Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Biological Activities of Artemisinin Derivatives Beyond Malaria

Author(s): Xiaoyan Liu, Jianguo Cao, Guozheng Huang*, Qingjie Zhao* and Jingshan Shen

Volume 19, Issue 3, 2019

Page: [205 - 222] Pages: 18

DOI: 10.2174/1568026619666190122144217

Price: $65

Abstract

Artemisinin is isolated from Artemisia annua L. with peroxide-containing sesquiterpene lactone structure. Because of its unique structural characteristics and promising anticancer, antivirus activities, it has recently received increasing attention. The aim of this review is to summarize recent discoveries of artemisinin's novel derivatives with new pharmaceutical effects beyond malaria with a focus on its antitumor and antivirus activity, as well as potential results of combination therapy with other clinical drugs.

Keywords: Anticancer activity, Antiviral activity, Artemisinin, Artemisinin derivatives, Dimer, Trimer.

Graphical Abstract
[1]
Efferth, T.; Li, P.C.H.; Konkimalla, V.S.B.; Kaina, B. From traditional chinese medicine to rational cancer therapy. Trends Mol. Med., 2007, 13(8), 353-361. [http://dx.doi.org/ 10.1016/j.molmed.2007.07.001]. [PMID: 17644431].
[2]
Lü, S.; Wang, Q.; Li, G.; Sun, S.; Guo, Y.; Kuang, H. The treatment of rheumatoid arthritis using chinese medicinal plants: From pharmacology to potential molecular mechanisms. J. Ethnopharmacol., 2015, 176, 177-206. [http://dx.doi.org/ 10.1016/j.jep.2015.10.010]. [PMID: 26471289].
[3]
Ding, W.; Gu, J.; Cao, L.; Li, N.; Ding, G.; Wang, Z.; Chen, L.; Xu, X.; Xiao, W. Traditional chinese herbs as chemical resource library for drug discovery of anti-infective and anti-inflammatory. J. Ethnopharmacol., 2014, 155(1), 589-598. [http://dx.doi.org/ 10.1016/j.jep.2014.05.066]. [PMID: 24928828].
[4]
Li-Weber, M. Targeting apoptosis pathways in cancer by chinese medicine. Cancer Lett., 2013, 332(2), 304-312. [http://dx.doi.org/10.1016/j.canlet.2010.07.015]. [PMID: 20685036].
[5]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695. [http://dx.doi.org/10.1016/j.bbagen.2013.02.008]. [PMID: 23428572].
[6]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220. [http://dx.doi.org/10.1038/nrd1657]. [PMID: 15729362].
[7]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037. [http://dx.doi.org/10.1021/np030096l]. [PMID: 12880330].
[8]
de Ridder, S.; van der Kooy, F.; Verpoorte, R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J. Ethnopharmacol., 2008, 120(3), 302-314. [http://dx.doi.org/ 10.1016/j.jep.2008.09.017]. [PMID: 18977424].
[9]
Maroyi, A. Traditional usage, phytochemistry and pharmacology of Croton sylvaticus Hochst. ex C. Krauss. Asian Pac. J. Trop. Med., 2017, 10(5), 423-429. [http://dx.doi.org/ 10.1016/j.apjtm.2017.05.002]. [PMID: 28647178].
[10]
Peter, B.; Bosze, S.; Horvath, R. Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials. Eur. Biophys. J., 2017, 46(1), 1-24. [http://dx.doi.org/10.1007/s00249-016-1141-2]. [PMID: 27313063].
[11]
Phompradit, P.; Chaijaroenkul, W.; Na-Bangchang, K. Cellular mechanisms of action and resistance of Plasmodium falciparum to artemisinin. Parasitol. Res., 2017, 116(12), 3331-3339. [http://dx.doi.org/10.1007/s00436-017-5647-z]. [PMID: 29127525].
[12]
Kong, L.Y.; Tan, R.X. Artemisinin, A miracle of traditional chinese medicine. Nat. Prod. Rep., 2015, 32(12), 1617-1621. [http://dx.doi.org/10.1039/C5NP00133A]. [PMID: 26561737].
[13]
Li, J.; Zhang, C.; Gong, M.; Wang, M. Combination of artemisinin-based natural compounds from Artemisia annua L. for the treatment of malaria: Pharmacodynamic and pharmacokinetic studies. Phytother. Res., 2018, 32(7), 1415-1420. [http://dx.doi.org/ 10.1002/ptr.6077]. [PMID: 29656410].
[14]
Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2014, 2(1), 82-90. [http://dx.doi.org/ 10.1016/j.ebiom.2014.11.010]. [PMID: 26137537].
[15]
Efferth, T.; Zacchino, S.; Georgiev, M.I.; Liu, L.; Wagner, H.; Panossian, A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine, 2015, 22(13), A1-A3. [http://dx.doi.org/ 10.1016/j.phymed.2015.10.003]. [PMID: 26563851].
[16]
Klayman, D.L. Qinghaosu (artemisinin): An antimalarial drug from china. Science, 1985, 228(4703), 1049-1055. [http://dx.doi.org/ 10.1126/science.3887571]. [PMID: 3887571].
[17]
Zuber, J.A.; Takala-Harrison, S. Multidrug-resistant malaria and the impact of mass drug administration. Infect. Drug Resist., 2018, 11, 299-306. [http://dx.doi.org/10.2147/IDR.S123887]. [PMID: 29535546].
[18]
Oiknine-Djian, E.; Weisblum, V.; Panet, A.; Wong, H.N.; Haynes, R.K.; Wolf, D.G. The artemisinin derivative artemisone is a potent inhibitor of human cytomegalovirus replication. Antimicrob. Agents Chemother., 2018, 62(7)
[19]
Ndagije, H.B.; Nambasa, V.; Manirakiza, L.; Kusemererwa, D.; Kajungu, D.; Olsson, S.; Speybroeck, N. The burden of adverse drug reactions due to artemisinin-based antimalarial treatment in selected ugandan health facilities: An active follow-up study. Drug Safetyety., 2018, 41(8), 753-765. [http://dx.doi.org/10.1007/s40264-018-0659-x]. [PMID: 29627926].
[20]
Zyad, A.; Tilaoui, M.; Jaafari, A.; Oukerrou, M.A.; Mouse, H.A. More insights into the pharmacological effects of artemisinin. Phytother. Res., 2018, 32(2), 216-229. [http://dx.doi.org/ 10.1002/ptr.5958]. [PMID: 29193409].
[21]
Ndagije, H.B.; Nambasa, V.; Manirakiza, L.; Kusemererwa, D.; Kajungu, D.; Olsson, S.; Speybroeck, N. The burden of adverse drug reactions due to artemisinin-based antimalarial treatment in selected ugandan health facilities: an active follow-up study. Drug Safetyety., 2018, 41(8), 753-765. [http://dx.doi.org/10.1007/s40264-018-0659-x]. [PMID: 29627926].
[22]
Dai, Y.F.; Zhou, W.W.; Meng, J.; Du, X.L.; Sui, Y.P.; Dai, L.; Wang, P.Q.; Huo, H.R.; Sui, F. The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med. Chem. Res., 2017, 26(5), 867-880. [http://dx.doi.org/ 10.1007/s00044-016-1778-5].
[23]
de Boer, J.G.; Robinson, A.; Powers, S.J.; Burgers, S.L.G.E.; Caulfield, J.C.; Birkett, M.A.; Smallegange, R.C.; van Genderen, P.J.J.; Bousema, T.; Sauerwein, R.W.; Pickett, J.A.; Takken, W.; Logan, J.G. Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Sci. Rep., 2017, 7(1), 9283. [http://dx.doi.org/10.1038/s41598-017-08978-9]. [PMID: 28839251].
[24]
Yao, W.B.; Wang, F.; Wang, H. Immunomodulation of artemisinin and its derivatives. Sci. Bull. (Beijing), 2016, 61(18), 1399-1406. [http://dx.doi.org/10.1007/s11434-016-1105-z].
[25]
Efferth, T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv., 2018, 36(6), 1730-1737. [http://dx.doi.org/10.1016/j.biotechadv.2018.01.001]. [PMID: 29305894].
[26]
Slezakova, S.; Ruda-Kucerova, J. Ruda-Kucerova. Anticancer activity of artemisinin and its derivatives. Anticancer Res., 2017, 37(11), 5995-6003. [PMID: 29061778].
[27]
Fröhlich, T.; Reiter, C.; Ibrahim, M.M.; Beutel, J.; Hutterer, C.; Zeitträger, I.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Efferth, T.; Marschall, M.; Tsogoeva, S.B. Synthesis of novel hybrids of quinazoline and artemisinin with high activities against plasmodium falciparum, human cytomegalovirus, and leukemia cells. ACS Omega, 2017, 2(6), 2422-2431. [http://dx.doi.org/ 10.1021/acsomega.7b00310]. [PMID: 30023664].
[28]
Zhang, Y.; Xu, G.; Zhang, S.; Wang, D.; Saravana Prabha, P.; Zuo, Z. Antitumor research on artemisinin and its bioactive derivatives. Nat. Prod. Bioprospect., 2018, 8(4), 303-319. [http://dx.doi.org/10.1007/s13659-018-0162-1]. [PMID: 29633188].
[29]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30. [http://dx.doi.org/ 10.3322/caac.21442]. [PMID: 29313949].
[30]
Zhao, H.D.; Xie, H.J.; Li, J.; Ren, C.P.; Chen, Y.X. Research progress on reversing multidrug resistance in tumors by using chinese medicine. Chin. J. Integr. Med., 2018, 24(6), 474-480. [http://dx.doi.org/10.1007/s11655-018-2910-1]. [PMID: 29860581].
[31]
Zhou, L.; Wang, H.; Li, Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics, 2018, 8(4), 1059-1074. [http://dx.doi.org/10.7150/thno.22679]. [PMID: 29463999].
[32]
Zaher, D.M.; Omar, H.A. Energy restriction as a novel approach targeting breast cancer stem cells multi-drug resistance. Ann. Oncol., 2018, 29(2), 05-07.
[33]
Yuan, R.; Hou, Y.; Sun, W.; Yu, J.; Liu, X.; Niu, Y.; Lu, J.J.; Chen, X. Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann. N. Y. Acad. Sci., 2017, 1401(1), 19-27. [http://dx.doi.org/10.1111/nyas.13387]. [PMID: 28891091].
[34]
Zhang, Z.S.; Wang, J.; Shen, Y.B.; Guo, C.C.; Sai, K.E.; Chen, F.R.; Mei, X.; Han, F.U.; Chen, Z.P. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncol. Lett., 2015, 10(1), 379-383. [http://dx.doi.org/ 10.3892/ol.2015.3183]. [PMID: 26171034].
[35]
Deng, X.R.; Liu, Z.X.; Liu, F.; Pan, L.; Yu, H.P.; Jiang, J.P.; Zhang, J.J.; Liu, L.; Yu, J. Holotransferrin enhances selective anticancer activity of artemisinin against human hepatocellular carcinoma cells. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2013, 33(6), 862-865. [http://dx.doi.org/10.1007/s11596-013-1212-x]. [PMID: 24337849].
[36]
Zhang, P.; Luo, H.S.; Li, M.; Tan, S.Y. Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2. OncoTargets Ther., 2015, 8, 845-854. [http://dx.doi.org/10.2147/OTT.S81041]. [PMID: 25945055].
[37]
Jabbarzadegan, M.; Rajayi, H.; Mofazzal Jahromi, M.A.; Yeganeh, H.; Yousefi, M.; Muhammad Hassan, Z.; Majidi, J. Application of arteether-loaded polyurethane nanomicelles to induce immune response in breast cancer model. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 808-816. [http://dx.doi.org/10.1080/ 21691401.2016.1178131]. [PMID: 27263545].
[38]
Kumari, K.; Keshari, S.; Sengupta, D.; Sabat, S.C.; Mishra, S.K. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer, 2017, 17(1), 858. [http://dx.doi.org/10.1186/s12885-017-3863-7]. [PMID: 29246124].
[39]
Buragohain, P.; Saikia, B.; Surineni, N.; Barua, N.C.; Saxena, A.K.; Suri, N. Synthesis of a novel series of artemisinin dimers with potent anticancer activity involving Sonogashira cross-coupling reaction. Bioorg. Med. Chem. Lett., 2014, 24(1), 237-239. [http://dx.doi.org/10.1016/j.bmcl.2013.11.032]. [PMID: 24332623].
[40]
Yan, X.; Li, P.; Zhan, Y.; Qi, M.; Liu, J.; An, Z.; Yang, W.; Xiao, H.; Wu, H.; Qi, Y.; Shao, H. Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in Non-small cell lung cancer cells harboring EGFR or RAS mutation. Biochem. Pharmacol., 2018, 150, 72-85. [http://dx.doi.org/10.1016/j.bcp.2018.01.031]. [PMID: 29360439].
[41]
Wang, D.; Zhong, B.; Li, Y.; Liu, X. Dihydroartemisinin increases apoptosis of colon cancer cells through targeting Janus kinase 2/signal transducer and activator of transcription 3 signaling. Oncol. Lett., 2018, 15(2), 1949-1954. [PMID: 29434895].
[42]
Våtsveen, T.K.; Myhre, M.R.; Steen, C.B.; Wälchli, S.; Lingjærde, O.C.; Bai, B.; Dillard, P.; Theodossiou, T.A.; Holien, T.; Sundan, A.; Inderberg, E.M.; Smeland, E.B.; Myklebust, J.H.; Oksvold, M.P. Artesunate shows potent anti-tumor activity in B-cell lymphoma. J. Hematol. Oncol., 2018, 11(1), 23. [http://dx.doi.org/ 10.1186/s13045-018-0561-0]. [PMID: 29458389].
[43]
Cheng, C.; Wang, T.; Song, Z.; Peng, L.; Gao, M.; Hermine, O.; Rousseaux, S.; Khochbin, S.; Mi, J.Q.; Wang, J. Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative, SM1044. Cancer Med., 2018, 7(2), 380-396. [http://dx.doi.org/ 10.1002/cam4.1276]. [PMID: 29277967].
[44]
Zhao, X.; Guo, X.; Yue, W.; Wang, J.; Yang, J.; Chen, J. Artemether suppresses cell proliferation and induces apoptosis in diffuse large B cell lymphoma cells. Exp. Ther. Med., 2017, 14(5), 4083-4090. [PMID: 29104626].
[45]
Chen, X.; Wong, Y.K.; Lim, T.K.; Lim, W.H.; Lin, Q.S.; Wang, J.G.; Hua, Z.C. Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-kappa B pathway. Molecules, 2017, 22(8), 1272-1286. [http://dx.doi.org/10.3390/molecules22081272].
[46]
Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175. [http://dx.doi.org/ 10.1016/j.canlet.2016.07.033]. [PMID: 27477901].
[47]
Jia, J.; Qin, Y.; Zhang, L.; Guo, C.; Wang, Y.; Yue, X.; Qian, J. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol. Med. Rep., 2016, 13(5), 4461-4468. [http://dx.doi.org/10.3892/mmr.2016.5073]. [PMID: 27035431].
[48]
Eichhorn, T.; Schloissnig, S.; Hahn, B.; Wendler, A.; Mertens, R.; Lehmann, W.D.; Krauth-Siegel, R.L.; Efferth, T. Bioinformatic and experimental fishing for artemisinin-interacting proteins from human nasopharyngeal cancer cells. Mol. Biosyst., 2012, 8(4), 1311-1318. [http://dx.doi.org/10.1039/c2mb05437j]. [PMID: 22311186].
[49]
Gaur, R.; Pathania, A.S.; Malik, F.A.; Bhakuni, R.S.; Verma, R.K. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity. Eur. J. Med. Chem., 2016, 122, 232-246. [http://dx.doi.org/ 10.1016/j.ejmech.2016.06.035]. [PMID: 27371926].
[50]
Button, R.W.; Lin, F.; Ercolano, E.; Vincent, J.H.; Hu, B.; Hanemann, C.O.; Luo, S. Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis., 2014, 5, e1466. [http://dx.doi.org/10.1038/cddis.2014.434]. [PMID: 25321473].
[51]
Zhou, Z.H.; Chen, F.X.; Xu, W.R.; Qian, H.; Sun, L.Q.; Lü, X.T.; Chen, L.; Zhang, J.; Ji, H.C.; Fei, S.J. Enhancement effect of dihydroartemisinin on human γδ T cell proliferation and killing pancreatic cancer cells. Int. Immunopharmacol., 2013, 17(3), 850-857. [http://dx.doi.org/10.1016/j.intimp.2013.09.015]. [PMID: 24103581].
[52]
Wu, B.; Hu, K.; Li, S.; Zhu, J.; Gu, L.; Shen, H.; Hambly, B.D.; Bao, S.; Di, W. Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol. Rep., 2012, 27(1), 101-108. [PMID: 22025319].
[53]
Dwivedi, A.; Mazumder, A.; du Plessis, L.; du Preez, J.L.; Haynes, R.K.; du Plessis, J. In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine (Lond.), 2015, 11(8), 2041-2050. [http://dx.doi.org/10.1016/ j.nano.2015.07.010]. [PMID: 26282380].
[54]
Zhou, Y.; Wang, X.; Zhang, J.; He, A.; Wang, Y.L.; Han, K.; Su, Y.; Yin, J.; Lv, X.; Hu, H. Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 2017, 8(11), 18260-18270. [http://dx.doi.org/10.18632/oncotarget.15353]. [PMID: 28209917].
[55]
Michaelsen, F.W.; Saeed, M.E.M.; Schwarzkopf, J.; Efferth, T. Activity of Artemisia annua and artemisinin derivatives, in prostate carcinoma. Phytomedicine, 2015, 22(14), 1223-1231. [http://dx.doi.org/10.1016/j.phymed.2015.11.001]. [PMID: 26655404].
[56]
Pawar, J.N.; Desai, H.R.; Moravkar, K.K.; Khanna, D.K.; Amin, P.D. Exploring the potential of porous silicas as a carrier system for dissolution rate enhancement of artemether. Asian J. Pharm. Sci., 2016, 11(6), 760-770. [http://dx.doi.org/10.1016/ j.ajps.2016.06.002].
[57]
Gargano, N.; Madrid, L.; Valentini, G.; D’Alessandro, U.; Halidou, T.; Sirima, S.; Tshefu, A.; Mtoro, A.; Gesase, S. The Eurartesim Dispersible Study Group Bassat, Q. Efficacy and tolerability outcomes of a phase II, randomized, open-label, multicenter study of a new water-dispersible pediatric formulation of dihydroartemisinin-piperaquine for the treatment of uncomplicated plasmodium falciparum malaria in african infants. Antimicrob. Agents Ch., 2018, 62(1), 6-36.
[58]
Supan, C.; Mombo-Ngoma, G.; Kombila, M.; Ospina Salazar, C.L.; Held, J.; Lell, B.; Cantalloube, C.; Djeriou, E.; Ogutu, B.; Waitumbi, J.; Otsula, N.; Apollo, D.; Polhemus, M.E.; Kremsner, P.G.; Walsh, D.S. Phase 2a, open-label, 4-escalating-dose, randomized multicenter study evaluating the safety and activity of ferroquine (SSR97193) plus artesunate, versus amodiaquine plus artesunate, in african adult men with uncomplicated plasmodium falciparum malaria. Am. J. Trop. Med. Hyg., 2017, 97(2), 514-525. [http://dx.doi.org/10.4269/ajtmh.16-0731]. [PMID: 28722611].
[59]
Deeken, J.F.; Wang, H.; Hartley, M.; Cheema, A.K.; Smaglo, B.; Hwang, J.J.; He, A.R.; Weiner, L.M.; Marshall, J.L.; Giaccone, G.; Liu, S.; Luecht, J.; Spiegel, J.Y.; Pishvaian, M.J. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol., 2018, 81(3), 587-596. [http://dx.doi.org/10.1007/s00280-018-3533-8]. [PMID: 29392450].
[60]
König, M.; von Hagens, C.; Hoth, S.; Baumann, I.; Walter-Sack, I.; Edler, L.; Sertel, S. Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: New audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemother. Pharmacol., 2016, 77(2), 413-427. [http://dx.doi.org/10.1007/s00280-016-2960-7]. [PMID: 26793976].
[61]
Li, X.; Gu, S.; Sun, D.; Dai, H.; Chen, H.; Zhang, Z. The selectivity of artemisinin-based drugs on human lung normal and cancer cells. Environ. Toxicol. Pharmacol., 2018, 57, 86-94. [http://dx.doi.org/10.1016/j.etap.2017.12.004]. [PMID: 29227908].
[62]
Bhaw-Luximon, A.; Jhurry, D. Artemisinin and its derivatives in cancer therapy: Status of progress, mechanism of action, and future perspectives. Cancer Chemother. Pharmacol., 2017, 79(3), 451-466. [http://dx.doi.org/10.1007/s00280-017-3251-7]. [PMID: 28210763].
[63]
Lai, H.C.; Singh, N.P.; Sasaki, T. Development of artemisinin compounds for cancer treatment. Invest. New Drugs, 2013, 31(1), 230-246. [http://dx.doi.org/10.1007/s10637-012-9873-z]. [PMID: 22935909].
[64]
Hooft van Huijsduijnen, R.; Guy, R.K.; Chibale, K.; Haynes, R.K.; Peitz, I.; Kelter, G.; Phillips, M.A.; Vennerstrom, J.L.; Yuthavong, Y.; Wells, T.N.C. Anticancer properties of distinct antimalarial drug classes. PLoS One, 2013, 8(12), e82962. [http://dx.doi.org/ 10.1371/journal.pone.0082962]. [PMID: 24391728].
[65]
Steely, A.M.; Willoughby, J.A., Sr; Sundar, S.N.; Aivaliotis, V.I.; Firestone, G.L. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein. Anticancer Drugs, 2017, 28(9), 1018-1031. [http://dx.doi.org/10.1097/ CAD.0000000000000547]. [PMID: 28708672].
[66]
Chen, H.H.; Zhou, H.J.; Wang, W.Q.; Wu, G.D. Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother. Pharmacol., 2004, 53(5), 423-432. [http://dx.doi.org/10.1007/ s00280-003-0751-4]. [PMID: 15132130].
[67]
Du, X.X.; Li, Y.J.; Wu, C.L.; Zhou, J.H.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Huang, P.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Jia, D.X.; Bai, Y.X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424. [http://dx.doi.org/10.1016/j.biopha.2013.01.013]. [PMID: 23582790].
[68]
Li, Y.J.; Zhou, J.H.; Du, X.X.; Jia, X.; Wu, C.L.; Huang, P.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Liu, T.; Jiang, C.L.; Wang, L.Y.; Bai, Y.X. Dihydroartemisinin accentuates the anti-tumor effects of photodynamic therapy via inactivation of NF-κB in Eca109 and Ec9706 esophageal cancer cells. Cell. Physiol. Biochem., 2014, 33(5), 1527-1536. [http://dx.doi.org/10.1159/000358716]. [PMID: 24854841].
[69]
Wang, S.J.; Gao, Y.; Chen, H.; Kong, R.; Jiang, H.C.; Pan, S.H.; Xue, D.B.; Bai, X.W.; Sun, B. Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett., 2010, 293(1), 99-108. [http://dx.doi.org/10.1016/j.canlet.2010.01.001]. [PMID: 20137856].
[70]
Xu, G.; Zou, W.Q.; Du, S.J.; Wu, M.J.; Xiang, T.X.; Luo, Z.G. Mechanism of dihydroartemisinin-induced apoptosis in prostate cancer PC3 cells: An iTRAQ-based proteomic analysis. Life Sci., 2016, 157, 1-11. [http://dx.doi.org/10.1016/j.lfs.2016.05.033]. [PMID: 27234895].
[71]
Hu, C.J.; Zhou, L.; Cai, Y. Dihydroartemisinin induces apoptosis of cervical cancer cells via upregulation of RKIP and downregulation of bcl-2. Cancer Biol. Ther., 2014, 15(3), 279-288. [http://dx.doi.org/10.4161/cbt.27223]. [PMID: 24335512].
[72]
Zhang, C.Z.; Zhang, H.; Yun, J.; Chen, G.G.; Lai, P.B.S. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem. Pharmacol., 2012, 83(9), 1278-1289. [http://dx.doi.org/10.1016/j.bcp.2012.02.002]. [PMID: 22342732].
[73]
Ilamathi, M.; Santhosh, S.; Sivaramakrishnan, V. Artesunate as an anti-cancer agent targets stat-3 and Suppresses hepatocellular carcinoma. Curr. Top. Med. Chem., 2016, 16(22), 2453-2463. [http://dx.doi.org/10.2174/1568026616666160212122820]. [PMID: 26873192].
[74]
Que, Z.; Wang, P.; Hu, Y.; Xue, Y.; Liu, X.; Qu, C.; Ma, J.; Liu, Y. Dihydroartemisin inhibits glioma invasiveness via a ROS to P53 to β-catenin signaling. Pharmacol. Res., 2017, 119, 72-88. [http://dx.doi.org/10.1016/j.phrs.2017.01.014]. [PMID: 28111262].
[75]
Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q.; Wong, W.S.F.; Shen, H.M.; Wang, J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev., 2017, 37(6), 1492-1517. [http://dx.doi.org/10.1002/med.21446]. [PMID: 28643446].
[76]
Jiang, C.; Li, S.; Li, Y.; Bai, Y. Anticancer effects of dihydroartemisinin on human esophageal cancer cells in vivo. Anal. Cell. Pathol. (Amst.), 2018, 2018, 8759745. [http://dx.doi.org/ 10.1155/2018/8759745]. [PMID: 29888170].
[77]
Schepetkin, I.A.; Kirpotina, L.N.; Mitchell, P.T.; Kishkentaeva, A.S.; Shaimerdenova, Z.R.; Atazhanova, G.A.; Adekenov, S.M.; Quinn, M.T. The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafiatin inhibit T cell receptor (TCR) activation. Phytochemistry, 2018, 146, 36-46. [http://dx.doi.org/10.1016/j.phytochem.2017.11.010]. [PMID: 29216473].
[78]
Ren, Y.; Yu, J.; Kinghorn, A.D. Development of anticancer agents from plant-derived sesquiterpene lactones. Curr. Med. Chem., 2016, 23(23), 2397-2420. [http://dx.doi.org/ 10.2174/0929867323666160510123255]. [PMID: 27160533].
[79]
Sun, Q.; Wang, J.; Li, Y.; Zhuang, J.; Zhang, Q.; Sun, X.; Sun, D. Synthesis and evaluation of cytotoxic activities of artemisinin derivatives. Chem. Biol. Drug Des., 2017, 90(5), 1019-1028. [http://dx.doi.org/10.1111/cbdd.13016]. [PMID: 28489280].
[80]
Xu, C.C.; Wu, J.J.; Xu, T.; Yao, C.H.; Yu, B.Y.; Liu, J.H. Synthesis and cytotoxicity of novel artemisinin derivatives containing sulfur atoms. Eur. J. Med. Chem., 2016, 123, 763-768. [http://dx.doi.org/10.1016/j.ejmech.2016.08.015]. [PMID: 27537924].
[81]
Liu, Y.; Liu, Z.; Shi, J.; Chen, H.; Mi, B.; Li, P.; Gong, P. Synthesis and cytotoxicity of novel 10-substituted dihydroartemisinin derivatives containing N-arylphenyl-ethenesulfonamide groups. Molecules, 2013, 18(3), 2864-2877. [http://dx.doi.org/10.3390/ molecules18032864]. [PMID: 23459298].
[82]
Ha, V.T.; Kien, V.T.; Binh, H.; Tien, V.D.; My, N.T.T.; Nam, N.H.; Baltas, M.; Hahn, H.; Han, B.W.; Thao, T.; Vu, T.K. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg. Chem., 2016, 66, 63-71. [http://dx.doi.org/10.1016/j.bioorg.2016.03.008]. [PMID: 27018835].
[83]
Binh, L.H.; Van, N.T.T.; Kien, V.T.; My, N.T.T.; Chinh, L.V.; Nga, N.T.; Tien, H.X.; Thao, D.T.; Vu, T.K. Synthesis and in vitro cytotoxic evaluation of new triazole derivatives based on artemisinin via click chemistry. Med. Chem. Res., 2016, 25(4), 738-750. [http://dx.doi.org/10.1007/s00044-016-1524-z].
[84]
Jana, S.; Iram, S.; Thomas, J.; Liekens, S.; Dehaen, W. Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorg. Med. Chem., 2017, 25(14), 3671-3676. [http://dx.doi.org/ 10.1016/j.bmc.2017.04.041]. [PMID: 28529044].
[85]
Liu, G.; Song, S.; Shu, S.; Miao, Z.; Zhang, A.; Ding, C. Novel spirobicyclic artemisinin analogues (artemalogues): Synthesis and antitumor activities. Eur. J. Med. Chem., 2015, 103, 17-28. [http://dx.doi.org/10.1016/j.ejmech.2015.08.035]. [PMID: 26318055].
[86]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305. [http://dx.doi.org/10.1517/17460441.2016.1135125]. [PMID: 26727036].
[87]
Nepali, K.; Sharma, S.; Kumar, D.; Budhiraja, A.; Dhar, K.L. Anticancer hybrids--A patent survey. Recent Patents Anticancer Drug Discov., 2014, 9(3), 303-339. [http://dx.doi.org/10.2174/ 1574892809666140520150459]. [PMID: 24846460].
[88]
Sunil, D.; Kamath, P.R. Multi-target directed indole based hybrid molecules in cancer therapy: An up-to-date evidence-based review. Curr. Top. Med. Chem., 2017, 17(9), 959-985. [http://dx.doi.org/10.2174/1568026616666160927150839]. [PMID: 27697057].
[89]
Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem., 2017, 17(8), 907-918. [http://dx.doi.org/10.2174/1568026616666160927155515]. [PMID: 27697050].
[90]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752. [PMID: 28393696].
[91]
Fröhlich, T.; Ndreshkjana, B.; Muenzner, J.K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schneider-Stock, R.; Tsogoeva, S.B. Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer. ChemMedChem, 2017, 12(3), 226-234. [http://dx.doi.org/10.1002/cmdc.201600594]. [PMID: 27973725].
[92]
Fröhlich, T.; Reiter, C.; Saeed, M.E.M.; Hutterer, C.; Hahn, F.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Marschall, M.; Efferth, T.; Tsogoeva, S.B. Synthesis of thymoquinone-artemisinin hybrids: new potent antileukemia, antiviral, and antimalarial agents. ACS Med. Chem. Lett., 2017, 9(6), 534-539. [http://dx.doi.org/10.1021/acsmedchemlett.7b00412]. [PMID: 29937978].
[93]
Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal applications of fullerenes. Int. J. Nanomedicine, 2007, 2(4), 639-649. [PMID: 18203430].
[94]
Li, X.; Zhou, Y.; Liu, Y.; Zhang, X.; Chen, T.; Chen, K.; Ba, Q.; Li, J.; Liu, H.; Wang, H. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer. EBioMedicine, 2016, 14, 44-54. [http://dx.doi.org/10.1016/ j.ebiom.2016.11.026]. [PMID: 27939426].
[95]
Reiter, C.; Capcı Karagöz, A.; Fröhlich, T.; Klein, V.; Zeino, M.; Viertel, K.; Held, J.; Mordmüller, B.; Emirdağ Öztürk, S.; Anıl, H.; Efferth, T.; Tsogoeva, S.B. Synthesis and study of cytotoxic activity of 1,2,4-trioxane- and egonol-derived hybrid molecules against Plasmodium falciparum and multidrug-resistant human leukemia cells. Eur. J. Med. Chem., 2014, 75, 403-412. [http://dx.doi.org/ 10.1016/j.ejmech.2014.01.043]. [PMID: 24561670].
[96]
Reiter, C.; Fröhlich, T.; Zeino, M.; Marschall, M.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hampel, F.; Efferth, T.; Tsogoeva, S.B. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur. J. Med. Chem., 2015, 97, 164-172. [http://dx.doi.org/ 10.1016/j.ejmech.2015.04.053]. [PMID: 25965779].
[97]
Trunzer, K.; Pavlick, A.C.; Schuchter, L.; Gonzalez, R.; McArthur, G.A.; Hutson, T.E.; Moschos, S.J.; Flaherty, K.T.; Kim, K.B.; Weber, J.S.; Hersey, P.; Long, G.V.; Lawrence, D.; Ott, P.A.; Amaravadi, R.K.; Lewis, K.D.; Puzanov, I.; Lo, R.S.; Koehler, A.; Kockx, M.; Spleiss, O.; Schell-Steven, A.; Gilbert, H.N.; Cockey, L.; Bollag, G.; Lee, R.J.; Joe, A.K.; Sosman, J.A.; Ribas, A. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J. Clin. Oncol., 2013, 31(14), 1767-1774. [http://dx.doi.org/10.1200/JCO.2012.44.7888]. [PMID: 23569304].
[98]
Garraway, L.A.; Jänne, P.A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov., 2012, 2(3), 214-226. [http://dx.doi.org/10.1158/2159-8290.CD-12-0012]. [PMID: 22585993].
[99]
Chow, L.M.C.; Chan, T.H. Novel classes of dimer antitumour drug candidates. Curr. Pharm. Des., 2009, 15(6), 659-674. [http://dx.doi.org/10.2174/138161209787315576]. [PMID: 19199989].
[100]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anticancer agents. J. Med. Chem., 2016, 59(16), 7360-7388. [http://dx.doi.org/10.1021/ acs.jmedchem.5b01380]. [PMID: 27010926].
[101]
Jung, M.; Lee, S.; Ham, J.; Lee, K.; Kim, H.; Kim, S.K. Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer. J. Med. Chem., 2003, 46(6), 987-994. [http://dx.doi.org/10.1021/ jm020119d]. [PMID: 12620075].
[102]
Li, Y.; Zhu, Y.; Zhang, Y.; Zhou, J.; Cao, L.; Xie, S. Faming Zhuanli Shenqing., 2011. CN 102153564 A 20110817
[103]
Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Kolesnikova, N.I.; Tran Van Ba, C.; Wein, S.; Norman, J.; Denti, P.; Vial, H.; Wiesner, L. Antimalarial and anticancer activities of artemisinin-quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur. J. Pharm. Sci., 2012, 47(5), 834-841. [http://dx.doi.org/10.1016/j.ejps.2012.09.019]. [PMID: 23069618].
[104]
Xie, L.; Zhao, Y.; Zhai, X.; Li, P.; Liu, C.; Li, Y.; Gong, P. The application of tandem aza-wittig reaction to synthesize artemisinin-guanidine hybrids and their anti-tumor activity. Arch. Pharm. (Weinheim), 2011, 344(10), 631-638. [http://dx.doi.org/10.1002/ardp.201000363]. [PMID: 21984013].
[105]
Galal, A.M.; Gul, W.; Slade, D.; Ross, S.A.; Feng, S.; Hollingshead, M.G.; Alley, M.C.; Kaur, G.; ElSohly, M.A. Synthesis and evaluation of dihydroartemisinin and dihydroartemisitene acetal dimers showing anticancer and antiprotozoal activity. Bioorg. Med. Chem., 2009, 17(2), 741-751. [http://dx.doi.org/10.1016/j.bmc.2008.11.050]. [PMID: 19084416].
[106]
Reiter, C.; Fröhlich, T.; Gruber, L.; Hutterer, C.; Marschall, M.; Voigtländer, C.; Friedrich, O.; Kappes, B.; Efferth, T.; Tsogoeva, S.B. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg. Med. Chem., 2015, 23(17), 5452-5458. [http://dx.doi.org/10.1016/j.bmc.2015.07.048]. [PMID: 26260339].
[107]
Kien, V.T.; Binh, L.H.; Phong, P.H.; Hien, D.T.; My, N.T.T.; Nam, N.H.; Thao, D.T.; Baltas, M.; Vu, T.K. Novel artemisinin-derived dimers: Synthesis and evaluation of anticancer activities. Lett. Drug Des. Discov., 2017, 14(1), 102-111. [http://dx.doi.org/10.2174/ 1570180813666160810155354].
[108]
Zhang, N.; Yu, Z.; Yang, X.; Hu, P.; He, Y. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities. Eur. J. Med. Chem., 2018, 150, 829-840. [http://dx.doi.org/ 10.1016/j.ejmech.2018.03.010]. [PMID: 29597166].
[109]
Magoulas, G.E.; Tsigkou, T.; Skondra, L.; Lamprou, M.; Tsoukala, P.; Kokkinogouli, V.; Pantazaka, E.; Papaioannou, D.; Athanassopoulos, C.M.; Papadimitriou, E. Synthesis of nοvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents. Bioorg. Med. Chem., 2017, 25(14), 3756-3767. [http://dx.doi.org/10.1016/j.bmc.2017.05.018]. [PMID:].
[110]
Bozic, I.; Reiter, J.G.; Allen, B.; Antal, T.; Chatterjee, K.; Shah, P.; Moon, Y.S.; Yaqubie, A.; Kelly, N.; Le, D.T.; Lipson, E.J.; Chapman, P.B.; Diaz, L.A., Jr; Vogelstein, B.; Nowak, M.A. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife, 2013, 2, e00747. [http://dx.doi.org/ 10.7554/eLife.00747]. [PMID: 23805382].
[111]
Douglas, N.M.; Anstey, N.M.; Angus, B.J.; Nosten, F.; Price, R.N. Artemisinin combination therapy for vivax malaria. Lancet Infect. Dis., 2010, 10(6), 405-416. [http://dx.doi.org/10.1016/S1473-3099(10)70079-7]. [PMID: 20510281].
[112]
He, S.P.; Tan, G.Y.; Li, G.; Tan, W.M.; Nan, T.G.; Wang, B.M.; Li, Z.H.; Li, Q.X. Development of a sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the antimalaria active ingredient artemisinin in the Chinese herb Artemisia annua L. Anal. Bioanal. Chem., 2009, 393(4), 1297-1303. [http://dx.doi.org/10.1007/s00216-008-2527-5]. [PMID: 19066864].
[113]
Efferth, T. Cancer combination therapies with artemisinin-type drugs. Biochem. Pharmacol., 2017, 139, 56-70. [http://dx.doi.org/10.1016/j.bcp.2017.03.019]. [PMID: 28366726].
[114]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. [http://dx.doi.org/10.1038/nrc1074]. [PMID: 12724731].
[115]
Braun, A.H.; Achterrath, W.; Wilke, H.; Vanhoefer, U.; Harstrick, A.; Preusser, P. New systemic frontline treatment for metastatic colorectal carcinoma. Cancer, 2004, 100(8), 1558-1577. [http://dx.doi.org/10.1002/cncr.20154]. [PMID: 15073842].
[116]
Yao, Z.; Bhandari, A.; Wang, Y.; Pan, Y.; Yang, F.; Chen, R.; Xia, E.; Wang, O. Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line. Biochem. Biophys. Res. Commun., 2018, 501(3), 636-642. [http://dx.doi.org/10.1016/j.bbrc.2018.05.026]. [PMID: 29738772].
[117]
Yang, S.; Zhang, D.; Shen, N.; Wang, G.; Tang, Z.; Chen, X. Dihydroartemisinin increases gemcitabine therapeutic efficacy in ovarian cancer by inducing reactive oxygen species. J. Cell. Biochem., 2018, 1-11. [PMID: 30256439].
[118]
Mannava, M.K.C.; Suresh, K.; Kumar Bommaka, M.; Bhavani Konga, D.; Nangia, A. Curcumin-artemisinin coamorphous solid: xenograft model preclinical study. Pharmaceutics, 2018, 10(1), 7. [http://dx.doi.org/10.3390/pharmaceutics10010007]. [PMID: 29315234].
[119]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681. [http://dx.doi.org/ 10.1038/nature03579]. [PMID: 15902208].
[120]
Budhraja, A.; Turnis, M.E.; Churchman, M.L.; Kothari, A.; Yang, X.; Xu, H.; Kaminska, E.; Panetta, J.C.; Finkelstein, D.; Mullighan, C.G.; Opferman, J.T. m Modulation of navitoclax sensitivity by dihydroartemisinin-mediated MCL-1 repression in BCR-ABL(+) B-lineage acute lymphoblastic leukemia. Clin. Cancer Res., 2017, 23(24), 7558-7568. [http://dx.doi.org/10.1158/1078-0432.CCR-17-1231]. [PMID: 28974549].
[121]
Gao, Z.; Li, Y.; You, C.; Sun, K.; An, P.; Sun, C.; Wang, M.; Zh, X.; Sun, B. Iron Oxide Nanocarrier-mediated combination therapy of cisplatin and artemisinin for combating drug resistance through highly Increased toxic reactive oxygen species generation. ACS Appl. Bio. Mater, 2018, 1(2), 270-280. [http://dx.doi.org/ 10.1021/acsabm.8b00056].
[122]
Ashfaq, M.K.; AbdelBakky, M.S.; Maqboola, M.T.; Gula, W.; ElSohly, M.A. A preliminary study on combination therapy of artemisinin dimer oxime and topotecan against nonsmall cell lung cancer in Mice. World J. Tradit. Chin. Med., 2018, 4(1), 8-14.
[123]
Huo, L.; Wei, W.; Wu, S.; Zhao, X.; Zhao, C.; Zhao, H.; Sun, L. Effect of dihydroarteminin combined with siRNA targeting Notch1 on Notch1/c-Myc signaling in T-cell lymphoma cells. Exp. Ther. Med., 2018, 15(3), 3059-3065. [PMID: 29599840].
[124]
Guo, Z. The modification of natural products for medical use. Acta Pharm. Sin. B, 2017, 7(2), 119-136. [http://dx.doi.org/ 10.1016/j.apsb.2016.06.003]. [PMID: 28303218].
[125]
Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.G.; Marschall, M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis., 2008, 47(6), 804-811. [http://dx.doi.org/10.1086/591195]. [PMID: 18699744].
[126]
Efferth, T.; Marschall, M.; Wang, X.; Huong, S.M.; Hauber, I.; Olbrich, A.; Kronschnabl, M.; Stamminger, T.; Huang, E.S. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J. Mol. Med. (Berl.), 2002, 80(4), 233-242. [http://dx.doi.org/10.1007/s00109-001-0300-8]. [PMID: 11976732].
[127]
Afonso, A.; Hunt, P.; Cheesman, S.; Alves, A.C.; Cunha, C.V.; do Rosário, V.; Cravo, P. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob. Agents Chemother., 2006, 50(2), 480-489. [http://dx.doi.org/10.1128/AAC.50.2.480-489.2006]. [PMID: 16436700].
[128]
Ferrer-Rodríguez, I.; Pérez-Rosado, J.; Gervais, G.W.; Peters, W.; Robinson, B.L.; Serrano, A.E. Plasmodium yoelii: identification and partial characterization of an MDR1 gene in an artemisinin-resistant line. J. Parasitol., 2004, 90(1), 152-160. [http://dx.doi.org/10.1645/GE-3225]. [PMID: 15040683].
[129]
Hunt, P.; Afonso, A.; Creasey, A.; Culleton, R.; Sidhu, A.B.S.; Logan, J.; Valderramos, S.G.; McNae, I.; Cheesman, S.; do Rosario, V.; Carter, R.; Fidock, D.A.; Cravo, P. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol. Microbiol., 2007, 65(1), 27-40. [http://dx.doi.org/10.1111/j.1365-2958.2007.05753.x]. [PMID: 17581118].
[130]
Puri, S.K.; Chandra, R. Plasmodium vinckei: selection of a strain exhibiting stable resistance to arteether. Exp. Parasitol., 2006, 114(2), 129-132. [http://dx.doi.org/10.1016/j.exppara.2006.02.017]. [PMID: 16624307].
[131]
Walker, D.J.; Pitsch, J.L.; Peng, M.M.; Robinson, B.L.; Peters, W.; Bhisutthibhan, J.; Meshnick, S.R. Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelii. Antimicrob. Agents Chemother., 2000, 44(2), 344-347. [http://dx.doi.org/ 10.1128/AAC.44.2.344-347.2000]. [PMID: 10639360].
[132]
Naesens, L.; Bonnafous, P.; Agut, H.; De Clercq, E. Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts. J. Clin. Virol., 2006, 37, S69-S75. [http://dx.doi.org/10.1016/S1386-6532(06)70015-4]. [PMID: 17276373].
[133]
Efferth, T.; Davey, M.; Olbrich, A.; Rücker, G.; Gebhart, E.; Davey, R. Activity of drugs from traditional chinese medicine toward sensitive and MDR1- or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells. Blood Cells Mol. Dis., 2002, 28(2), 160-168. [http://dx.doi.org/10.1006/bcmd.2002.0492]. [PMID: 12064912].
[134]
Raffetin, A.; Bruneel, F.; Roussel, C.; Thellier, M.; Buffet, P.; Caumes, E.; Jauréguiberry, S. Use of artesunate in non-malarial indications. Med. Mal. Infect., 2018, 48(4), 238-249. [http://dx.doi.org/10.1016/j.medmal.2018.01.004]. [PMID: 29422423].
[135]
Chou, S.; Marousek, G.; Auerochs, S.; Stamminger, T.; Milbradt, J.; Marschall, M. The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res., 2011, 92(2), 364-368. [http://dx.doi.org/10.1016/j.antiviral.2011.07.018]. [PMID: 21843554].
[136]
Arav-Boger, R.; He, R.; Chiou, C.J.; Liu, J.; Woodard, L.; Rosenthal, A.; Jones-Brando, L.; Forman, M.; Posner, G. Artemisinin-derived dimers have greatly improved anti-cytomegalovirus activity compared to artemisinin monomers. PLoS One, 2010, 5(4), e10370. [http://dx.doi.org/10.1371/journal.pone.0010370]. [PMID: 20442781].
[137]
Germi, R.; Mariette, C.; Alain, S.; Lupo, J.; Thiebaut, A.; Brion, J.P.; Epaulard, O.; Saint Raymond, C.; Malvezzi, P.; Morand, P. Success and failure of artesunate treatment in five transplant recipients with disease caused by drug-resistant cytomegalovirus. Antiviral Res., 2014, 101, 57-61. [http://dx.doi.org/10.1016/ j.antiviral.2013.10.014]. [PMID: 24184983].
[138]
Shapira, M.Y.; Resnick, I.B.; Chou, S.; Neumann, A.U.; Lurain, N.S.; Stamminger, T.; Caplan, O.; Saleh, N.; Efferth, T.; Marschall, M.; Wolf, D.G. Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin. Infect. Dis., 2008, 46(9), 1455-1457. [http://dx.doi.org/10.1086/587106]. [PMID: 18419454].
[139]
Lau, P.K.H.; Woods, M.L.; Ratanjee, S.K.; John, G.T. Artesunate is ineffective in controlling valganciclovir-resistant cytomegalovirus infection. Clin. Infect. Dis., 2011, 52(2), 279-279. [http://dx.doi.org/10.1093/cid/ciq050]. [PMID: 21288859].
[140]
Wolf, D.G.; Shimoni, A.; Resnick, I.B.; Stamminger, T.; Neumann, A.U.; Chou, S.; Efferth, T.; Caplan, O.; Rose, J.; Nagler, A.; Marschall, M. Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antiviral Res., 2011, 90(3), 183-186. [http://dx.doi.org/10.1016/ j.antiviral.2011.03.184]. [PMID: 21443904].
[141]
Batty, K.T.; Iletr, K.E.; Powell, S.M.; Martin, J.; Davis, T.M.E. Relative bioavailability of artesunate and dihydroartemisinin: Investigations in the isolated perfused rat liver and in healthy Caucasian volunteers. Am. J. Trop. Med. Hyg., 2002, 66(2), 130-136. [http://dx.doi.org/10.4269/ajtmh.2002.66.130]. [PMID: 12135281].
[142]
Hakacova, N.; Klingel, K.; Kandolf, R.; Engdahl, E.; Fogdell-Hahn, A.; Higgins, T. First therapeutic use of Artesunate in treatment of human herpesvirus 6B myocarditis in a child. J. Clin. Virol., 2013, 57(2), 157-160. [http://dx.doi.org/10.1016/ j.jcv.2013.02.005]. [PMID: 23473961].
[143]
Jana, S.; Iram, S.; Thomas, J.; Hayat, M.Q.; Pannecouque, C.; Dehaen, W. Application of the triazolization reaction to afford dihydroartemisinin derivatives with anti-HIV activity. Molecules, 2017, 22(2), 303. [http://dx.doi.org/10.3390/molecules22020303]. [PMID: 28218680].
[144]
Sanchez, V.; McElroy, A.K.; Yen, J.; Tamrakar, S.; Clark, C.L.; Schwartz, R.A.; Spector, D.H. Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production. J. Virol., 2004, 78(20), 11219-11232. [http://dx.doi.org/10.1128/JVI.78.20.11219-11232.2004]. [PMID: 15452241].
[145]
Michaelis, M.; Paulus, C.; Löschmann, N.; Dauth, S.; Stange, E.; Doerr, H.W.; Nevels, M.; Cinatl, J., Jr The multi-targeted kinase inhibitor sorafenib inhibits human cytomegalovirus replication. Cell. Mol. Life Sci., 2011, 68(6), 1079-1090. [http://dx.doi.org/ 10.1007/s00018-010-0510-8]. [PMID: 20803231].
[146]
Shen, L.; Peterson, S.; Sedaghat, A.R.; McMahon, M.A.; Callender, M.; Zhang, H.; Zhou, Y.; Pitt, E.; Anderson, K.S.; Acosta, E.P.; Siliciano, R.F. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat. Med., 2008, 14(7), 762-766. [http://dx.doi.org/10.1038/nm1777]. [PMID: 18552857].
[147]
He, R.; Mott, B.T.; Rosenthal, A.S.; Genna, D.T.; Posner, G.H.; Arav-Boger, R. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-aancer activities. PLoS One, 2011, 6(8), 24334-24339. [http://dx.doi.org/10.1371/ journal.pone.0024334].
[148]
Hartwig, C.L.; Rosenthal, A.S.; D’Angelo, J.; Griffin, C.E.; Posner, G.H.; Cooper, R.A. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem. Pharmacol., 2009, 77(3), 322-336. [http://dx.doi.org/10.1016/j.bcp.2008.10.015]. [PMID: 19022224].
[149]
Fröhlich, T.; Hahn, F.; Belmudes, L.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Couté, Y.; Marschall, M.; Tsogoeva, S.B. Synthesis of artemisinin-derived dimers, trimers and dendrimers: investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chemistry, 2018, 24(32), 8103-8113. [http://dx.doi.org/10.1002/chem.201800729]. [PMID: 29570874].
[150]
Kaptein, S.J.F.; Efferth, T.; Leis, M.; Rechter, S.; Auerochs, S.; Kalmer, M.; Bruggeman, C.A.; Vink, C.; Stamminger, T.; Marschall, M. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res., 2006, 69(2), 60-69. [http://dx.doi.org/10.1016/j.antiviral.2005.10.003]. [PMID: 16325931].
[151]
Cai, H.; Kapoor, A.; He, R.; Venkatadri, R.; Forman, M.; Posner, G.H.; Arav-Boger, R. In vitro combination of anti-cytomegalovirus compounds acting through different targets: Role of the slope parameter and insights into mechanisms of action. Antimicrob. Agents Chemother., 2014, 58(2), 986-994. [http://dx.doi.org/ 10.1128/AAC.01972-13]. [PMID: 24277030].
[152]
Morère, L.; Andouard, D.; Labrousse, F.; Saade, F.; Calliste, C.A.; Cotin, S.; Aubard, Y.; Rawlinson, W.D.; Esclaire, F.; Hantz, S.; Ploy, M.C.; Alain, S. Ex vivo model of congenital cytomegalovirus infection and new combination therapies. Placenta, 2015, 36(1), 41-47. [http://dx.doi.org/10.1016/j.placenta.2014.11.003]. [PMID: 25479789].
[153]
Drouot, E.; Piret, J.; Boivin, G. Artesunate demonstrates in vitro synergism with several antiviral agents against human cytomegalovirus. Antivir. Ther. (Lond.), 2016, 21(6), 535-539. [http://dx.doi.org/10.3851/IMP3028]. [PMID: 26844400].
[154]
He, R.; Park, K.; Cai, H.; Kapoor, A.; Forman, M.; Mott, B.; Posner, G.H.; Arav-Boger, R. Artemisinin-derived dimer diphenyl phosphate is an irreversible inhibitor of human cytomegalovirus replication. Antimicrob. Agents Chemother., 2012, 56(7), 3508-3515. [http://dx.doi.org/10.1128/AAC.00519-12]. [PMID: 22547612].
[155]
Chou, S.; Marousek, G.; Auerochs, S.; Stamminger, T.; Milbradt, J.; Marschall, M. The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res., 2011, 92(2), 364-368. [http://dx.doi.org/10.1016/j.antiviral.2011.07.018]. [PMID: 21843554].
[156]
Canivet, C.; Menasria, R.; Rhéaume, C.; Piret, J.; Boivin, G. Valacyclovir combined with artesunate or rapamycin improves the outcome of herpes simplex virus encephalitis in mice compared to antiviral therapy alone. Antiviral Res., 2015, 123, 105-113. [http://dx.doi.org/10.1016/j.antiviral.2015.09.007]. [PMID: 26374952].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy