111298] [PMID: 23717792]
[21]
Obenauf, A.C.; Massagué, J. Surviving at a distance: organ-specific metastasis. Trends Cancer, 2015, 1(1), 76-91.
[http://dx.doi.org/10.1016/j.trecan.2015.07.009] [PMID: 28741564]
[22]
Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586), 298-306.
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[23]
Custódio-Santos, T.; Videira, M.; Brito, M.A. Brain metastasization of breast cancer. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 132-147.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.004] [PMID: 28341420]
[24]
Neman, J.; Termini, J.; Wilczynski, S.; Vaidehi, N.; Choy, C.; Kowolik, C.M.; Li, H.; Hambrecht, A.C.; Roberts, E.; Jandial, R. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc. Natl. Acad. Sci. USA, 2014, 111(3), 984-989.
[http://dx.doi.org/10.1073/pnas.1322098111] [PMID: 24395782]
[25]
Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; Cross, J.R.; Massagué, J. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533(7604), 493-498.
[http://dx.doi.org/10.1038/nature18268] [PMID: 27225120]
[26]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[27]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[28]
Smith, J.S.; Chang, E.F.; Lamborn, K.R.; Chang, S.M.; Prados, M.D.; Cha, S.; Tihan, T.; Vandenberg, S.; McDermott, M.W.; Berger, M.S. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J. Clin. Oncol., 2008, 26(8), 1338-1345.
[http://dx.doi.org/10.1200/JCO.2007.13.9337] [PMID: 18323558]
[29]
Soffietti, R.; Baumert, B.C.; Bello, L.; von Deimling, A.; Duffau, H.; Frénay, M.; Grisold, W.; Grant, F.; Hoang-Xuan, K.; Klein, M.; Melin, B.; Rees, J.; Siegal, T.; Smits, A.; Stupp, R.; Wick, W. European Federation of Neurological Societis. Guidelines on management of low-grade gliomas: report of an EFNS-EANG task force. Eur. J. Neurol., 2010, 17, 1124-1133.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03151.x] [PMID: 20718851]
[30]
van den Bent, M.J.; Taphoorn, M.J.; Brandes, A.A.; Menten, J.; Stupp, R.; Frenay, M.; Chinot, O.; Kros, J.M.; van der Rijt, C.C.; Vecht, ChJ.; Allgeier, A.; Gorlia, T. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J. Clin. Oncol., 2003, 21(13), 2525-2528.
[http://dx.doi.org/10.1200/JCO.2003.12.015] [PMID: 12829671]
[31]
Chen, Y.; Hu, F.; Zhou, Y.; Chen, W.; Shao, H.; Zhang, Y. MGMT promoter methylation and glioblastoma prognosis: a systematic review and meta-analysis. Arch. Med. Res., 2013, 44(4), 281-290.
[http://dx.doi.org/10.1016/j.arcmed.2013.04.004] [PMID: 23608672]
[32]
Marko, N.F.; Weil, R.J.; Schroeder, J.L.; Lang, F.F.; Suki, D.; Sawaya, R.E. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J. Clin. Oncol., 2014, 32(8), 774-782.
[http://dx.doi.org/10.1200/JCO.2013.51.8886] [PMID: 24516010]
[33]
Stupp, R.; Hegi, M.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[34]
Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.M.; Barnholtz-Sloan, J.S. Epidemiology of gliomas. Cancer Treat. Res., 2015, 163, 1-14.
[http://dx.doi.org/10.1007/978-3-319-12048-5_1]
[35]
Smith, J.S.; Perry, A.; Borell, T.J.; Lee, H.K.; O’Fallon, J.; Hosek, S.M.; Kimmel, D.; Yates, A.; Burger, P.C.; Scheithauer, B.W.; Jenkins, R.B. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J. Clin. Oncol., 2000, 18(3), 636-645.
[http://dx.doi.org/10.1200/JCO.2000.18.3.636] [PMID: 10653879]
[36]
Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.; Kosel, M.L.; Smirnov, I.V.; Sarkar, G.; Caron, A.A.; Kollmeyer, T.M.; Praska, C.E.; Chada, A.R.; Halder, C.; Hansen, H.M.; McCoy, L.S.; Bracci, P.M.; Marshall, R.; Zheng, S.; Reis, G.F.; Pico, A.R.; O’Neill, B.P.; Buckner, J.C.; Giannini, C.; Huse, J.T.; Perry, A.; Tihan, T.; Berger, M.S.; Chang, S.M.; Prados, M.D.; Wiemels, J.; Wiencke, J.K.; Wrensch, M.R.; Jenkins, R.B. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N. Engl. J. Med., 2015, 372(26), 2499-2508.
[http://dx.doi.org/10.1056/NEJMoa1407279] [PMID: 26061753]
[37]
Bauchet, L.; Mathieu-Daudé, H.; Fabbro-Peray, P.; Rigau, V.; Fabbro, M.; Chinot, O.; Pallusseau, L.; Carnin, C.; Lainé, K.; Schlama, A.; Thiebaut, A.; Patru, M.C.; Bauchet, F.; Lionnet, M.; Wager, M.; Faillot, T.; Taillandier, L.; Figarella-Branger, D.; Capelle, L.; Loiseau, H.; Frappaz, D.; Campello, C.; Kerr, C.; Duffau, H.; Reme-Saumon, M.; Trétarre, B.; Daures, J.P.; Henin, D.; Labrousse, F.; Menei, P.; Honnorat, J. ociété Française de Neurochirurgie (SFNC); Club de Neuro-Oncologie of the Société Française de Neurochirurgie (CNO-SFNC); Société Française de Neuropathologie (SFNP); Association des Neuro- Oncologues d’Expression Française (ANOCEF). Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004 Neuro-oncol., 2010, 12(7), 725-735.
[http://dx.doi.org/10.1093/neuonc/noq030] [PMID: 20364023]
[38]
Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; Hess, K.; Michael, C.; Miller, D.; Sawaya, R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg., 2001, 95(2), 190-198.
[http://dx.doi.org/10.3171/jns.2001.95.2.0190] [PMID: 11780887]
[39]
Sá-Pereira, I.; Brites, D.; Brito, M.A. Neurovascular unit: a focus on pericytes. Mol. Neurobiol., 2012, 45(2), 327-347.
[http://dx.doi.org/10.1007/s12035-012-8244-2] [PMID: 22371274]
[40]
Cardoso, F.L.; Brites, D.; Brito, M.A. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res. Brain Res. Rev., 2010, 64(2), 328-363.
[http://dx.doi.org/10.1016/j.brainresrev.2010.05.003] [PMID: 20685221]
[41]
Eichler, A.F.; Kuter, I.; Ryan, P.; Schapira, L.; Younger, J.; Henson, J.W. Survival in patients with brain metastases from breast cancer: the importance of HER-2 status. Cancer, 2008, 112(11), 2359-2367.
[http://dx.doi.org/10.1002/cncr.23468] [PMID: 18361426]
[42]
Ali, A.; Goffin, J.R.; Arnold, A.; Ellis, P.M. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr. Oncol., 2013, 20(4), e300-e306.
[http://dx.doi.org/10.3747/co.20.1481] [PMID: 23904768]
[43]
Bottoni, U.; Clerico, R.; Paolino, G.; Ambrifi, M.; Corsetti, P.; Calvieri, S. Predictors and survival in patients with melanoma brain metastases. Med. Oncol., 2013, 30(1), 466.
[http://dx.doi.org/10.1007/s12032-013-0466-2] [PMID: 23377924]
[44]
Qian, M.; Ma, M.W.; Fleming, N.H.; Lackaye, D.J.; Hernando, E.; Osman, I.; Shao, Y. Clinicopathological characteristics at primary melanoma diagnosis as risk factors for brain metastasis. Melanoma Res., 2013, 23(6), 461-467.
[http://dx.doi.org/10.1097/CMR.0000000000000015] [PMID: 24165034]
[45]
Holmgren, A. Thioredoxin. Annu. Rev. Biochem., 1985, 54, 237-271.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.001321] [PMID: 3896121]
[46]
Nakamura, H.; Nakamura, K.; Yodoi, J. Redox regulation of cellular activation. Annu. Rev. Immunol., 1997, 15(1), 351-369.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.351] [PMID: 9143692]
[47]
Lillig, C.H.; Holmgren, A. Thioredoxin and related molecules--from biology to health and disease. Antioxid. Redox Signal., 2007, 9(1), 25-47.
[http://dx.doi.org/10.1089/ars.2007.9.25] [PMID: 17115886]
[48]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[49]
Joshi, D.; Kumar, M.D.; Kumar, S.A.; Sangeeta, S. Reversal of methylmercury-induced oxidative stress, lipid peroxidation, and DNA damage by the treatment of N-acetyl cysteine: a protective approach. J. Environ. Pathol. Toxicol. Oncol., 2014, 33(2), 167-182.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014010291] [PMID: 24941299]
[50]
Mustacich, D.; Powis, G. Thioredoxin reductase. Biochem. J., 2000, 346(Pt 1), 1-8.
[http://dx.doi.org/10.1042/bj3460001] [PMID: 10657232]
[51]
Sandalova, T.; Zhong, L.; Lindqvist, Y.; Holmgren, A.; Schneider, G. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9533-9538.
[http://dx.doi.org/10.1073/pnas.171178698] [PMID: 11481439]
[52]
Zhong, L.; Arnér, E.S.J.; Ljung, J.; Åslund, F.; Holmgren, A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J. Biol. Chem., 1998, 273(15), 8581-8591.
[http://dx.doi.org/10.1074/jbc.273.15.8581] [PMID: 9535831]
[53]
Zhong, L.; Arnér, E.S.; Holmgren, A. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 5854-5859.
[http://dx.doi.org/10.1073/pnas.100114897] [PMID: 10801974]
[54]
Arnér, E.S.J.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[55]
Smeets, A.; Evrard, C.; Landtmeters, M.; Marchand, C.; Knoops, B.; Declercq, J-P. Crystal structures of oxidized and reduced forms of human mitochondrial thioredoxin 2. Protein Sci., 2005, 14(10), 2610-2621.
[http://dx.doi.org/10.1110/ps.051632905] [PMID: 16195549]
[56]
Dixit, D.; Sharma, V.; Ghosh, S.; Koul, N.; Mishra, P.K.; Sen, E. Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radic. Biol. Med., 2009, 47(4), 364-374.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.04.031] [PMID: 19409983]
[57]
Järvelä, S.; Nordfors, K.; Jansson, M.; Haapasalo, J.; Helén, P.; Paljärvi, L.; Kalimo, H.; Kinnula, V.; Soini, Y.; Haapasalo, H. Decreased expression of antioxidant enzymes is associated with aggressive features in ependymomas. J. Neurooncol., 2008, 90(3), 283-291.
[http://dx.doi.org/10.1007/s11060-008-9658-6] [PMID: 18682894]
[58]
Horecker, B.L. The pentose phosphate pathway. J. Biol. Chem., 2002, 277(50), 47965-47971.
[http://dx.doi.org/10.1074/jbc.X200007200] [PMID: 12403765]
[59]
Rhee, S.G.; Chae, H.Z.; Kim, K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med., 2005, 38(12), 1543-1552.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.02.026] [PMID: 15917183]
[60]
Lu, J.; Chew, E-H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
[http://dx.doi.org/10.1073/pnas.0701549104] [PMID: 17640917]
[61]
Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol., 2000, 62(6), 649-671.
[http://dx.doi.org/10.1016/S0301-0082(99)00060-X] [PMID: 10880854]
[62]
Lopert, P.; Day, B.J.; Patel, M. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One, 2012, 7(11)e50683
[http://dx.doi.org/10.1371/journal.pone.0050683] [PMID: 23226354]
[63]
Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid. Redox Signal., 2017, 27(13), 989-1010.
[http://dx.doi.org/10.1089/ars.2016.6925] [PMID: 28443683]
[64]
Dringen, R.; Hirrlinger, J. Glutathione pathways in the brain. Biol. Chem., 2003, 384(4), 505-516.
[http://dx.doi.org/10.1515/BC.2003.059] [PMID: 12751781]
[65]
Meister, A. Metabolism and functions of glutathione. Trends Biochem. Sci., 1981, 6, 231-234.
[http://dx.doi.org/10.1016/0968-0004(81)90084-0]
[66]
Aoyama, K.; Watabe, M.; Nakaki, T. Regulation of neuronal glutathione synthesis. J. Pharmacol. Sci., 2008, 108(3), 227-238.
[http://dx.doi.org/10.1254/jphs.08R01CR] [PMID: 19008644]
[67]
Giustarini, D.; Colombo, G.; Garavaglia, M.L.; Astori, E.; Portinaro, N.M.; Reggiani, F.; Badalamenti, S.; Aloisi, A.M.; Santucci, A.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic. Biol. Med., 2017, 112, 360-375.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.008] [PMID: 28807817]
[68]
Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J., 2001, 360(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3600001] [PMID: 11695986]
[69]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[70]
Pinarbasi, H.; Silig, Y.; Gurelik, M. Genetic Polymorphisms of GSTs and Their Association with Primary Brain Tumor Incidence., 2005, 156, 144-149.
[71]
Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta, 2013, 1830(5), 3289-3303.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.020] [PMID: 23201771]
[72]
Lillig, C.H.; Berndt, C.; Holmgren, A. Glutaredoxin systems. Biochim. Biophys. Acta, 2008, 1780(11), 1304-1317.
[http://dx.doi.org/10.1016/j.bbagen.2008.06.003] [PMID: 18621099]
[73]
Arnér, E.S.; Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol., 2006, 16(6), 420-426.
[http://dx.doi.org/10.1016/j.semcancer.2006.10.009] [PMID: 17092741]
[74]
Haapasalo, H.; Kyläniemi, M.; Paunul, N.; Kinnula, V.L.; Soini, Y. Expression of antioxidant enzymes in astrocytic brain tumors. Brain Pathol., 2003, 13(2), 155-164.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00015.x] [PMID: 12744469]
[75]
Urig, S.; Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol., 2006, 16(6), 452-465.
[http://dx.doi.org/10.1016/j.semcancer.2006.09.004] [PMID: 17056271]
[76]
Yokomizo, A.; Ono, M.; Nanri, H.; Makino, Y.; Ohga, T.; Wada, M.; Okamoto, T.; Yodoi, J.; Kuwano, M.; Kohno, K. Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res., 1995, 55(19), 4293-4296.
[PMID: 7671238]
[77]
Kemerdere, R.; Kacira, T.; Hanimoglu, H.; Kucur, M.; Tanriverdi, T.; Canbaz, B. Tissue and plasma thioredoxin reductase expressions in patients with glioblastoma multiforme. J. Neurol. Surg. A Cent. Eur. Neurosurg., 2013, 74(4), 234-238.
[http://dx.doi.org/10.1055/s-0032-1333422] [PMID: 23512591]
[78]
Esen, H.; Erdi, F.; Kaya, B.; Feyzioglu, B.; Keskin, F.; Demir, L.S. Tissue thioredoxin reductase-1 expression in astrocytomas of different grades. J. Neurooncol., 2015, 121(3), 451-458.
[http://dx.doi.org/10.1007/s11060-014-1661-5] [PMID: 25391969]
[79]
Esen, H.; Feyzioglu, B.; Erdi, F.; Keskin, F.; Kaya, B.; Demir, L.S. High thioredoxin reductase 1 expression in meningiomas undergoing malignant progression. Brain Tumor Pathol., 2015, 32(3), 195-201.
[http://dx.doi.org/10.1007/s10014-015-0212-x] [PMID: 25592259]
[80]
Witte, A.B.; Anestål, K.; Jerremalm, E.; Ehrsson, H.; Arnér, E.S.J. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic. Biol. Med., 2005, 39(5), 696-703.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.025] [PMID: 16085187]
[81]
Wen, P.Y.; Kesari, S. Malignant gliomas. Curr. Neurol. Neurosci. Rep., 2004, 4(3), 218-227.
[http://dx.doi.org/10.1007/s11910-004-0042-4] [PMID: 15102348]
[82]
Parney, I.F.; Chang, S.M. Current chemotherapy for glioblastoma. Cancer J., 2003, 9(3), 149-156.
[http://dx.doi.org/10.1097/00130404-200305000-00003] [PMID: 12952300]
[83]
Rigobello, M. P.; Messori, L.; Marcon, G.; Agostina Cinellu, M.; Bragadin, M.; Folda, A.; Scutari, G.; Bindoli, A. Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J. Inorg., Biochem., 2004, 98(10 SPEC. ISS.), 1634-1641
[84]
Carvalho, C.M.L.; Chew, E.H.; Hashemy, S.I.; Lu, J.; Holmgren, A. Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J. Biol. Chem., 2008, 283(18), 11913-11923.
[http://dx.doi.org/10.1074/jbc.M710133200] [PMID: 18321861]
[85]
Hansen, J.M.; Zhang, H.; Jones, D.P. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic. Biol. Med., 2006, 40(1), 138-145.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.023] [PMID: 16337887]
[86]
Branco, V.; Caito, S.; Farina, M.; Teixeira da Rocha, J.; Aschner, M.; Carvalho, C. Biomarkers of mercury toxicity: Past, present, and future trends. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(3), 119-154.
[http://dx.doi.org/10.1080/10937404.2017.1289834] [PMID: 28379072]
[87]
Deponte, M.; Urig, S.; Arscott, L.D.; Fritz-Wolf, K.; Réau, R.; Herold-Mende, C.; Koncarevic, S.; Meyer, M.; Davioud-Charvet, E.; Ballou, D.P.; Williams, C.H., Jr; Becker, K. Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase. J. Biol. Chem., 2005, 280(21), 20628-20637.
[http://dx.doi.org/10.1074/jbc.M412519200] [PMID: 15792952]
[88]
Jortzik, E.; Farhadi, M.; Ahmadi, R.; Tóth, K.; Lohr, J.; Helmke, B.M.; Kehr, S.; Unterberg, A.; Ott, I.; Gust, R.; Deborde, V.; Davioud-Charvet, E.; Réau, R.; Becker, K.; Herold-Mende, C. Antiglioma activity of GoPI-sugar, a novel gold(I)-phosphole inhibitor: chemical synthesis, mechanistic studies, and effectiveness in vivo. Biochim. Biophys. Acta, 2014, 1844(8), 1415-1426.
[http://dx.doi.org/10.1016/j.bbapap.2014.01.006] [PMID: 24440405]
[89]
Ferraz, K.S.O.; Da Silva, J.G.; Costa, F.M.; Mendes, B.M.; Rodrigues, B.L.; dos Santos, R.G.; Beraldo, H. N(4)-tolyl-2-acetylpyridine thiosemicarbazones and their platinum(II,IV) and gold(III) complexes: cytotoxicity against human glioma cells and studies on the mode of action. Biometals, 2013, 26(5), 677-691.
[http://dx.doi.org/10.1007/s10534-013-9639-x] [PMID: 23749148]
[90]
Becker, K.; Herold-Mende, C.; Park, J.J.; Lowe, G.; Schirmer, R.H. Human thioredoxin reductase is efficiently inhibited by (2,2‘:6‘,2‘ ‘-terpyridine)platinum(ii) complexes. Possible implications for a novel antitumor strategy. J. Med. Chem., 2001, 44(17), 2784-2792.
[http://dx.doi.org/10.1021/jm001014i] [PMID: 11495589]
[91]
Koncarevic, S.; Urig, S.; Steiner, K.; Rahlfs, S.; Herold-Mende, C.; Sueltmann, H.; Becker, K. Differential genomic and proteomic profiling of glioblastoma cells exposed to terpyridineplatinum(II) complexes. Free Radic. Biol. Med., 2009, 46(8), 1096-1108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.013] [PMID: 19439228]
[92]
Ahmadi, R.; Urig, S.; Hartmann, M.; Helmke, B.M.; Koncarevic, S.; Allenberger, B.; Kienhoefer, C.; Neher, M.; Steiner, H.H.; Unterberg, A.; Herold-Mende, C.; Becker, K. Antiglioma activity of 2,2′:6′,2"-terpyridineplatinum(II) complexes in a rat model--effects on cellular redox metabolism. Free Radic. Biol. Med., 2006, 40(5), 763-778.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.031] [PMID: 16520229]
[93]
Beauchamp, E.M.; Uren, A. A new era for an ancient drug: arsenic trioxide and Hedgehog signaling. Vitam. Horm., 2012, 88, 333-354.
[http://dx.doi.org/10.1016/B978-0-12-394622-5.00015-8] [PMID: 22391311]
[94]
Hashemy, S.I.; Ungerstedt, J.S.; Zahedi Avval, F.; Holmgren, A. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J. Biol. Chem., 2006, 281(16), 10691-10697.
[http://dx.doi.org/10.1074/jbc.M511373200] [PMID: 16481328]
[95]
Miklossy, G.; Youn, U.J.; Yue, P.; Zhang, M.; Chen, C-H.; Hilliard, T.S.; Paladino, D.; Li, Y.; Choi, J.; Sarkaria, J.N.; Kawakami, J.K.; Wongwiwatthananukit, S.; Chen, Y.; Sun, D.; Chang, L.C.; Turkson, J. Hirsutinolide Series Inhibit Stat3 Activity, Alter GCN1, MAP1B, Hsp105, G6PD, Vimentin, TrxR1, and Importin α-2 Expression, and Induce Antitumor Effects against Human Glioma. J. Med. Chem., 2015, 58(19), 7734-7748.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00686] [PMID: 26331426]
[96]
Zhang, J.; Yao, J.; Peng, S.; Li, X.; Fang, J. Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(1), 129-138.
[http://dx.doi.org/10.1016/j.bbadis.2016.10.019] [PMID: 27777067]
[97]
Chen, Y-C.; Prabhu, K.S.; Mastro, A.M. Is selenium a potential treatment for cancer metastasis? Nutrients, 2013, 5(4), 1149-1168.
[http://dx.doi.org/10.3390/nu5041149] [PMID: 23567478]
[98]
Rooprai, H.K.; Kyriazis, I.; Nuttall, R.K.; Edwards, D.R.; Zicha, D.; Aubyn, D.; Davies, D.; Gullan, R.; Pilkington, G.J. Inhibition of invasion and induction of apoptosis by selenium in human malignant brain tumour cells in vitro. Int. J. Oncol., 2007, 30(5), 1263-1271.
[http://dx.doi.org/10.3892/ijo.30.5.1263] [PMID: 17390030]
[99]
Ramis, G.; Thomàs-Moyà, E.; Fernández de Mattos, S.; Rodríguez, J.; Villalonga, P. EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS One, 2012, 7(6)e38770
[http://dx.doi.org/10.1371/journal.pone.0038770] [PMID: 22701710]
[100]
Fan, C.D.; Fu, X.Y.; Zhang, Z.Y.; Cao, M.Z.; Sun, J.Y.; Yang, M.F.; Fu, X.T.; Zhao, S.J.; Shao, L.R.; Zhang, H.F.; Yang, X.Y.; Sun, B.L. Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk. Sci. Rep., 2017, 7(1), 6465.
[http://dx.doi.org/10.1038/s41598-017-06979-2] [PMID: 28743999]
[101]
Järvelä, S.; Bragge, H.; Paunu, N.; Järvelä, T.; Paljärvi, L.; Kalimo, H.; Helén, P.; Kinnula, V.; Soini, Y.; Haapasalo, H. Antioxidant enzymes in oligodendroglial brain tumors: association with proliferation, apoptotic activity and survival. J. Neurooncol., 2006, 77(2), 131-140.
[http://dx.doi.org/10.1007/s11060-006-9118-0] [PMID: 16292483]
[102]
Sharma, V.; Joseph, C.; Ghosh, S.; Agarwal, A.; Mishra, M.K.; Sen, E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol. Cancer Ther., 2007, 6(9), 2544-2553.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0788] [PMID: 17876051]
[103]
Agarwal, A.; Sharma, V.; Tewari, R.; Koul, N.; Joseph, C.; Sen, E. Molecular Med. Rep. Mol. Med. Rep., 2008, 1(4), 511-515.
[PMID: 21479441]
[104]
Yacoub, A.; Hamed, H.A.; Allegood, J.; Mitchell, C.; Spiegel, S.; Lesniak, M.S.; Ogretmen, B.; Dash, R.; Sarkar, D.; Broaddus, W.C.; Grant, S.; Curiel, D.T.; Fisher, P.B.; Dent, P. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res., 2010, 70(3), 1120-1129.
[105]
Tanaka, T.; Hosoi, F.; Yamaguchi-Iwai, Y.; Nakamura, H.; Masutani, H.; Ueda, S.; Nishiyama, A.; Takeda, S.; Wada, H.; Spyrou, G.; Yodoi, J. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J., 2002, 21(7), 1695-1703.
[http://dx.doi.org/10.1093/emboj/21.7.1695] [PMID: 11927553]
[106]
Choksi, S.; Lin, Y.; Pobezinskaya, Y.; Chen, L.; Park, C.; Morgan, M.; Li, T.; Jitkaew, S.; Cao, X.; Kim, Y-S.; Kim, H-S.; Levitt, P.; Shih, G.; Birre, M.; Deng, C-X.; Liu, Z.G.A.A. A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol. Cell, 2011, 42(5), 597-609.
[http://dx.doi.org/10.1016/j.molcel.2011.03.030] [PMID: 21658601]
[107]
Shen, X.; Burguillos, M.A.; Osman, A.M.; Frijhoff, J.; Carrillo-Jiménez, A.; Kanatani, S.; Augsten, M.; Saidi, D.; Rodhe, J.; Kavanagh, E.; Rongvaux, A.; Rraklli, V.; Nyman, U.; Holmberg, J.; Östman, A.; Flavell, R.A.; Barragan, A.; Venero, J.L.; Blomgren, K.; Joseph, B. Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nat. Immunol., 2016, 17(11), 1282-1290.
[http://dx.doi.org/10.1038/ni.3545] [PMID: 27618552]
[108]
Shen, X.; Burguillos, M.A.; Joseph, B. Guilt by association, caspase-3 regulates microglia polarization. Cell Cycle, 2017, 16(4), 306-307.
[http://dx.doi.org/10.1080/15384101.2016.1254979] [PMID: 27830972]
[109]
Zhang, H.; Gu, C.; Yu, J.; Wang, Z.; Yuan, X.; Yang, L.; Wang, J.; Jia, Y.; Liu, J.; Liu, F. Radiosensitization of glioma cells by TP53-induced glycolysis and apoptosis regulator knockdown is dependent on thioredoxin-1 nuclear translocation. Free Radic. Biol. Med., 2014, 69, 239-248.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.034] [PMID: 24509157]
[110]
Zhang, Y.; Chen, F.; Tai, G.; Wang, J.; Shang, J.; Zhang, B.; Wang, P.; Huang, B.; Du, J.; Yu, J.; Zhang, H.; Liu, F. TIGAR knockdown radiosensitizes TrxR1-overexpressing glioma in vitro and in vivo via inhibiting Trx1 nuclear transport. Sci. Rep., 2017, 7, 42928.
[http://dx.doi.org/10.1038/srep42928] [PMID: 28338004]
[111]
Nordfors, K.; Haapasalo, J.; Helén, P.; Paetau, A.; Paljärvi, L.; Kalimo, H.; Kinnula, V.L.; Soini, Y.; Haapasalo, H. Peroxiredoxins and antioxidant enzymes in pilocytic astrocytomas. Clin. Neuropathol., 2007, 26(5), 210-218.
[http://dx.doi.org/10.5414/NPP26210] [PMID: 17907597]
[112]
Gamcsik, M.P.; Kasibhatla, M.S.; Teeter, S.D.; Colvin, O.M. Glutathione levels in human tumors. Biomarkers, 2012, 17(8), 671-691.
[http://dx.doi.org/10.3109/1354750X.2012.715672] [PMID: 22900535]
[113]
Bogosavljević, V.; Bajčetić, M.; Spasojević, I. Comparative analysis of antioxidative systems in malignant and benign brain tumours. Redox Rep., 2015, 20(2), 69-74.
[http://dx.doi.org/10.1179/1351000214Y.0000000106] [PMID: 25247681]
[114]
Shen, K.K.; Ji, L.L.; Chen, Y.; Yu, Q.M.; Wang, Z.T. Influence of glutathione levels and activity of glutathione-related enzymes in the brains of tumor-bearing mice. Biosci. Trends, 2011, 5(1), 30-37.
[http://dx.doi.org/10.5582/bst.2011.v5.1.30] [PMID: 21422598]
[115]
Najim, N.; Podmore, I.D.; McGown, A.; Estlin, E.J. Methionine restriction reduces the chemosensitivity of central nervous system tumour cell lines. Anticancer Res., 2009, 29(8), 3103-3108.
[PMID: 19661322]
[116]
Dukhande, V.V.; Kawikova, I.; Bothwell, A.L.M.; Lai, J.C.K. Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis, 2013, 18(6), 702-712.
[http://dx.doi.org/10.1007/s10495-013-0836-4] [PMID: 23494481]
[117]
Friedman, H.S.; Colvin, O.M.; Kaufmann, S.H.; Ludeman, S.M.; Bullock, N.; Bigner, D.D.; Griffith, O.W. Cyclophosphamide resistance in medulloblastoma. Cancer Res., 1992, 52(19), 5373-5378.
[PMID: 1356617]
[118]
Kohsaka, S.; Takahashi, K.; Wang, L.; Tanino, M.; Kimura, T.; Nishihara, H.; Tanaka, S. Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma. Cancer Lett., 2013, 331(1), 68-75.
[http://dx.doi.org/10.1016/j.canlet.2012.12.005] [PMID: 23246370]
[119]
Sontheimer, H. A role for glutamate in growth and invasion of primary brain tumors. J. Neurochem., 2008, 105(2), 287-295.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05301.x] [PMID: 18284616]
[120]
Robert, S.M.; Ogunrinu-Babarinde, T.; Holt, K.T.; Sontheimer, H. Role of glutamate transporters in redox homeostasis of the brain. Neurochem. Int., 2014, 73(1), 181-191.
[http://dx.doi.org/10.1016/j.neuint.2014.01.001] [PMID: 24418113]
[121]
Neuwelt, A.J.; Nguyen, T.; Wu, Y.J.; Donson, A.M.; Vibhakar, R.; Venkatamaran, S.; Amani, V.; Neuwelt, E.A.; Rapkin, L.B.; Foreman, N.K. Preclinical high-dose acetaminophen with N-acetylcysteine rescue enhances the efficacy of cisplatin chemotherapy in atypical teratoid rhabdoid tumors. Pediatr. Blood Cancer, 2014, 61(1), 120-127.
[http://dx.doi.org/10.1002/pbc.24602] [PMID: 23956023]
[122]
Dalle-Donne, I.; Rossi, R.; Colombo, G.; Giustarini, D.; Milzani, A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci., 2009, 34(2), 85-96.
[http://dx.doi.org/10.1016/j.tibs.2008.11.002] [PMID: 19135374]
[123]
Seo, M.; Lee, Y.H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J. Mol. Biol., 2014, 426(4), 830-842.
[http://dx.doi.org/10.1016/j.jmb.2013.11.021] [PMID: 24295899]
[124]
Butturini, E.; Carcereri de Prati, A.; Chiavegato, G.; Rigo, A.; Cavalieri, E.; Darra, E.; Mariotto, S. Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic. Biol. Med., 2013, 65, 1322-1330.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.09.015] [PMID: 24095958]
[125]
Landi, S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat. Res., 2000, 463(3), 247-283.
[http://dx.doi.org/10.1016/S1383-5742(00)00050-8] [PMID: 11018744]
[126]
Lo, H.W.; Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 367-374.
[http://dx.doi.org/10.1016/j.coph.2007.06.009] [PMID: 17681492]
[127]
Calatozzolo, C.; Pollo, B.; Botturi, A.; Dinapoli, L.; Carosi, M.; Salmaggi, A.; Maschio, M. Multidrug resistance proteins expression in glioma patients with epilepsy. J. Neurooncol., 2012, 110(1), 129-135.
[http://dx.doi.org/10.1007/s11060-012-0946-9] [PMID: 22832898]
[128]
Calatozzolo, C.; Gelati, M.; Ciusani, E.; Sciacca, F.L.; Pollo, B.; Cajola, L.; Marras, C.; Silvani, A.; Vitellaro-Zuccarello, L.; Croci, D.; Boiardi, A.; Salmaggi, A. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J. Neurooncol., 2005, 74(2), 113-121.
[http://dx.doi.org/10.1007/s11060-004-6152-7] [PMID: 16193381]
[129]
Wahid, M.; Mahjabeen, I.; Baig, R. M.; Akhtar, M. Expression of CYP1A1 and GSTP1 in human brain tumor tissues in pakistan. . 2013, 14, 7187-7191.,
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7187]
[130]
Nielsen, S. S.; Mueller, B. A.; Preston-martin, S.; Farin, F. M.; Holly, E. A.; Mckean-cowdin, R. Childhood brain tumors and maternal cured meat consumption in pregnancy: differential effect by glutathione s -Transferases. 2011, 2413-2420.
[http://dx.doi.org//10.1158/1055-9965.EPI-11-01] [PMID: 21914837]
[131]
Schwartzbaum, J.A.; Ahlbom, A.; Lönn, S.; Warholm, M.; Rannug, A.; Auvinen, A.; Christensen, H.C.; Henriksson, R.; Johansen, C.; Lindholm, C.; Malmer, B.; Salminen, T.; Schoemaker, M.J.; Swerdlow, A.J.; Feychting, M. An international case-control study of glutathione transferase and functionally related polymorphisms and risk of primary adult brain tumors. Cancer Epidemiol. Biomarkers Prev., 2007, 16(3), 559-565.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0918] [PMID: 17372252]
[132]
Barahmani, N.; Carpentieri, S.; Li, X.N.; Wang, T.; Cao, Y.; Howe, L.; Kilburn, L.; Chintagumpala, M.; Lau, C.; Okcu, M.F. Glutathione S-transferase M1 and T1 polymorphisms may predict adverse effects after therapy in children with medulloblastoma. Neuro-oncol., 2009, 11(3), 292-300.
[http://dx.doi.org/10.1215/15228517-2008-089] [PMID: 18952980]
[133]
De Roos, A.J.; Rothman, N.; Inskip, P.D.; Linet, M.S.; Shapiro, W.R.; Selker, R.G.; Fine, H.A.; Black, P.M.; Pittman, G.S.; Bell, D.A. Genetic polymorphisms in GSTM1, -P1, -T1, and CYP2E1 and the risk of adult brain tumors. Cancer Epidemiol. Biomarkers Prev., 2003, 12(1), 14-22.
[PMID: 12540498]
[134]
Ezer, R.; Alonso, M.; Pereira, E.; Kim, M.; Allen, J.C.; Miller, D.C.; Newcomb, E.W. Identification of Glutathione S-Transferase; GST, 2002, pp. 123-134.
[135]
Kilburn, L.; Okcu, M. F.; Wang, T.; Cao, Y.; Renfro-spelman, A. Glutathione S-Transferase polymorphisms are associated with survival in anaplastic glioma patients., 2010, 2242-2249.
[http://dx.doi.org/10.1002/cncr.25006] [PMID: 20187096]
[136]
Okcu, M. F.; Selvan, M.; Wang, L.; Stout, L.; Erana, R.; Airewele, G.; Adatto, P.; Hess, K.; Ali-osman, F.; Groves, M.; Yung, A. W. K.; Levin, V. A.; Wei, Q.; Bondy, M. Glutathione S -Transferase polymorphisms and survival in primary malignant glioma. 2004, 10(713), 2618-2625
[137]
Wrensch, M.; Kelsey, K.T.; Liu, M.; Miike, R.; Moghadassi, M.; Aldape, K.; McMillan, A.; Wiencke, J.K. Glutathione-S-transferase variants and adult glioma. Cancer Epidemiol. Biomarkers Prev., 2004, 13(3), 461-467.
[PMID: 15006924]
[138]
Sima, X.; Zhong, W.; Liu, J.; You, C. Lack of association between GSTM1 and GSTT1 polymorphisms and brain tumour risk. 2012, 13, 325-328,
[http://dx.doi.org/10.7314/APJCP.2012.13.1.325] [PMID: 22502694]
[139]
Fan, Z.; Wu, Y.; Shen, J.; Zhan, R. Glutathione S-transferase M1, T1, and P1 polymorphisms and risk of glioma: a meta-analysis. Mol. Biol. Rep., 2013, 40(2), 1641-1650.
[http://dx.doi.org/10.1007/s11033-012-2213-8] [PMID: 23079710]
[140]
Yao, L.; Ji, G.; Gu, A.; Zhao, P.; Liu, N. An updated pooled analysis of glutathione S-transferase genotype polymorphisms and risk of adult gliomas. Asian Pac. J. Cancer Prev., 2012, 13(1), 157-163.
[http://dx.doi.org/10.7314/APJCP.2012.13.1.157] [PMID: 22502660]
[141]
Zhang, B.; Wang, J.; Niu, H.; Li, Y.; Yuan, F.; Tian, Y.; Zhou, F.; Hao, Z.; Zheng, Y.; Li, Q.; Wang, W. Association between glutathione S-transferase T1 null genotype and glioma susceptibility: a meta-analysis. Tumour Biol., 2014, 35(3), 2081-2086.
[http://dx.doi.org/10.1007/s13277-013-1276-z] [PMID: 24122206]
[142]
Geng, P.; Li, J.; Wang, N.; Ou, J. Genetic contribution of polymorphisms in glutathione s-transferases to brain tumor risk., 2016, 1730-1740.
[http://dx.doi.org/10.1007/s12035-015-9097-2]
[143]
Ding, H.; Liu, W.; Yu, X.; Wang, L.; Shao, L.; Yi, W. Risk association of meningiomas with MTHFR C677T and GSTs polymorphisms : A Meta-Analysis., 2014. 7(11) 3904-3914
[144]
Diedrich, A.; Bock, H.C.; König, F.; Schulz, T.G.; Ludwig, H.C.; Herken, R.; Quondamatteo, F. Expression of glutathione S-transferase T1 (GSTT1) in human brain tumours. Histol. Histopathol., 2006, 21(11), 1199-1207.
[PMID: 16874663]
[145]
Mousseau, M.; Chauvin, C.; Nissou, M.F.; Chaffanet, M.; Plantaz, D.; Pasquier, B.; Schaerer, R.; Benabid, A. A study of the expression of four chemoresistance-related genes in human primary and metastatic brain tumours. Eur. J. Cancer, 1993, 29A(5), 753-759.
[http://dx.doi.org/10.1016/S0959-8049(05)80361-2] [PMID: 8385972]
[146]
Schipper, D.; Wagenmans, M.; Wagener, D.; Peters, W. Glutathione S-transferases and cancer. Int. J. Oncol., 1997, 10(6), 1261-1264.
[PMID: 21533514]
[147]
Jedlitschky, G.; Leier, I.; Buchholz, U.; Center, M.; Keppler, D. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res., 1994, 54(18), 4833-4836.
[PMID: 7915193]
[148]
Kogias, E.; Osterberg, N.; Baumer, B.; Psarras, N.; Koentges, C.; Papazoglou, A.; Saavedra, J.E.; Keefer, L.K.; Weyerbrock, A. Growth-inhibitory and chemosensitizing effects of the glutathione-S-transferase-π-activated nitric oxide donor PABA/NO in malignant gliomas. Int. J. Cancer, 2012, 130(5), 1184-1194.
[http://dx.doi.org/10.1002/ijc.26106] [PMID: 21455987]
[149]
Winter, S.; Strik, H.; Rieger, J.; Beck, J.; Meyermann, R.; Weller, M. Glutathione S-transferase and drug sensitivity in malignant glioma., J. Neurol. Sci., 2000, 179((S 1-2)), 115-121,
[150]
Bhatti, P.; Stewart, P.A.; Hutchinson, A.; Rothman, N.; Linet, M.S.; Inskip, P.D.; Rajaraman, P. Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol. Biomarkers Prev., 2009, 18(6), 1841-1848.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0197] [PMID: 19505917]
[151]
Hu, Y.J.; Diamond, A.M. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res., 2003, 63(12), 3347-3351.
[PMID: 12810669]
[152]
Zhang, Z.H.; Kimura, M.; Itokawa, Y. Inhibitory effect of selenium and change of glutathione peroxidase activity on rat glioma. Biol. Trace Elem. Res., 1996, 55(1-2), 31-38.
[http://dx.doi.org/10.1007/BF02784166] [PMID: 8971352]
[153]
Tanriverdi, T.; Hanimoglu, H.; Kacira, T.; Sanus, G.Z.; Kemerdere, R.; Atukeren, P.; Gumustas, K.; Canbaz, B.; Kaynar, M.Y. Glutathione peroxidase, glutathione reductase and protein oxidation in patients with glioblastoma multiforme and transitional meningioma. J. Cancer Res. Clin. Oncol., 2007, 133(9), 627-633.
[http://dx.doi.org/10.1007/s00432-007-0212-2] [PMID: 17457608]
[154]
Aggarwal, S.; Subberwal, M.; Kumar, S.; Sharma, M. Brain tumor and role of β-carotene, a-tocopherol, superoxide dismutase and glutathione peroxidase. J. Cancer Res. Ther., 2006, 2(1), 24-27.
[http://dx.doi.org/10.4103/0973-1482.19771] [PMID: 17998669]
[155]
Yílmaz, N.; Dulger, H.; Kíymaz, N.; Yílmaz, C.; Bayram, I.; Ragip, B.; Oğer, M. Lipid peroxidation in patients with brain tumor. Int. J. Neurosci., 2006, 116(8), 937-943.
[http://dx.doi.org/10.1080/00207450600553141] [PMID: 16861159]
[156]
Pu, P.Y.; Lan, J.; Shan, S.B.; Huang, E.Q.; Bai, Y.; Guo, Y.; Jiang, D.H. Study of the antioxidant enzymes in human brain tumors. J. Neurooncol., 1996, 29(2), 121-128.
[http://dx.doi.org/10.1007/BF00182134] [PMID: 8858516]
[157]
Dokic, I.; Hartmann, C.; Herold-Mende, C.; Régnier-Vigouroux, A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia, 2012, 60(11), 1785-1800.
[http://dx.doi.org/10.1002/glia.22397] [PMID: 22951908]
[158]
Lee, H-C.; Kim, D-W.; Jung, K-Y.; Park, I-C.; Park, M-J.; Kim, M-S.; Woo, S-H.; Rhee, C-H.; Yoo, H.; Lee, S-H.; Hong, S-I. Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med., 2004, 13(6), 883-887.
[http://dx.doi.org/10.3892/ijmm.13.6.883] [PMID: 15138630]
[159]
Yang, W.; Shen, Y.; Wei, J.; Liu, F. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species. Oncotarget, 2015, 6(26), 22006-22027.
[http://dx.doi.org/10.18632/oncotarget.4292] [PMID: 26124081]
[160]
Li, Y.; Piao, F.; Liu, X. Protective effect of taurine on triorthocresyl phosphate (TOCP)-induced cytotoxicity in C6 glioma cells. Adv. Exp. Med. Biol., 2013, 776, 231-240.
[http://dx.doi.org/10.1007/978-1-4614-6093-0_22] [PMID: 23392886]
[161]
Zhao, H.; Ji, B.; Chen, J.; Huang, Q.; Lu, X. Gpx 4 is involved in the proliferation, migration and apoptosis of glioma cells. Pathol. Res. Pract., 2017, 213(6), 626-633.
[http://dx.doi.org/10.1016/j.prp.2017.04.025] [PMID: 28552540]
[162]
Meyer, E.B.; Wells, W.W. Thioltransferase overexpression increases resistance of MCF-7 cells to adriamycin. Free Radic. Biol. Med., 1999, 26(5-6), 770-776.
[http://dx.doi.org/10.1016/S0891-5849(98)00247-0] [PMID: 10218667]
[163]
Nakamura, H.; Bai, J.; Nishinaka, Y.; Ueda, S.; Sasada, T.; Ohshio, G.; Imamura, M.; Takabayashi, A.; Yamaoka, Y.; Yodoi, J. Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect. Prev., 2000, 24(1), 53-60.
[PMID: 10757123]
[164]
He, F.; Wei, L.; Luo, W.; Liao, Z.; Li, B.; Zhou, X.; Xiao, X.; You, J.; Chen, Y.; Zheng, S.; Li, P.; Murata, M.; Huang, G.; Zhang, Z. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget, 2016, 7(24), 37000-37012.
[http://dx.doi.org/10.18632/oncotarget.9454] [PMID: 27203742]
[165]
Fernandes, A.P.; Capitanio, A.; Selenius, M.; Brodin, O.; Rundlöf, A.K.; Björnstedt, M. Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiation. Histopathology, 2009, 55(3), 313-320.
[http://dx.doi.org/10.1111/j.1365-2559.2009.03381.x] [PMID: 19723146]
[166]
Branco, V.; Coppo, L.; Solá, S.; Lu, J.; Rodrigues, C.M.P.; Holmgren, A.; Carvalho, C. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol., 2017, 13, 278-287.
[http://dx.doi.org/10.1016/j.redox.2017.05.024] [PMID: 28600984]
[167]
Du, Y.; Zhang, H.; Lu, J.; Holmgren, A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J. Biol. Chem., 2012, 287(45), 38210-38219.
[http://dx.doi.org/10.1074/jbc.M112.392225] [PMID: 22977247]
[168]
Zhang, H.; Du, Y.; Zhang, X.; Lu, J.; Holmgren, A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid. Redox Signal., 2014, 21(5), 669-681.
[http://dx.doi.org/10.1089/ars.2013.5499] [PMID: 24295294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy